Elastic Modulus Measurement at High Temperatures for Miniature Ceramic Samples Using Laser Micro-Machining and Thermal Mechanical Analyzer
Abstract
:1. Introduction
2. Flexural Test for Measuring Elastic Modulus
3. Experimental Procedure
3.1. Experimental Set-Up
3.2. Laser-Machined Microbeam and Moment of Inertia
3.3. Load and Temperature Program
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lord, J.D.; Morrell, R. Elastic Modulus Measurement. In Measurement Good Practice Guide, No. 98; National Physical Laboratory: Middlesex, UK, 2007; Available online: https://eprintspublications.npl.co.uk/3782/1/MGPG98.pdf (accessed on 19 September 2024).
- Yagi, H.; Yanagitani, T.; Numazawa, T.; Ueda, K. The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature. Ceram. Int. 2007, 33, 711–714. [Google Scholar] [CrossRef]
- Bruls, R.J.; Hintzen, H.T.; De With, G.; Metselaar, R. The temperature dependence of the Young’s modulus of MgSiN2, AlN and Si3N4. J. Eur. Ceram. Soc. 2001, 21, 263–268. [Google Scholar] [CrossRef]
- Miljojković, J.; Bijelić, I.; Vranić, N.; Radovanović, N.; Živković, M. Determining elastic modulus of the material by measuring the deflection of the beam loaded in bending. Teh. Vjesn./Tech. Gaz. 2017, 24, 1227–1234. [Google Scholar]
- Gregorová, E.; Šimonová, P.; Pabst, W. Temperature dependence of Young’s modulus and damping of uniaxially pressed and partially sintered mullite ceramics and mullite-alumina composites. J. Eur. Ceram. Soc. 2024, 44, 1081–1094. [Google Scholar] [CrossRef]
- Spinner, S.; Reichard, T.W.; Tefft, W.E. A comparison of experimental and theoretical relations between Young’s modulus and the flexural and longitudinal resonance frequencies of uniform bars. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1960, 64, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.A.; Maithani, Y.; Horng, R.H.; Singh, J.P. Investigating mechanical properties of sintered ZnGa2O4 ceramics using nanoindentation. Ceram. Int. 2022, 48, 27064–27075. [Google Scholar] [CrossRef]
- Pelissari, P.I.; Bouville, F.; Pandolfelli, V.C.; Carnelli, D.; Giuliani, F.; Luz, A.P.; Saiz, E.; Studart, A.R. Nacre-like ceramic refractories for high temperature applications. J. Eur. Ceram. Soc. 2018, 38, 2186–2193. [Google Scholar] [CrossRef]
- Krell, A.; Schädlich, S.J.M.S. Nanoindentation hardness of submicrometer alumina ceramics. Mater. Sci. Eng. A 2001, 307, 172–181. [Google Scholar] [CrossRef]
- Shi, J.; Guo, Z.J.; Wang, J.X.; Liu, X.; Zhou, Y.; Tang, J.Q.; Wen, J.F.; Tu, S.T. A novel small specimen testing method based on a pneumatic bulging test: Measurement of tensile properties at high temperatures. Int. J. Press. Vessel. Pip. 2024, 209, 105210. [Google Scholar] [CrossRef]
- Imrich, P.J.; Kirchlechner, C.; Kiener, D.; Dehm, G. In situ TEM microcompression of single and bicrystalline samples: Insights and limitations. Jom 2015, 67, 1704–1712. [Google Scholar] [CrossRef]
- Yano, K.H.; Swenson, M.J.; Wu, Y.; Wharry, J.P. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy. J. Nucl. Mater. 2017, 483, 107–120. [Google Scholar] [CrossRef]
- Hemker, K.J.; Sharpe Jr, W.N. Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 2007, 37, 93–126. [Google Scholar] [CrossRef]
- Li, W.; Wang, R.; Li, D.; Fang, D. A model of temperature-dependent Young’s modulus for ultrahigh temperature ceramics. Phys. Res. Int. 2011, 2011, 791545. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; University Press: Oxford, UK, 1996. [Google Scholar]
- Soga, N.; Anderson, O.L. High-temperature elastic properties of polycrystalline MgO and Al2O3. J. Am. Ceram. Soc. 1966, 49, 355–359. [Google Scholar] [CrossRef]
- Shimada, M.; Matsushita, K.I.; Kuratani, S.; Okamoto, T.; Koizumi, M.; Tsukuma, K.; Tsukidate, T. Temperature dependence of Young’s modulus and internal friction in alumina, silicon nitride, and partially stabilized zirconia ceramics. J. Am. Ceram. Soc. 1984, 67, C-23. [Google Scholar] [CrossRef]
- Wachtman Jr, J.B.; Tefft, W.E.; Lam Jr, D.G.; Apstein, C.S. Exponential temperature dependence of Young’s modulus for several oxides. Phys. Rev. 1961, 122, 1754–1758. [Google Scholar] [CrossRef]
- Heritage, K.; Frisby, C.; Wolfenden, A. Impulse excitation technique for dynamic flexural measurements at moderate temperature. Rev. Sci. Instrum. 1988, 59, 973–974. [Google Scholar] [CrossRef]
- ASTM E8; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM C1161; Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. ASTM International: West Conshohocken, PA, USA, 2013; pp. 1–19.
- EN 843-2; Advanced Technical Ceramics—Monolithic Ceramics—Mechanical Properties at room Temperature—Part 2: Determination of Elastic Moduli Konstruktionskeramer—Monolitiska Keramer—Mekaniska Egenskaper vid rumstemperatur—Del 2: Bestämning av. Polish Committee for Standardization: Warsaw, Poland, 1995.
- Pronk, A.C. Theory of the Four Point Dynamic Bending Test Part I: General Theory. 2006. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.civil.uminho.pt/4pb/information/theory/4PB-I-General.pdf&ved=2ahUKEwjpvIHxgtOIAxWer1YBHT24FqcQFnoECBQQAQ&usg=AOvVaw3SO_JG1Sm6X8y3c9M-1Bd_ (accessed on 19 September 2024).
- Gross, D.; Hauger, W. Engineering Mechanics 2: Mechanics of Materials; Springer Publication: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Semendyayev, I.B.K.; Mühlig, G.M.H. Handbook of Mathematics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
Sample # | (mm) | ) | ) | ) | |
---|---|---|---|---|---|
Alumina | 1 | 8.80 | 97 ± 2 | 275 ± 6 | 500 ± 5 |
2 | 8.80 | 97 ± 2 | 290 ± 7 | 500 ± 5 | |
3 | 8.80 | 71 ± 3 | 245 ± 6 | 500 ± 5 | |
4 | 8.80 | 115 ± 4 | 255 ± 9 | 500 ± 5 | |
Aluminum nitride | 5 | 8.80 | 157± 3 | 240 ± 6 | 500 ± 5 |
6 | 8.80 | 97 ± 2 | 228 ± 4 | 500 ± 5 | |
7 | 8.80 | 89 ± 2 | 243 ± 2 | 500 ± 5 |
Temperature (°C) | Alumina (GPa) | Aluminum Nitride (GPa) | |||
---|---|---|---|---|---|
Report in Ref. [16] | Report in Ref. [16] | This Paper | Report in Ref. [3] | This Paper | |
25 | 398 | 385 | 391 ± 17 | 310 | 304 ± 8 |
500 | 374 | 362 | 378 ± 5 | 300 | 290 ± 7 |
800 | 358 | 347 | 344 ± 14 | 294 | 282 ± 10 |
1100 | 342 | 331 | 324 ± 6 | - | 263 ± 8 |
Method | Principle | Advantages | Limitations |
---|---|---|---|
Tensile and flexure tests | Measures deformation under applied stress | Easy to prepare; standardized and widely used | Bulk or large-scale samples |
Resonance and impact excitation methods | Measures natural frequency or response to impact | Non-destructive; high-temperature capability | Bulk or large-scale samples; dimensional sensitivity; high surface finish requirement; suspension and support issues at high temperature |
Nanoindentation | Measures indentation hardness and modulus using a sharp indenter | Localized measurements (micron-scale) | Sensitive to surface conditions; complexity in analysis |
Micropillar testing | Measures compressing or deforming of small, cylindrical pillars | Localized measurements (micron-scale) | Fabrication challenges; small stress–strain measurement; complexity in analysis; properties may differ from those of bulk materials |
This work | Measures deformation of laser-machined microbeam under applied stress with a TMA | Simple result analysis; high-temperature testing; easy control of inert atmosphere Localized measurements (millimeter-scale) | Requires precise set-up; requires laser micro-machining capability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xiao, H.; Bordia, R.K.; Peng, F. Elastic Modulus Measurement at High Temperatures for Miniature Ceramic Samples Using Laser Micro-Machining and Thermal Mechanical Analyzer. Materials 2024, 17, 4636. https://doi.org/10.3390/ma17184636
Zhang Z, Xiao H, Bordia RK, Peng F. Elastic Modulus Measurement at High Temperatures for Miniature Ceramic Samples Using Laser Micro-Machining and Thermal Mechanical Analyzer. Materials. 2024; 17(18):4636. https://doi.org/10.3390/ma17184636
Chicago/Turabian StyleZhang, Zhao, Hai Xiao, Rajendra K. Bordia, and Fei Peng. 2024. "Elastic Modulus Measurement at High Temperatures for Miniature Ceramic Samples Using Laser Micro-Machining and Thermal Mechanical Analyzer" Materials 17, no. 18: 4636. https://doi.org/10.3390/ma17184636
APA StyleZhang, Z., Xiao, H., Bordia, R. K., & Peng, F. (2024). Elastic Modulus Measurement at High Temperatures for Miniature Ceramic Samples Using Laser Micro-Machining and Thermal Mechanical Analyzer. Materials, 17(18), 4636. https://doi.org/10.3390/ma17184636