
Citation: Liu, F.; Shao, S.; Wang, W.;

Xia, R.; Negahban, M.; Li, Z. A Novel

Cross Tetrachiral Honeycomb

Metamaterial with Designable Static

and Dynamic Performances. Materials

2024, 17, 4652. https://doi.org/

10.3390/ma17184652

Academic Editor: Reza Hedayati

Received: 8 August 2024

Revised: 14 September 2024

Accepted: 16 September 2024

Published: 23 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

A Novel Cross Tetrachiral Honeycomb Metamaterial with
Designable Static and Dynamic Performances
Fengming Liu 1, Shixuan Shao 1,*, Weihan Wang 1, Rongyu Xia 2, Mehrdad Negahban 3 and Zheng Li 1,*

1 State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering
Science, College of Engineering, Peking University, Beijing 100871, China; fmliu1678@163.com (F.L.)

2 Department of Applied Mechanics and Engineering, School of Aeronautics and Astronautics,
Sun Yat-sen University, Shenzhen 518107, China

3 Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
* Correspondence: shaoshixuan@pku.edu.cn (S.S.); lizheng@pku.edu.cn (Z.L.)

Abstract: A novel cross tetrachiral honeycomb metamaterial is proposed, which not only possesses
the negative Poisson’s ratio property, but also has a wide-frequency bandgap. The effective elastic
parameters of the cross tetrachiral honeycomb are first theoretically analyzed; then, its designable
performances for negative Poisson’s ratio and elastic modulus are studied by varying geometric
parameters. The dynamic properties of the cross tetrachiral honeycomb metamaterial are investi-
gated by analyzing the band structure. It is shown that without the addition of external mass to the
structure, a designable wide bandgap can be generated to isolate the in-plane waves effectively by
selecting the ligament angles and the radius of central cylinder. In addition, an effective approach
is proposed for tuning the bandwidth without changing the geometric parameters of the structure.
Compared to classical negative Poisson’s ratio metamaterials, the proposed cross tetrachiral honey-
comb metamaterial is designable and tunable for achieving a specific static or dynamic performance,
and has potential applications in engineering practice.

Keywords: cross chiral metamaterial; negative Poisson’s ratio; bandgap; wave isolation; designable
properties

1. Introduction

Mechanical metamaterials are artificially designed materials with mesoscale or mi-
croscale structural arrangements, and have extraordinary properties that are not found
in natural materials. Their mechanical properties do not just depend on their material
properties, but can be designed by the mesoscale or microscale structures [1–3]. There-
fore, metamaterials have a variety of structural types obtained through designs to meet
broad engineering requirements in defense and military, aerospace, civil construction,
vehicle manufacturing, shipbuilding engineering, and other industries. Metamaterials
have been used in some practical applications in specific projects such as the skin filling
of deformable airfoils [4], automotive comfort optimization [5], clinical diagnostics, and
biomedical testing [6].

Based on elaborate structural designs, mechanical metamaterials are adjustable [7] and
programmable [8–10], and can achieve unique physical and mechanical properties [11–14],
such as negative compressibility [15], negative thermal expansion [16], negative Poisson’s
ratio [17], and mechanical vibration isolation [18]. Among these, metamaterials with
negative Poisson’s ratio, i.e., auxetic materials [19], have attracted more attention, and
many structures with this property have been reported, including trichiral and anti-trichiral,
tetrachiral and anti-tetrachiral, and hexachiral honeycomb structures [20–22]. Beyond
the negative Poisson’s ratio, the dynamic behaviors of these metamaterials have also
been explored. They have shown good performances in impact resistance [23], fracture
tolerance [24], energy absorption, and vibration isolation [25].
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Yajun Xin et al. [26] chose a star-shaped negative Poisson’s ratio structure, and pro-
posed a novel re-entrant method to adjust low frequency bandgaps by adding rubber-coated
masses. As a typical type of auxetic metamaterial, the chiral honeycomb metamaterial
has been developed to obtain both excellent mechanical properties and vibration isolation.
Luyun Chen et al. [27] have analyzed the geometric parameters and material properties
of hexachiral metamaterials to obtain a wide and complete bandgap. However, most of
the studies in this area focus on the generation of bandgaps by additional mass. Xiaoning
Liu et al. [28] added a softly coated heavy cylinder into the two-dimensional periodic
chiral lattice to achieve low-frequency bandgaps. Pei Sun et al. [29] proposed an internal
resonance unit with cruciate ligament features to replace the metamaterial inclusion for
extreme low-frequency bandgaps. Similarly, based on a chiral lattice, Rui Zhu et al. [18]
first designed an elastic metamaterial beam with distributed multiple inner resonators for
achieving wide-band vibration suppression without sacrificing the load-bearing capacity
of the beam. Furthermore, four-ligament chiral honeycomb structures have attracted more
attention for their better specific energy absorption than other honeycomb structures [30].
Andrea Bacigalupo et al. [31] numerically optimized the designs of metamaterial beams
with tetrachiral, tetrachiral backhander, and hexachiral chiral honeycombs to obtain the
best dispersion spectra, and used adaptive surrogate-based optimization technology to
design a double quad-ligamentous chiral metamaterial with broadband low-frequency
filtering [32]. Although beyond negative Poisson’s ratio, the chiral honeycomb metama-
terials can effectively reduce vibration at locally resonant bandgaps, most designs use
composite materials for complex configurations, resulting in localized resonance by adding
extra mass, which leads to higher manufacturing costs, narrower bandgap width, and
difficulty in flexible adjustment. As such, a design using a single material and integrated
configuration is of significance to engineering applications. In addition, the metamaterial
design methodology to satisfy both static and dynamic performance criterion is significant.

In this paper, inspired by the tetrachiral honeycomb and cross chiral structures, a novel
cross tetrachiral honeycomb metamaterial with negative Poisson’s ratio is presented that is
capable of wave isolation. Different from the usual approach of metamaterials to form a
localized resonant bandgap by introducing additional mass, the cross tetrachiral honycomb
metamaterial forms a wide bandgap by introducing more geometrical parameters including
tile angle θ. The metamaterial can be geometrically and mechanically tuned to adjust the
broadband bandgap while ensuring excellent static properties. By introducing more geo-
metric parameters, the metamaterial can adjust the broadband bandgap through geometric
regulation and mechanical regulation, while ensuring an excellent static performance. The
remainder of the paper is arranged as follows. In Section 2, the effective elastic parameters
of the proposed metamaterials are theoretically analyzed. In Section 3, three dimension-
less quantities are introduced to describe the designability of static machinal response.
In Section 4, the dynamic performance of the proposed metamaterial is studied through
band structure analysis. Bandgaps have been designed through the selection of geometric
parameters and can be tuned by external loading. In Section 5, conclusions are provided to
summarize the design and analysis of cross tetrachiral honeycomb metamaterials.

2. Cross Tetrachiral Honeycomb Metamaterials
2.1. Model

In order to improve the deformability of tetrachiral honeycomb structures, a cross-
chiral honeycomb structure [33–35] with folded corners, as shown in Figure 1a, is in-
troduced into the classical tetrachiral honeycomb structure with the unit cell shown in
Figure 1b. For classical traditional tetrachiral honeycomb structures, there is a circular ring
at the center of the ligaments to achieve a light weight structure, but it also reduces the
stiffness of the unit cell. This weakness affects the negative Poisson’s ratio and the structural
stability in large deformations. To overcome this drawback, we replace the circular ring
with a solid cylinder, and attach four identical ligaments tangentially to the cylinder to
form an elementary unit, as marked by the blue dashed rectangular box in Figure 1c. By
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translating and mirroring the elementary unit, a unit cell of cross tetrachiral honeycomb
metamaterial is formed, as shown in Figure 1c. The geometrical configuration of the unit
cell can be described by the length of the elementary unit l, the tilt angle of the ligament θ,
the radius of the solid cylinder r, the in-plane thickness t, and the cross-section width b of
the ligaments, as shown in Figure 1c.
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2.2. Effective Elastic Parameters

The symmetry of the structure formed from the unit cell (Figure 1c) indicates that the
mechanical properties of the unit cell along the x and y directions are identical. Therefore,
only the elastic properties in one direction (either x or y) need to be analyzed to describe
the structure’s behavior.

Here, we consider small deformations consistent with linear elasticity, a rigid solid
cylinder, and the ligaments analyzed using Euler–Bernoulli beam theory, as well as as-
suming that the deformations are in plane. It is worth noting that when the metamaterial
undergoes an overall large deformation, it is actually a result of the cumulative effect of
the bending deformations of the ligaments and the rotations of the cylinders. The strain
generated locally in each ligament remains as a small deformation that satisfies the Euler–
Bernoulli theory. Based on the geometric symmetry, when the unit cell is subject to a
uniformly distributed load in the x or y directions obtained by an action on boundary
points A1~A4 or B1~B4, respectively, only surface translations are observed. Suppose the
unit cell is loaded in the y direction and eliminates the rigid body displacement of the
center of the unit cell. In order to simplify the analysis, only one elementary unit in the unit
cell in Figure 1c is considered, as shown in Figure 2.

The loading of the elementary unit is shown in Figure 2a, where F1 and F2 are externally
applied loads along the y direction, respectively, on endpoints A and C; M1, M2, M3, and
M4 are moments applied, respectively, on endpoints A, B, C, and D. Because the ligaments
are tangentially attached to the cylinder, its lengths of two sides are not equal and can be
separately named l11 and l1, as shown in Figure 2b.

Using the center point O of the solid cylinder as the fixed reference point with the
assumed displacements uO = vO = 0 where u denotes displacement in the x direction and
v denotes the displacement in the y direction, under the action of the external loads, the
solid cylinder will have a rigid body rotation with a rotation angle φ around point O.



Materials 2024, 17, 4652 4 of 18Materials 2024, 17, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 2. (a) Force diagram of elementary unit; (b) geometric parameters elementary unit. 

The loading of the elementary unit is shown in Figure 2a, where F1 and F2 are exter-
nally applied loads along the y direction, respectively, on endpoints A and C; M1, M2, M3, 
and M4 are moments applied, respectively, on endpoints A, B, C, and D. Because the liga-
ments are tangentially attached to the cylinder, its lengths of two sides are not equal and 
can be separately named l11 and l1, as shown in Figure 2b. 

Using the center point O of the solid cylinder as the fixed reference point with the 
assumed displacements O O 0u v= =  where u denotes displacement in the x direction and 
v denotes the displacement in the y direction, under the action of the external loads, the 
solid cylinder will have a rigid body rotation with a rotation angle φ around point O. 

According to the force equilibrium along the y direction, we obtain 1 2F F=  , and 
through the symmetry, the moment has the relations of 1 2M M=  and 3 4M M= . And 
then, the moment equilibrium equations in plane can be derived using the following equa-
tion: 

( )1 11 1 4sin cos .F l r M Mθ θ+ = +  (1)

It is clear that the deformations of ligaments AA’ and CC’ are the same due to the 
symmetry, and so are the ligaments BB’ and DD’. Therefore, the deformation of the ele-
mentary unit can be divided into two parts for analysis. The deformation of ligament AA’, 
as shown in Figure 3, is first taken into consideration. 

 
Figure 3. Deformations of ligament AA’ under actions of external load F1 and moment M1. 

Figure 2. (a) Force diagram of elementary unit; (b) geometric parameters elementary unit.

According to the force equilibrium along the y direction, we obtain F1 = F2, and
through the symmetry, the moment has the relations of M1 = M2 and M3 = M4. And then,
the moment equilibrium equations in plane can be derived using the following equation:

F1(l11 sin θ + r cos θ) = M1 + M4. (1)

It is clear that the deformations of ligaments AA’ and CC’ are the same due to the sym-
metry, and so are the ligaments BB’ and DD’. Therefore, the deformation of the elementary
unit can be divided into two parts for analysis. The deformation of ligament AA’, as shown
in Figure 3, is first taken into consideration.
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Under the actions of force F1 and moment M1, the displacements of ligament AA’
include axial tension/compression and bending deformations, as well as the rotation φ of
the rigid cylinder. According to Figure 2b, the lengths of ligament AA’, named l11 and l1,
have the following relations:

l1 =
2r sin θ + l

2 cos θ
=

(
rq tan θ +

1
2 cos θ

)
l = αl, (2)

and

l11 = l1 − r sin
(

arccos
(

1 − b
r

))
− b tan θ =

(
α − rq sin

(
arccos

(
1 −

bq

rq

))
− bq tan θ

)
l = βl, (3)
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where α(rq, θ) and β
(
rq, bq, θ

)
can be represented by the dimensionless parameters rq = r

l
and bq = b

l with the length of elementary unit l. If we set l11 to be the equivalent length of
the ligament, the displacements at point A can be expressed as follows:

uA =
F1l11

3 sin θ cos θ

3EI
− M1l11

2 cos θ

2EI
− F1l11 sin θ cos θ

EA
+ φl0 cos θ1, (4)

and

vA =
F1l11

3 sin2 θ

3EI
− M1l11

2 sin θ

2EI
+

F1l11 cos2 θ

EA
+ φl0 sin θ1, (5)

where E is the elastic modulus, I = tb3/12 is the moment of inertia of the ligament, A = tb
is the area of the cross-section of the ligament, and l0 is the length from the center O of

the cylinder to the endpoint A to be l0 =
√

l12 + r2. As shown in Figure 4a, the rotation
of the cylinder can cause the displacement of the ligament at the endpoint A to be φl0. If
we introduce a new tilt angle θ1 between OA and ligament AA’, as shown in Figure 4b, its
relation with θ is θ1 = θ + arctan r

l1
= θ + arctan rq

α .
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The rotation of endpoint A should be equal to 0 due to the symmetric conditions, i.e.,

F1l11
2 sin θ

2EI
− M1l11

EI
+ φ = 0. (6)

Then, the displacements at point A can be expressed in terms of external load F1,
as follows:

uA = F1

(
l11r cos θ

2EI

(
l0 cos θ1 −

l11 cos θ

2

)
+

l11
2 sin θ

4EI

(
l0 cos θ1 −

l11 cos θ

6

)
− l11 sin θ cos θ

EA

)
, (7)

and

vA = F1

(
l11r cos θ

2EI

(
l0 sin θ1 −

l11 sin θ

2

)
+

l11
2 sin θ

4EI

(
l0 sin θ1 −

l11 sin θ

6

)
+

l11 cos2 θ

EA

)
. (8)

Similarly, for the deformation of ligament BB’, as illustrated in Figure 5, the displace-
ments of endpoint B can be obtained using the following equations:

uB =
M4l11

2 sin θ

2EI
− φl0 sin θ1, (9)
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vB = −M4l11
2 cos θ

2EI
+ φl0 cos θ1. (10)
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Considering Equations (1) and (6) and the symmetry conditions at the endpoint B
with M2l11

EI − φ = 0, the displacements of endpoint B can be expressed by the external load
F1 as an independent variable, i.e.,

uB = −F1
l11

2EI

(
r cos θ +

l11 sin θ

2

)(
l0 sin θ1 −

l11 sin θ

2

)
, (11)

vB = F1
l1

2EI

(
r cos θ +

l1 sin θ

2

)(
l0 cos θ1 −

l1 cos θ

2

)
. (12)

Thus, combining the displacements of endpoints A and B in Equations (9)–(12), for
the elementary unit, the equivalent Poisson’s ratio and elastic modulus can be obtained
using the following equations:

νq =
2uB

l
/
(

2vA
l

)
, (13)

and

Es =
2F1

lt
/
(

4vA
l

)
. (14)

Furthermore, we can define the equivalent Poisson’s ratio and elastic modulus in a
dimensionless expression as follows:

νq
(
rq, bq, θ

)
=
−
(

rq cos θ+
β sin θ

2

)(√
α2+rq2 sin θ1−

β sin θ
2

)
rq cos θ

(√
α2+rq2 sin θ1−

β sin θ
2

)
+

β sin θ
2

(√
α2+rq2 sin θ1−

β sin θ
6

)
+

bq2 cos2 θ
6

, (15)

and
Eq
(
rq, bq, θ

)
= Es

E

=
bq

3

2β
(

6rq cos θ
(√

α2+rq2 sin θ1−
β sin θ

2

)
+3β sin θ

(√
α2+rq2 sin θ1−

β sin θ
6

)
+bq

2 cos2 θ
) . (16)

Therefore, elastic parameters, i.e., equivalent Poisson’s ratio and elastic modulus,
can be determined by three geometric dimensionless quantities—bq, rq, and θ—and the
elastic properties of the whole structure along the x or y axes can be determined using
Equations (15) and (16) by considering the symmetrical properties.
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3. Static Performance

In order to verify the effectivity and accuracy of the equivalent elastic properties
calculated using Equations (15) and (16), the finite element method is introduced to provide
numerical simulation results for comparison. If the unit cell in Figure 1c is made of
aluminum, its finite element model is shown in Figure 6a with the material properties and
geometric parameters listed in Table 1. The unit cell produces 1% strain in the simulation.
For the unit cell subjected to extension loading along the y direction, as shown in Figure 1c,
its deformation can be numerically calculated by using the commercial software COMSOL
Multiphysics to obtain the equivalent elastic properties. The finite element model in
Figure 6a is meshed by the second-order tetrahedral element with size 1.2 × 10−2 mm.
Among the geometric parameters in Equations (15) and (16), the tilt angle of ligament θ is
more flexible to alter the equivalent elastic properties. Therefore, to change the tilt angle of
the ligament θ from 5◦ to 35◦, the varied equivalent Poisson’s ratios and elastic moduli are
shown in Figure 6b,c, respectively.
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Table 1. Material properties and geometric parameters.

E (GPa) υ ρ (kg/m3) t (m) b (m) l (m) r (m) A (m2) I (m4)

70 0.33 2700 0.001 0.001 0.06 0.003 10−6 8.33 × 10−14

For the equivalent Poisson’s ratios in Figure 6b, the analytical results (blue line)
obtained using Equation (15) match very well with the numerical results (red square). The
relative errors between them are shown in Figure 6d, which obtain a maximum of about 2%
at a tilt angle θ = 18◦, demonstrating the high accuracy of Equation (15). For the equivalent
elastic modulus in Figure 6c and relative errors in Figure 6e, the analytical results from
Equation (16) are less than the analytical results at small tilt angles, but still obtain a high
accuracy (relative errors of less than 5%) when the tilt angles are larger than θ = 16◦.
Therefore, the proposed analytical equations can be used to theoretically predict the static
mechanical properties of cross tetrachiral honeycomb metamaterials. It is noteworthy
that the proposed cross tetrachiral honeycomb metamaterial has a good performance of
negative Poisson’s ratio, which can be adjusted by altering the tilt angle θ.

In Figure 6b, the absolute value of equivalent negative Poisson’s ratio decreases as the
tilt angle θ increases. As shown in Figure 2a, the small tilt angle of ligament θ can introduce
a smaller vertical deformation along the tensile direction caused by ligaments AA’ and
CC’, and the deformation can rotate the cylinder to induce a bending moment acting on
ligaments BB’ and DD’ for providing horizontal deformation. Therefore, the equivalent
negative Poisson’s ratio depends on the rotation of the cylinder to turn the vertical and
horizontal displacements of deformed ligaments. With the gradually increasing tilt angle
of the ligament, the bending deformations of ligaments AA’ and CC’ increase to cause a
larger vertical displacement of the unit cell; however, the influence of the cylinder rotation
on the horizonal displacement caused by ligaments BB’ and DD’ is limited. Therefore, the
equivalent negative Poisson’s ratio can be adjusted by selecting a proper tilt angle θ.

For the equivalent elastic modulus, as shown in Figure 6c, there is a better consistency
between the analytical results from Equation (16) and the numerical results at larger tilt
angles. As the tilt angle θ increases, the equivalent elastic modulus becomes lower. This
is because for a small tilt angle θ, the vertical displacement is mostly contributed by the
longitudinally tensile deformations of ligaments AA’ and CC’, for which their stiffness
is much larger than their bending stiffness, so that the equivalent elastic modulus is
relatively big. On the contrary, the larger tilt angle can induce the vertical displacement
with the bending-dominated deformations of ligaments AA’ and CC’, resulting in a larger
deformation producing a smaller equivalent elastic modulus.

From Figure 6d,e, it can be seen that there is a difference between the theoretical predic-
tions and the simulation results for Poisson’s ratio and elastic modulus, especially for the
elastic modulus at smaller tilt angles θ. When θ is small, the ligaments are mainly subjected
to tensile or compressive deformations by external loads. This causes the deformation
of the ligament to be more dominated by axial deformation than bending deformation.
However, the theoretical prediction is based on beam assumption, and only focuses on the
bending deformation, neglecting the axial deformation. This is the reason why an error is
caused between the theory and the simulation results at small tilt angles θ, while the axial
deformation of the ligament is important and non-negligible. In addition, it demonstrates
that the tilt angle θ is a useful parameter to change the equivalent static properties of cross
tetrachiral honeycomb metamaterials.

Since the analytical results are in good agreement with the numerical results, the
equivalent elastic parameters Eq and νq of cross tetrachiral honeycomb metamaterials can
be predicted using Equations (15) and (16). There are three independent dimensionless
geometric parameters—rq, bq, and θ—which can be used to design the equivalent elastic
parameters of the proposed metamaterial, as shown in Figure 7. If we set the tilt angle θ
= 8◦, Eq and νq can be altered by changing geometric parameters rq and bq, as shown in
Figure 7a,b, respectively. Similarly, if we set rq = 0.1 or bq = 0.05 and change the other two
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parameters, Eq and νq will correspondingly vary, as shown in Figure 7c,d or Figure 7e,f.
Therefore, the static mechanical properties of cross tetrachiral honeycomb metamaterials
can be predicted by selecting suitable geometric parameters.
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Figure 7. (a) Diagram of Eq with respect to bq and rq when θ = 8◦. (b) Diagram of υq with respect
to bq and rq when θ = 8◦. (c) Diagram of Eq with respect to bq and θ when rq = 0.1. (d) Diagram of
υq with respect to bq and θ when rq = 0.1. (e) Diagram of Eq with respect to rq and θ when bq = 0.05.
(f) Diagram of υq with respect to rq and θ when bq = 0.05.

Furthermore, it should be noticed that there is a stress concentration at the folding
angle of two adjacent ligaments. In order to alleviate the stress concentration, the sharp
folding angle is optimized into an arc curve with small curvature, as shown in Figure 8a.
The stress distributions around the folding angle are calculated by using the commercial
software COMSOL Mutiphysics 6.0, as shown in Figure 8b,c. The geometric parameters
used in Figure 8a are the same as those in Table 1 and r1 = 20 mm. The unit cells in
Figure 8b,c are subjected to a 1% tensile strain along the vertical direction. From Figure 8b,c,
with the optimization, the maximum stress can be reduced from 166 MPa to 157 MPa with
a reduction ratio of the maximum stress of about 5.42%, but the equivalent elastic modulus
and Poisson’s ratio only change by about 1.05% and 0.24%, respectively. The results indicate
that the small curvature at the folding angle of two adjacent ligaments does not make a big
difference in the equivalent elastic parameters, but it can reduce the stress concentration
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at the folding angle to a certain extent. Actually, the folding angle curvature is closer to a
straight line for meeting the requirements of machining in practical engineering, and can
make the manufacturing process easier.
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4. Dynamic Performance

As chiral metamaterials are highly applied in dynamic environments, it is very sig-
nificant to investigate and adjust their dynamic properties. For the classical tetrachiral
honeycomb metamaterial, as shown in Figure 1b, it is hard to design bandgaps in its band
structure without any additional mass. Even if the metamaterial is made to produce a
locally resonant bandgap by adding additional mass, the bandwidth will be narrow, and
it will also be difficult to conveniently tune the bandgap. Therefore, how to manipulate
the dynamic performance of cross tetrachiral honeycomb metamaterials is important to
explore its potential in engineering applications.

4.1. Band Structures

For a linear elastic solid, its governing equation of wave motion with neglected body
forces is as follows:

(λ + µ)∇∇ · u + µ∇2u = ρ
..
u, (17)

where ρ is the mass density, λ and µ are the Lame constants, and u is the displacement
vector, respectively. Considering a harmonic wave with angular frequency ω propagating
in a two-dimensional Oxy plane, the solution of Equation (17) can be written as follows:

u = ukei(k·r−ωt), (18)

where r = (x, y), k =
(
kx, ky

)
is the wave vector, and uk is the Bloch displacement vector.
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By substituting Equation (18) into Equation (17), the wave propagation equation in
the periodic structure can be rewritten as follows:

[K(λ, µ, k)− ωM(ρ)]uk = 0. (19)

To obtain a non-trivial solution of uk from Equation (19), an eigenvalue problem
should be solved, i.e.,

|K(λ, µ, k)− ωM(ρ)| = 0 (20)

and the band structures of the periodic structure can be obtained.
For the same unit cell considered in a static case with the material properties and geo-

metric parameters in Table 1, the dynamic performance of the cross tetrachiral honeycomb
metamaterial is calculated using Equation (20) through the finite element commercial soft-
ware COMSOL Multiphysics. To ensure the accuracy of the dynamic simulation, the finite
element model is meshed by the second-order tetrahedral element with size 1.2 × 10−2 mm,
which is less than one-tenth of the wavelength. Consider the in-plane case as the unit
cell and its irreducible Brillouin zone shown in Figure 9a; if the tilt angle of ligament is
selected as θ = 8◦, the band structures can be calculated and are shown in Figure 9b. For
the dynamic case, even if the metamaterial undergoes an overall large deformation, the
end part of the metamaterial retains a small deformation to satisfy the assumptions of the
Euler–Bernoulli theory. In the simulation, during the unit cell with a 2% strain, the strain of
each ligament is less than 0.56%.
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As shown in Figure 9b, there is a wide bandgap in the band structures from a frequency
of 10.8 kHz to 13.4 kHz, as marked in the blue shade. To verify the band structures, a
two-dimensional cross tetrachiral honeycomb structure with 13 × 6 unit cells, as shown in
Figure 9c, is introduced to calculate the transmission ratio. A longitudinal plane wave is
excited along the left side with the displacement amplitude Ui, and the transmission signal
along the right side with displacement amplitude Ui is calculated using the finite element
commercial software COMSOL Multiphysics. Perfect-matched layers (PMLs) are attached
to both sides of the structure to eliminate the influence of reflected waves. The transmission
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ratio of the wave energy is calculated by U2
t /U2

i , and is shown in Figure 9d. The blue shade
in Figure 9d marks the frequency range of the bandgap in Figure 9b, where a sharp drop in
transmission ratios is observed. At other frequencies, the transmitted waves can propagate
with a higher transmission ratio, which is consistent with the band structures.

In order to analyze the generation of the bandgap, the wave modes at the up and
down boundaries of the bandgap with a frequency of 10.0 kHz and 13.6 kHz (marked 1
and 2 at Γ in Figure 9b) are calculated using COMSOL, and the displacement amplitude
of the unit cell is amplified and shown in Figure 10. In Figure 10, it can be noticed that
the cylinders rotate rigidly and the ligaments move like cantilever beams with in-plane
flexural deformations. Therefore, our simplified model in Section 2 can also be used in
analyzing the dynamic case. The longitudinally incident wave propagates through the
cross tetrachiral honeycomb structure to induce the flexural deformations of horizontal
ligaments, which rotate cylinders to drive the flexural deformations of vertical ligaments;
then, the wave moment transfers from one to another.
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Comparing the mode shapes in Figure 10a,b, there is no big difference to be found in
the vertical ligaments, but there is a phase difference π between the horizontal ligaments.
The lowest bandgap is formed by a combination of locally resonant bandgaps, as shown in
Figure 10. In Figure 10a, if we focus on one elementary unit, the flexural deformations of
the horizontal and vertical ligaments are all following the rotation direction of the cylinder
to present an easier excited wave mode at a lower frequency (10.0 kHz). However, for the
elementary unit in Figure 10b, an opposite flexural deformation between the horizontal
and vertical ligaments can be observed, which is a more difficult mode to be excited and
has a higher frequency (13.6 kHz). As a result, a bandgap is generated between both
wave modes.

4.2. Bandgap Influenced by Geometric Parameters

To further explore the possibility of designing a cross tetrachiral honeycomb structure
with specific dynamic properties, the influences of the geometric parameters of the unit cell
are investigated one by one. Firstly, when the tilt angle of ligament θ is designed as θ = 5◦,
6◦, 12◦, and 35◦, the band structures are calculated, respectively, as shown in Figure 11a–d.

From Figure 11, it can be seen that there is no bandgap at θ = 5◦. The bandgap
generates at θ = 6◦. Then, the bandwidth increases with the increasing θ until reaching
6.3 kHz (from 11.1 kHz to 17.4 kHz) at θ = 12◦. After that, the bandwidth will decrease.
Based on the band structures in Figure 11, the frequency of the mode shape at the upper
boundary is the main reason for the change in bandgap, which indicates that the mode
shape of Figure 10b is greatly affected by the tilt angle of the ligament. In contrast, the
frequency of the lower boundary is relatively stable, which varies slightly with increasing
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θ. Therefore, the bandgap of the cross tetrachiral honeycomb structure can be adjusted by
changing the tilt angle of the ligament.
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Figure 11. Band structures of different tilt angles: (a) θ = 5◦, (b) θ = 6◦, (c) θ = 12◦, (d) θ = 35◦.

Although the bandgap of the cross tetrachiral honeycomb structure is not generated
by the local resonance of the cylinder, the change in cylinder radius can also vary the
equivalent elastic modulus, as shown in Figure 7e; therefore, it also has an influence on
the dynamic performance. For the same unit cell shown in Figure 6a, if we fix the tilt
angle of the ligament to θ = 8◦ and change the radius r of the cylinder from 1.9 mm to
4.5 mm, the band structures can be calculated and they are separately shown in Figure 12a,b.
Comparing to the case shown in Figure 9a for r = 3 mm with bandwidth 2.6 kHz, the smaller
radius r = 1.9 mm can induce a narrower bandgap with bandwidth 0.2 kHz, as shown in
Figure 12a, and the larger one r = 4.5 mm can provide a wider bandgap with bandwidth
4.6 kHz, as shown in Figure 12b. In addition, as shown in Figure 7e, the equivalent elastic
modulus will decrease when the radius r of the cylinder becomes larger, so the lower
frequency of the bandgap will accordingly become lower from 13.0 kHz (r = 1.9 mm) to
9.5 kHz (r = 4.5 mm). However, the upper frequency of the bandgap is more stable, growing
from 13.0 kHz to 14.1 kHz; therefore, the bigger radius r of the cylinder provides a wider
bandgap. Nevertheless, for the radius r = 4.5 mm, if the tilt angle of the ligament θ is
changed from 8◦ to 5◦, the band structures, as shown in Figure 12c, demonstrate that the
bandwidth of the bandgap is influenced by the tilt angle of the ligament θ and the radius
r together.
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Figure 12. Band structures of different cylinder radii and tilt angles: (a) r = 1.9 mm, θ = 8◦.
(b) r = 4.5 mm, θ = 8◦. (c) r = 4.5 mm, θ = 5◦.

Since the tilt angle of the ligament θ and the radius of the cylinder r both have great
influence on modulating the band structures, the relationships between the bandgap and
selected geometric parameters should be investigated thoroughly. If the radius is fixed
as r = 3 mm, the bandgap changed with the tilt angle of the ligament θ, as shown in
Figure 13a. The bandgap does not exist at small tilt angles (θ < 8◦). It should be noted
that the relationship between bandwidth and tilt angle are not monotonic and there is a
maximum bandwidth (6.3 kHz) at a certain angle (θ = 12◦). The change in bandwidth
is strongly dependent on the upper frequency of the bandgap with a rapid increase and
gradual decrease, while the lower frequency of the bandgap alters smoothly. If the tilt
angle of the ligament is fixed as θ = 8◦, the bandgap change with radius r is shown
in Figure 13b. With the increase in cylinder radius r, the bandwidth also continuously
increases. When r = 1.9 mm, the bandwidth is 0.2 kHz, and when the radius r reaches
4.5 mm, the bandwidth increases to 4.6 kHz. Therefore, the cross tetrachiral honeycomb
metamaterial is very sensitive to the changes in geometric parameters, and its bandgap can
be adjusted by the proper selection of these parameters.

4.3. Bandgap Changed by External Load

In addition to the adjustment of the geometric parameters, the external load can
induce a large deformation of the cross tetrachiral honeycomb structure, and can also
cause a change in the dynamic performance. This characteristic will be more significant
in engineering because it does not need to change the structural configuration and can
meet a variety of engineering requirements in dynamic behaviors of cross tetrachiral
honeycomb structures.
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Figure 13. Bandgaps change with (a) the tilt angle of ligament θ and (b) radius r.

For the same model shown in Figure 9a, when vertical compression acts on the unit
cell to induce a −2% strain, as shown in Figure 14a, its band structure is calculated and
shown in Figure 14b. Comparing with the band structure in Figure 9b without an external
load, the bandgap can be changed from 10.8~13.4 kHz to 11.1~16.9 kHz, and the bandwidth
correspondingly varies from 2.6 kHz to 5.8 kHz, which is 3.2 kHz wider than that without
external load. This is because the compressive deformation can increase the tilt angle of the
vertical ligament of the unit cell. Accordingly, the mode shape at the upper frequency of
the bandgap, as marked 1 in Figure 14b, is calculated and is shown in Figure 14c; it has
the same mode shape as Figure 10b. This means that no matter if the external compression
exists or not, the mechanism of producing the bandgap is the same, but the frequency and
bandwidth of the bandgap can be changed.
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Figure 14. (a) Unit cell compressed by 2% strain. (b) Band structure after compression. (c) Mode
shape of marked 1 at Γ, frequency 16.9 kHz. (d) Unit cell stretched by 2% strain. (e) Band structure
after tension. (f) Mode shape of marked 2 at Γ, frequency 10.2 kHz.

If the vertical tension is acting on the unit cell and induces a 2% strain, as shown
in Figure 14d, its band structure is calculated and is shown in Figure 14e. It is clear in
Figure 14e that there is no bandgap, because the tensive deformation can make the tilt angle
of the vertical ligament become smaller. For comparison with the bandgap in Figure 9b,
the mode shape marked as 2 in Figure 14e is calculated and shown in Figure 14f. It can be
noticed that the mode shape in Figure 14f is the same as Figure 10a, which is the mode shape
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of the lower frequency of the bandgap without external tension. This demonstrates that
the mechanism of bandgap modulation through deformation is the same as that through
changing the tilt angle of the ligament.

From Figure 14, it can be seen that the external load can effectively change the band
structure and bandwidth of the bandgap, and can even convert the bandgap into the pass-
band. In order to investigate the change in bandwidth with external load, the relationship
between strain and bandgap is studied and is shown in Figure 15. In Figure 15, the results
illustrate that with the increase in tensive strain, the bandgap gradually decreases and
becomes narrower until it becomes passband at 2% strain; however, when the compressive
strain works, the bandgap increases and becomes wider in order to reach the widest band-
width at nearly 7 kHz. This confirms that the dynamic performance of the cross tetrachiral
honeycomb structure has a very high sensitivity to external load.
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In combination with the geometry of the unit cell after compression or tension in
Figure 14a or Figure 14d, the reasons for the change in bandgap with strain can be analyzed.
When the structure is vertically compressed, as in Figure 14a, the adjacent cylinders rotate
harder in relative directions due to the external load, which makes the ligament between the
cylinders more curved to form an arch. As a result, more energy is needed to stimulate the
ligaments to produce the conversion of mode shape in Figure 14c, so the bandgap becomes
wider at this time. When the structure is vertically stretched, the external load causes
the adjacent cylinders to rotate oppositely, so that the ligaments between the cylinders
become straight and gradually tend towards a straight line. As a result, less energy is
required to stimulate the ligaments to keep the same mode shape as in Figure 14f, so the
bandgap becomes narrower until it becomes a passband, which is a peculiar property of
this structure.

5. Conclusions

A novel cross tetrachiral honeycomb metamaterial is proposed in this paper, and
the combination of the cross chiral honeycomb structure and the tetrachiral honeycomb
structure can be easily designed to reach the desired static and dynamic properties, partic-
ularly to achieve both excellent functions of negative Poisson’s ratio and wave isolation.
Compared to the existing chiral honeycomb structures, the cross tetrachiral honeycomb
metamaterial can break through the limitations of narrower and higher frequency bandgaps
by introducing more tunable geometric parameters, and the integral design without addi-
tional masses can make the manufacturing process easy and precise.

Through theoretical analysis, the equivalent elastic modulus and Poisson’s ratio can
be accurately predicted. In addition, these equivalent elastic parameters can be determined
and adjusted by three geometric dimensionless parameters, which offer a significant conve-
nience for the designable static performance of cross tetrachiral honeycomb structures in
potential engineering applications.
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The investigation of the dynamic properties of cross tetrachiral honeycomb metama-
terials provides a tunable way to alter the bandgap for wave isolation. The influence of
geometric parameters on the bandgap is studied, and the results indicate that the selection
of the tilt angle of the ligament and the cylinder radius are important for adjusting the
bandgap. Additionally, the external loading can also effect the change in bandgap from
nonexistence to a wider one. With a small strain, the width of the bandgap can be changed
greatly and linearly, and the bandgap can even be transformed into a passband. Therefore,
the dynamic performance of cross tetrachiral honeycomb metamaterials is also designable.

In fact, the proposed metamaterial attempts to answer the research question about
how to simultaneously satisfy both requirements of negative Poisson’s ratio and wide-
frequency bandgap through a simple and low-cost design. Under some complex work-
ing conditions in engineering, the negative Poisson’s ratio and vibration isolation are
required simultaneously.

In summary, the cross tetrachiral honeycomb metamaterial not only achieves a nega-
tive Poisson’s ratio effect, but can also result in excellent functions of vibration reduction
and wave isolation. Therefore, the cross tetrachiral honeycomb metamaterial has designable
static and dynamic performances by changing the geometric parameters or adjusting small
linear deformations, and has broad prospects for engineering applications.
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