Influence of Natural Fractures and Laminae on Fracture Propagation and Failure Mode of Continental Shale
Abstract
:1. Introduction
2. Model and Numerical Simulation Scheme
2.1. CASRock Introduction
2.2. Shale Modeling
2.3. Model Parameters
3. Results
3.1. Stress–Strain Curves and AE Events
3.2. Fracture Propagation Characteristics
3.3. Failure Mode Features
4. Discussion
4.1. Influence of Natural Fractures and Laminae on Fracture Propagation and Failure Mode
4.2. Influence of Natural Fractures and Laminae on Fracture Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; Bai, Z.; Gao, B.; Li, M. Has China ushered in the shale oil and gas revolution? Oil Gas Geol. 2019, 40, 451–458. [Google Scholar] [CrossRef]
- EIA. International Energy Outlook 2019. 2019. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 20 April 2023).
- Tomassi, A.; Caforio, A.; Romano, E.; Lamponi, E.; Pollini, A. The development of a Competence Framework for Environmental Education complying with the European Qualifications Framework and the European Green Deal. J. Environ. Educ. 2024, 55, 153–179. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Q.; Dong, D.; Yang, Z.; Qiu, Z.; Liang, F.; Wang, N.; Huang, Y.; Duan, A.; Zhang, Q.; et al. Geological characteristics, main challenges and future prospect of shale gas. J. Nat. Gas. Geosci. 2017, 2, 273–288. [Google Scholar] [CrossRef]
- Liu, G.; Jin, Z.; Zeng, L.; Huang, L.; Ostadhassan, M.; Du, X.; Lu, G.; Zhang, Y. Natural fractures in deep continental shale oil reservoirs: A case study from the Permian Lucaogou formation in the Eastern Junggar Basin, Northwest China. J. Struct. Geol. 2023, 174, 104913. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Chen, Z.; Ogg, J.G.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S. Organic-matter-rich shales of China. Earth Sci. Res. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Xin, B.; Zhao, X.; Hao, F.; Jin, F.; Pu, X.; Han, W.; Xu, Q.; Guo, P.; Tian, J. Laminae characteristics of lacustrine shales from the Paleogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China: Why do laminated shales have better reservoir physical properties? Int. J. Coal Geol. 2022, 260, 104056. [Google Scholar] [CrossRef]
- Li, L.; Huang, B.; Tan, Y.; Deng, X.; Li, Y.; Zheng, H. Geometric heterogeneity of continental shale in the Yanchang Formation, Southern Ordos Basin, China. Sci. Rep. 2017, 7, 6006. [Google Scholar] [CrossRef]
- Broadhead, R.F.; Kepferle, R.C.; Potter, P.E. Stratigraphic and sedimentologic controls of gas in shale—Example from Upper Devonian of northern Ohio. AAPG Bull. 1982, 66, 10–27. [Google Scholar]
- Lei, Y.; Luo, X.; Wang, X.; Zhang, L.; Jiang, C.; Yang, W.; Yu, Y.; Cheng, M.; Zhang, L. Characteristics of silty laminae in Zhangjiatan Shale of southeastern Ordos Basin, China: Implications for shale gas formation. AAPG Bull. 2015, 99, 661–687. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Shi, W.; Hu, Q.; Xu, X.; Shu, Z.; Yang, Y.; Feng, Q. Structure- and lithofacies-controlled natural fracture developments in shale: Implications for shale gas accumulation in the Wufeng-Longmaxi Formations, Fuling Field, Sichuan Basin, China. Geoenergy Sci. Eng. 2023, 223, 211572. [Google Scholar] [CrossRef]
- Li, L.; Huang, B.; Li, Y.; Hu, R.; Li, X. Multi-scale modeling of shale laminas and fracture networks in the Yanchang formation, Southern Ordos Basin, China. Eng. Geol. 2018, 243, 231–240. [Google Scholar] [CrossRef]
- Li, Y.; Hu, W.; Wei, S.; Li, L.; Zhang, Z.; Song, S. Influence of preexisting discontinuities on hydraulic fracture complexity in a naturally fractured reservoir. Eng. Geol. 2022, 311, 106919. [Google Scholar] [CrossRef]
- Zeng, L.; Lyu, W.; Li, J.; Zhu, L.; Weng, J.; Yue, F.; Zu, K. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China. J. Nat. Gas. Sci. Eng. 2016, 30, 1–9. [Google Scholar] [CrossRef]
- Gale, J.F.W.; Reed, R.M.; Holder, J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 2007, 91, 603–622. [Google Scholar] [CrossRef]
- Du, X.; Jin, Z.; Zeng, L.; Liu, G.; He, W.; Ostadhassan, M.; Song, Y.; Liang, X.; Yang, S.; Lu, G. Formation of natural fractures and their impact on shale oil accumulation in the Mahu Sag, Junggar Basin, NW China. Int. J. Coal Geol. 2023, 279, 104385. [Google Scholar] [CrossRef]
- Gu, Y.; Ding, W.; Tian, Q.; Xu, S.; Zhang, W.; Zhang, B.; Jiao, B. Developmental characteristics and dominant factors of natural fractures in lower Silurian marine organic-rich shale reservoirs: A case study of the Longmaxi formation in the Fenggang block, southern China. J. Pet. Sci. Eng. 2020, 192, 107277. [Google Scholar] [CrossRef]
- Na, S.; Sun, W.; Ingraham, M.D.; Yoon, H. Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests. J. Geophys. Res. Solid Earth 2017, 122, 6202–6230. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Xu, X.; Jiang, S.; Zhang, F. Permeability evolution of the lamina induced fractures (LFs) during the triaxial compression rupture phase. J. Pet. Sci. Eng. 2019, 188, 106870. [Google Scholar] [CrossRef]
- Suarez-Rivera, R.; Deenadayalu, C.; Yang, Y.-K. Unlocking the unconventional oil and gas reservoirs: The effect of laminated heterogeneity in wellbore stability and completion of tight gas shale reservoirs. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2009. [Google Scholar]
- Guo, P.; Li, X.; Li, S.; Yang, W.; Wu, Y.; Li, G. Quantitative analysis of anisotropy effect on hydrofracturing efficiency and process in shale using X-ray computed tomography and acoustic emission. Rock Mech. Rock Eng. 2021, 54, 5715–5730. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Zhou, T.; Zhou, X.; Guo, T. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology. Rock Mech. Rock Eng. 2016, 49, 33–45. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Yang, C.; Guo, W.; Bi, Z.; Guo, Y. Experimental investigation on different effects of fracturing fluids on mechanical properties and failure mechanism of continental shale. Int. J. Rock Mech. Min. Sci. 2023, 164, 105362. [Google Scholar] [CrossRef]
- Zhao, P.; Fan, X.; Wang, X.; Wang, X.; Zhou, X.; Zhang, Q.; Chen, Y. Geomechanical properties of laminated shale and bedding shale after water absorption: A case study of the Chang 7 shale in Ordos basin, China. Int. J. Rock Mech. Min. Sci. 2024, 180, 105798. [Google Scholar] [CrossRef]
- Huang, B.; Li, L.; Tan, Y.; Hu, R.; Li, X. Investigating the meso-mechanical anisotropy and fracture surface roughness of continental shale. J. Geophys. Res. Solid Earth 2020, 125, e2019JB017828. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Ma, X.; Zhang, X.; Zhang, S. Hydraulic fracture morphology and conductivity of continental shale under the true-triaxial stress conditions. Fuel 2023, 352, 129056. [Google Scholar] [CrossRef]
- Xu, D.; Hu, R.; Gao, W.; Xia, J. Effects of laminated structure on hydraulic fracture propagation in shale. Pet. Explor. Dev. 2015, 42, 573–579. [Google Scholar] [CrossRef]
- Mollaali, M.; Kolditz, O.; Hu, M.; Park, C.H.; Park, J.W.; McDermott, C.I.; Chittenden, N.; Bond, A.; Yoon, J.S.; Zhou, J.; et al. Comparative verification of hydro-mechanical fracture behavior: Task G of international research project DECOVALEX–2023. Int. J. Rock Mech. Min. Sci. 2023, 170, 105530. [Google Scholar] [CrossRef]
- Li, W.; Rezakhani, R.; Jin, C.; Zhou, X.; Cusatis, G. A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. Int. J. Numer. Anal. Meth. Geomech. 2017, 41, 1494–1522. [Google Scholar] [CrossRef]
- McBeck, J.; Kobchenko, M.; Hall, S.A.; Tudisco, E.; Cordonnier, B.; Meakin, P.; Renard, F. Investigating the onset of strain localization within anisotropic shale using digital volume correlation of time-resolved X-ray microtomography images. J. Geophys. Res. Solid Earth 2018, 123, 7509–7528. [Google Scholar] [CrossRef]
- Mokhtari, M. Characterization of Anisotropy in Organic-Rich Shales: Shear and Tensile Failure, Wave Velocity, Matrix and Fracture Permeability; Colorado School of Mines: Golden, CO, USA, 2015; p. 166. [Google Scholar]
- Hu, Y.; Li, X.; Zhang, Z.; He, J.; Li, G. Numerical investigation on the hydraulic stimulation of naturally fractured Longmaxi shale reservoirs using an extended discontinuous deformation analysis (DDA) method. Geomech. Geophys. Geo. 2020, 6, 73. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Fisher, Q.J.; Gironacci, E.; Rezania, M. Experimental study and numerical modeling of fracture propagation in shale rocks during Brazilian disk test. Rock Mech. Rock Eng. 2018, 51, 1755–1775. [Google Scholar] [CrossRef]
- Chang, X.; Shan, Y.; Zhang, Z.; Tang, C.; Ru, Z. Behavior of propagating fracture at bedding interface in layered rocks. Eng. Geol. 2015, 197, 33–41. [Google Scholar] [CrossRef]
- Miskimins, J.L.; Barree, R.D. Modeling of hydraulic fracture height containment in laminated sand and shale sequences. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 22–25 March 2003. [Google Scholar]
- Sesetty, V.; Ghassemi, A. Complex fracture network model for stimulation of unconventional reservoirs. In Proceedings of the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017; American Rock Mechanics Association: Alexandria, VA, USA, 2017. [Google Scholar]
- Zhou, T.; Wang, H.; Li, F.; Li, Y.; Zou, Y.; Zhang, C. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs. Pet. Explor. Dev. 2020, 47, 1117–1130. [Google Scholar] [CrossRef]
- Suo, Y.; Su, X.; He, W.; Fu, X.; Pan, Z. Study on the mechanical properties of sandstone-shale composite continental shale gas based on the discrete element method. Powder Technol. 2024, 432, 119118. [Google Scholar] [CrossRef]
- Han, L.; Li, Y.; Hu, W.; Wei, S.; Wang, W.; Zhang, F.; Wang, Y. Numerical study on hydraulic fracture propagation in a layered continental shale reservoir. Energies 2022, 15, 8840. [Google Scholar] [CrossRef]
- Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003, 40, 283–353. [Google Scholar] [CrossRef]
- Pan, P.; Feng, X.; Zhou, H. Development and applications of the elasto-plastic cellular automaton. Acta Mech. Solida Sin. 2012, 25, 126–143. [Google Scholar] [CrossRef]
- Hou, W.; Pan, P.; Wang, Z. Development of CASRock for modeling multi-fracture interactions in rocks under hydro-mechanical conditions. J. Rock Mech. Geotech. Eng. 2024, in press. [CrossRef]
- Feng, X.; Pan, P.; Zhou, H. Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. Int. J. Rock Mech. Min. Sci. 2006, 43, 1091–1108. [Google Scholar] [CrossRef]
- Pan, P.; Yan, F.; Feng, X. Modeling the cracking process of rocks from continuity to discontinuity using a cellular automaton. Comput. Geosci. 2012, 42, 87–99. [Google Scholar] [CrossRef]
- Feng, X.; Pan, P.; Wang, Z.; Zhang, Y. Development of cellular automata software for engineering rockmass fracturing processes. In Challenges and Innovations in Geomechanics: Proceedings of the 16th International Conference of IACMAG; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Colmenares, L.B.; Zoback, M.D. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int. J. Rock Mech. Min. Sci. 2002, 39, 695–729. [Google Scholar] [CrossRef]
- Lockner, D. The role of acoustic emission in the study of rock fracture. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 883–899. [Google Scholar] [CrossRef]
- Zhu, W.; Tang, C. Micromechanical model for simulating the fracture process of rock. Rock Mech. Rock Eng. 2004, 37, 25–56. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Zhou, Y.; Yang, C.; Pan, P.; Kong, R. Modelling three-dimensional stress-dependent failure of hard rocks. Acta Geotech. 2021, 16, 1647–1677. [Google Scholar] [CrossRef]
- Li, L.; Huang, B.; Tan, Y.; Li, X.; Ranjith, P.G. Using micro-indentation to determine the elastic modulus of shale laminae and its implication: Cross-scale correlation of elastic modulus of mineral and rock. Mar. Pet. Geol. 2022, 143, 105740. [Google Scholar] [CrossRef]
- Li, L.; Huang, B.; Huang, X.; Wang, M.; Li, X. Tensile and shear mechanical characteristics of Longmaxi Shale laminae dependent on the mineral composition and morphology. Energies 2020, 13, 2977. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yuan, W.; He, J.; Li, G.; Wu, Y. Numerical analysis on the optimization of hydraulic fracture networks. Energies 2015, 8, 12061–12079. [Google Scholar] [CrossRef]
- Tarasov, B.; Potvin, Y. Universal criteria for rock brittleness estimation under triaxial compression. Int. J. Rock Mech. Min. Sci. 2013, 59, 57–69. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; He, J.; Wu, Y.; Li, G. Numerical study on the propagation of tensile and shear fracture network in naturally fractured shale reservoirs. J. Nat. Gas. Sci. Eng. 2017, 37, 1–14. [Google Scholar] [CrossRef]
- Fu, J.; Li, S.; Niu, X.; Deng, X.; Zhou, X. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2020, 47, 931–945. [Google Scholar] [CrossRef]
- Jiao, F.; Zou, C.; Yang, Z. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens. Pet. Explor. Dev. 2020, 47, 1147–1159. [Google Scholar] [CrossRef]
Material Type | Mechanical Parameter | |||||||
---|---|---|---|---|---|---|---|---|
E (GPa) | v | c0 (MPa) | cr (MPa) | φ0 (°) | φr (°) | τ0 (MPa) | τr (MPa) | |
Organic-rich lamina | 15 | 0.3 | 6 | 0.6 | 35 | 20 | 2 | 0.1 |
Sandy lamina | 43 | 0.3 | 22.5 | 2.25 | 40 | 30 | 6 | 0.35 |
Tuffaceous lamina | 120 | 0.2 | 29 | 1 | 42 | 30 | 3 | 0.1 |
Weak interface | 5 | 0.3 | 0.25 | 0.01 | 30 | 20 | 0.2 | 0.01 |
Natural fracture | 0 | 0.3 | 1 | 0.1 | 30 | 20 | 0.5 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Qiao, S.; Li, L.; Gao, X.; Li, X.; Ranjith, P.G. Influence of Natural Fractures and Laminae on Fracture Propagation and Failure Mode of Continental Shale. Materials 2024, 17, 4655. https://doi.org/10.3390/ma17184655
Huang B, Qiao S, Li L, Gao X, Li X, Ranjith PG. Influence of Natural Fractures and Laminae on Fracture Propagation and Failure Mode of Continental Shale. Materials. 2024; 17(18):4655. https://doi.org/10.3390/ma17184655
Chicago/Turabian StyleHuang, Beixiu, Sijia Qiao, Lihui Li, Xiangbo Gao, Xiao Li, and Pathegama Gamage Ranjith. 2024. "Influence of Natural Fractures and Laminae on Fracture Propagation and Failure Mode of Continental Shale" Materials 17, no. 18: 4655. https://doi.org/10.3390/ma17184655
APA StyleHuang, B., Qiao, S., Li, L., Gao, X., Li, X., & Ranjith, P. G. (2024). Influence of Natural Fractures and Laminae on Fracture Propagation and Failure Mode of Continental Shale. Materials, 17(18), 4655. https://doi.org/10.3390/ma17184655