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Abstract: Magnesium alloys, particularly AZ31, are promising materials for the modern automotive
industry, offering significant weight savings and environmental benefits. This research focuses on
the challenges associated with accurate modelling of multiaxial cyclic plasticity at small strains of
AZ31 under low-cycle fatigue conditions. Current modelling approaches, including crystal plasticity
and phenomenological plasticity, have been extensively explored. However, the existing models
reach their limits when it comes to capturing the complexity of cyclic plasticity in magnesium alloys,
especially under multiaxial loading conditions. To address this gap, a cyclically stable elastoplastic
model is proposed that integrates elements from existing models with an enhanced algorithm for
updating stresses and hardening parameters, using the hyperbolic tangent function to describe
hardening and ensure a stabilised response with closed hysteresis loops for both uniaxial and
multiaxial loading. The model is based on a von Mises yield surface and includes a kinematic
hardening rule that promises a stable simulation of the response of AZ31 sheets under cyclic loading.
Using experimental data from previous studies on AZ31 sheets, the proposed model is optimised and
validated. The model shows promising capabilities in simulating the response of AZ31 sheet metal
under different loading conditions. It has significant potential to improve the accuracy of fatigue
simulations, especially in the context of automotive applications.

Keywords: magnesium alloy; cyclic plasticity modelling; multiaxial loading; AZ31 sheet metal

1. Introduction

Magnesium and magnesium alloys, which are primarily composed of magnesium
with the addition of other elements such as aluminium, zinc, and manganese to enhance
mechanical properties and corrosion resistance, have enormous potential in the search
for new materials in modern industries such as the automotive industry [1,2]. The low
density and good mechanical properties of magnesium offer enormous potential for weight
savings, which can improve fuel consumption and reduce environmental impacts [3,4]. The
design of a lightweight magnesium body structure shows significant weight reduction and
better performance when compared to a design with more conservative metallic materials,
such as steel and aluminium alloys [5]. There are currently two main technologies to
produce magnesium components. Due to the very good castability compared to other
cast metals, e.g., aluminium alloys, magnesium alloys are already present in a limited
number of body and chassis components [6,7]. However, components manufactured
using forming processes have better mechanical properties than casted components; in
particular, a higher fatigue strength, which is crucial for the dynamic loads that are present
during operation [8–10]. Alaneme and Okotete studied the developments in improving
the plastic deformability of Mg and its alloys and concluded that new metallic systems
based on Mg have to be developed in order to find solutions to its poor deformability at
low temperatures [11]. Although magnesium sheets exhibit good mechanical behaviour,
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they still lack formability [7,12,13]. To overcome this disadvantage though, Gryguć et al.
recently presented an improvement in the fatigue properties of the AZ31B alloy, by forging
sheet metal at different temperatures and deformation rates [14].

Most of the technological limitations and advantageous mechanical properties of
magnesium alloys are due to their hexagonal, close-packed (HCP) structure and the phe-
nomenon of twinning, which manifests itself as an unusual behaviour during elastic–plastic
deformation [15,16]. The main limitation of forming at low temperatures is the anisotropic
mechanical properties caused by a strong basal structure during plastic deformation. These
can be minimised and overcome by the use of additives to the alloys [17–19]. Grain
orientation has a significant influence on the mechanical behaviour of magnesium alloy
AZ31 [20,21]. The anisotropy of wrought magnesium alloys was studied in detail by Shi
et al. [22] and Sadeghi et al. [23], where the influence of Sr on the improvement of mechani-
cal properties was investigated in different directions. Park et al. investigated the effect of
anisotropy on the low-cycle fatigue of AZ31 [24]. In fatigue terms, “low-cycle” refers to
fatigue that occurs under conditions with a relatively small number of high-strain cycles,
leading to significant plastic deformation and potential failure. Zhu et al. performed mono-
tonic experiments in different material orientations with respect to the rolling direction,
and torsion experiments on samples along the thickness direction [25]. These experiments
were used to evaluate an elastic–plastic self-consistent model considering twinning and
untwinning [25]. Guo et al. conducted experimental and numerical investigations on
twinning behaviour under uniaxial tension [26]. Yang et al. showed that the activation
of the deformation mechanism is correlated with the grain orientation and the loading
direction [20]. The stability of twins in Mg alloys was also investigated by Liu et al., and
it was concluded that twin structures have good thermal stability in a wide temperature
range [27]. Studies have shown that AZ31 is already so improved that it can be formed
even at room temperature [28].

Experimental results of the stress–strain behaviour of magnesium alloys in sheet
metal form show the specific shape of the hysteresis loops, which differ under tensile and
compressive loads [29]. The causes of this phenomenon are the interchangeable mecha-
nisms of twinning and untwinning [30–32]. Experimental studies have shown that these
asymmetries can be even more pronounced at elevated temperatures [33]. When multiax-
ial loads with different amplitudes occur, the hysteresis loops exhibit even more specific
shapes and constitutive modelling becomes even more challenging [34–36]. Iftikhar and
Khan studied subsequent yield loci evolution during proportional and non-proportional
multiaxial loading [37,38]. On the other hand, in pure shear loading there is a much less
effective twinning mechanism, and consequently, the cyclic stress–strain response is sym-
metric [39–41]. Shear loading can be achieved as torsional loading [42,43] or as in-plane
loading for sheet metal [44,45]. Multiaxial loading is hence understood as tensile and/or
compressive load combined with shear load, where the material is subjected to stress or
strain in multiple directions simultaneously, leading to complex deformation behaviours.
Xiong et al. experimentally investigated four strain-controlled fully reversed loading paths,
including proportional and non-proportional axial-torsional loading [46]. Similarly, Al-
binmousa and Jahed experimentally observed non-proportional loading with 45◦ and 90◦

phase angle shifts between axial and torsional loading [47]. Both studies concluded that
twinning mechanisms played an important role in deformation under multiaxial loading
and that non-proportional loading has a slightly negative effect on fatigue life. Similarly,
Anes et al. came to comparable conclusions by investigating the relationship between
proportional and non-proportional fatigue damage in AZ31 magnesium alloys [48]. Yang
et al. presented modified shear–tensile and shear–compressive specimens, usable to incite
different shear and normal stress ratios under quasi-static loading [49].

Constitutive models for modelling the response of magnesium alloys must be able
to describe the special phenomena that occur when loads above the yield stress are ap-
plied [50]. The complexity of the constitutive model is further increased when directional
anisotropy and asymmetric responses to yield stress depending on the direction of loading
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are taken into account [51,52]. Tong et al. investigated the possible reduction in yield
stress asymmetry in tension and compression using the equal channel angular pressing
method [53]. According to this phenomenon, the yield surface has its own characteristics,
which can be well described by the yield surface proposed by Plunkett et al. [54].

There are two well-known approaches for constitutive modelling of the cyclic be-
haviour of magnesium and its alloys. The first approach is based on crystal plasticity and
the second follows a phenomenological description of continuum plasticity [50]. The crystal
plasticity models focus on the single crystal scale but can be then extended to polycrys-
talline models and implemented in solution methods such as FEM [55] and self-consistent
methods [56,57]. These types of models can describe different plastic deformation mech-
anisms observed at the macroscopic scale based on the crystalline microstructure of Mg
alloys [58,59]. The main problem with crystal plasticity modelling of plastic deformation
of Mg alloys is the difficulty in describing the initiation and evolution of the mechanisms
of twinning and detwinning during cyclic loading [60], as well as the high computational
cost when applied to the macroscopic scale. In general, however, crystal plasticity models
simulate the cyclic plasticity of Mg alloys well [50]. Li et al. recently developed a constitu-
tive model of crystal plasticity that accounts for dislocation slip, twinning, and detwinning,
and can reproduce the multiaxial ratcheting of AZ31 alloys [61]. Likewise, Bong et al.
presented a crystal plasticity constitutive model, which provides time-efficient and accurate
simulations for magnesium alloys at elevated temperatures [62].

On the other hand, phenomenological constitutive represent the material as a ho-
mogeneous continuum, without consideration of specific deformation mechanisms [63].
Most currently applied phenomenological constitutive models use either a von Mises yield
surface with kinematic and isotropic strain hardening or an advanced anisotropic yield
surface in combination with isotropic strain hardening only [54,64,65]. For the description
of cyclic plasticity of AZ31, Nguyen et al. [66] recently also used a phenomenological model
using separate von Mises yield surfaces to describe each of the plasticity mechanisms
(twinning, detwinning and slip) occurring during plastic deformation. Cyclic plasticity
refers to a material’s behaviour under repeated loading and unloading cycles, where the
material experiences irreversible deformation, while cyclic plasticity modelling involves
the development of mathematical frameworks to predict this complex behaviour accurately
under various loading conditions. A similar approach was then followed by Lee et al. for
modelling the response during a tension–compression–tension load sequence [67]. Vig-
neshwarean and Benzerga [68] investigated a comparison between the computationally
efficient two-surface plasticity model and the computationally intensive crystal plastic-
ity model. Further research was presented by Noban et al. [69] using a von Mises yield
surface and a modified form of the multi-term Armstrong–Frederick hardening rule to
successfully simulate the proportional and non-proportional multiaxial cyclic plasticity
of AZ31. Roostaei and Jahed went a step further and introduced a similar model for
multiaxial cyclic plasticity using Ziegler’s generalised asymmetric/anisotropic kinematic
hardening rule [70] which was successfully implemented in commercial FEM software.
Another approach, which uses an anisotropic yield surface and a modified hardening rule,
was presented by Yoon et al. [71]. It is based on the Cazacu–Barlat yield criterion [65], in
conjunction with a non-associated plastic flow rule, thereby accounting for the effects of
r-value anisotropy within the material. The yield surface introduced by Cazacu, Plunkett
and Barlat [54] was used by Muhammad et al. [72] to describe the cyclic behaviour of AZ31
in the case of tension–tension and compression–tension–compression loading. The model
with adaptive yield surfaces depending on the deformation mechanisms was presented
by Lei et al., who also described the ratchetting behaviour of AZ31 [73]. The concept of
distortional hardening to model the plastic behaviour of AZ31 was considered by Lee et al.
to account for different temperatures during the simulation [74,75]. Constitutive models,
such as those introduced by Yoon and Lei et al., were developed to accurately predict the
anisotropic, cyclic, temperature-dependent, and ratcheting behaviours of materials like
AZ31. Murugesan et al. presented a model which can describe the deformation behaviour



Materials 2024, 17, 4659 4 of 23

of AZ31 magnesium alloy using hybrid artificial neural network-based models [76]. Con-
stitutive modelling of uniaxial behaviour, oriented specifically into variable amplitude
loading, was presented by Šolinc et al. using Prandtl–Ishlinskii operators [77,78], whilst
Klemenc et al. [79] and Dallmeier et al. [80] focused on the simulation of the behaviour
considering the memory rules under low-cycle fatigue conditions.

Although there exist constitutive models trying to describe the response of AZ31
under multiaxial cyclic loading, they were originally intended for cast materials and
hence were calibrated against tension–compression and torsion experiments on round
specimens. Although sheet metal products used in the automotive industry are also
subjected to normal and shear loading, which induce in-plane stresses, these models are
not capable of describing the AZ31 sheet metal-specific response. With equal importance, if
the constitutive model is to be used for simulations of cyclic loading, it should consistently
ensure closure of hysteresis loops for either uniaxial tension–compression, biaxial shear,
or multiaxial loading. Pandey et al. [81] proposed a promising cyclic plasticity model for
predicting multiaxial asynchronous responses using the Ohno–Wang kinematic hardening
rule and Tanaka’s non-proportionality parameter for simulating the responses of steel
materials, but this has not yet been calibrated and validated for metals with hexagonal close-
packed crystal structures. Recently, Anes et al. proposed a model developed to predict the
cyclic, multiaxial stress–strain behaviour of AZ31B-F magnesium alloys under multiaxial
cyclic loading specifically developed for Abaqus incremental plasticity software, and not as
a stand-alone constitutive model [82,83]. A weakness of the proposed constitutive model
for predicting the cyclic multiaxial stress–strain behaviour under multiaxial cyclic loading
is its inability to accurately capture the shear behaviour of the alloy under non-proportional
loading conditions.

In this paper, a modified cyclic plasticity model is proposed, developed upon a von
Mises yield surface combined with Ziegler’s generalised asymmetric/anisotropic kinematic
hardening rule [70] and a multiaxial constitutive model originally developed for materials
with Masing behaviour under variable loads [84]. The modified model has been specifically
targeted to achieve a stabilised elastoplastic response of magnesium alloy AZ31 in a sheet
metal form and consistent closure of stress–strain hysteresis loops under both uniaxial and
multiaxial loads under low-cycle fatigue conditions. This has been the primary focus of
the research. Particular attention has also been paid to the extension of the stress-updating
algorithm [84] so that the modified model could provide robust simulations in all loading
directions. The secondary focus of the research has been to investigate how to obtain a
stable response and achieve the closure of hysteresis loops. Design of a new optimisation
algorithm enabled the determination of the optimal values of the material’s parameters.
Moreover, the modified model would have to become an integral part of the algorithm
in order to be able to carry out the optimisation procedure. The third area of focus of
the research embraced the verification of the model under tension–compression, shear,
and multiaxial loading conditions for AZ31 sheet metal. The developed model and the
accompanying optimisation algorithm provide an accurate tool for simulating the stress–
strain response of HCP sheet metal components under cyclic loading.

2. Material and Methods

The cyclic plasticity model presented in this paper is optimized for AZ31 sheet metal,
which typically consists of approximately 3% aluminium, 1% zinc, and 0.3% manganese,
with the remainder being magnesium. To ensure accuracy, test data from previous research
conducted on AZ31 sheet metal with this composition were utilized. The AZ31 alloy used
in our study was commercially purchased as sheet metal with 3 mm thickness. For uniaxial
tensile–compressive loading, experimental data obtained by Šolinc et al. [77] for different
strain levels were used so that all three plastic mechanisms—twinning, detwinning, and
slip—representing the asymmetry of plastic flow, could be observed. For the experimental
data on shear loading, the special shear test fixtures presented by Litrop et al. [44] were used.
The symmetrical stress–strain response during shear loading and the Masing behaviour
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could clearly be seen. The experimental data were determined by the authors for testing
different shear stress levels using Digital Image Correlation (DIC) [85]. The experimental
data for multiaxial cyclic loading were taken from the existing literature [86].

The modified cyclic plasticity model has been developed based on the constitutive
model presented by Simo [87] and extended as presented in the research of Roostaei
et al. [70]. This constitutive model was upgraded with a stress update algorithm, as de-
scribed by Šeruga et al. [84]. The model has been coded in Python language and developed
for a material point. In the future, after additional testing, it is planned to extend the model
for implementation in the finite element method. Detailed descriptions of the enhanced
plasticity model and the new optimisation algorithm for the determination of the material
parameters can be found in the chapter on calculation.

3. Calculation

According to the specific mechanical behaviour at room temperature due to the mech-
anism of twinning and untwinning, the constitutive model should cover all peculiarities in
modelling the cyclic plasticity response of AZ31 magnesium alloy. The constitutive model
should consider all specific properties of AZ31, i.e., stress asymmetry and anisotropy, twin-
ning and untwinning mechanisms, hardening behaviour, and the influence of multiaxial
loading. The twinning and untwinning mechanisms are explicitly incorporated into the
model through a phenomenological approach, which modifies the kinematic hardening
rule to capture the tension–compression asymmetry characteristic of AZ31, employing
a hyperbolic tangent function to precisely describe the transition between the twinning
and untwinning mechanisms under varying load amplitudes. Furthermore, the enhanced
model adheres to the principles of incremental plastic deformation calculation, utilizing the
elastic predictor–plastic corrector scheme in conjunction with the forward Euler integration
method to ensure stability and accuracy in the simulation of cyclic plasticity under complex
loading conditions [70,84]. The flowchart of the proposed enhanced model is shown in
Figure 1 and can be divided into four main areas.

3.1. Input Data Definition

In the first step, the input data, consisting of the material parameters, initial values, and
the definition of the applied load, should be provided. In this part, the material parameters
are the yield stress—σy; the modulus of elasticity—E; the Poisson ratio—ν; and the shear
modulus—G. Model-specific parameters should also be specified. These include the size
of the time increment required for the numerical implementation of the stress-updating
algorithm. The initial values specify all the stresses and strains at the beginning of the
simulation, which are usually all equal to zero if there is no prescribed history of the
material. The next input is the definition of the load as a total strain increment ∆

∼
ε , written

in Voigt notation, which represents second-order tensor quantities (e.g., strains and stresses)
and constitutive tensors (e.g., plastic modulus) as one- and two-dimensional arrays.

The input strain increment ∆
∼
ε can be specified as a triangular signal, sine, or another

periodic signal independently for all components. The components can be in-phase or
out-of-phase for tension–compression and shear deformation. The input strain increment
component of the input strain vector ∆

∼
ε input,i+1 is defined for its components as a difference

between the current step εinput,k,i+1 and previous increment εinput,k,i of the defined strain
loading shown in Equation (1).

∆εinput,k,i+1 = εinput,k,i+1 − εinput,k,i; k = 11, 22, 33, 12, 13, 23 (1)
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The last part in the input section of the proposed constitutive model is a specifi-
cation of the hardening parameters used to compute the components of the hardening
matrix [H] used by the generalised Ziegler hardening rule [70]. The components of the
hardening matrix [H] essentially represent the material’s response under uniaxial cyclic
loading conditions:

[H]i+1 = diag(H11,i+1, H22,i+1, H33,i+1, H12,i+1, H13,i+1, H23,i+1) (2)

In Equation (2), the components H11, H22, and H33 are used to describe uniaxial plastic
behaviour under tensile and compressive loading and the shear hardening components
H12, H13, and H23, which are used to describe the shear plastic behaviour. The values
of these components are determined from uniaxial tensile–compressive and shear testing.
Specifically, they are defined as
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Hk,i+1 =


[H0,L,U,i+1 +∇HL,k,i+1 ϑ(Nk,i+1) +∇HU,k,i+1 ϑ(−Nk,i+1)]

∣∣mk,i+1
∣∣; k = 11, 22, 33

2(1−n′
s)n′

sK′
s

(
2(n

′
s−1)Σk, i+1

K′
s

) n′s−1
n′s

(√
2
∣∣mk,i+1

∣∣); k = 12, 13, 23
(3)

where ∇HL,U,k,i+1 is

∇HL,U,k,i+1 =
hL,U

2

[
1 + tanh

(
σk,i+1 − zL,U

dL,U

)]
; k = 11, 22, 33 (4)

In Equation (3), the parameter H0,L,U is the hardening at the flattened part of the
unloading branch (compression—subscript “U”) and, on the other hand, the hardening
at the inflection point on the loading branch (tension—subscript “L”) at the inflection
point of the transition from the untwinning mechanism to the slip mechanism. ϑ(NK) is a

Heaviside function (Equation (5)) in respect to the outward normal to the yield surface
∼
N

(Equation (6)) at the load point. Quantities
∼
S

Trial
and

∼
A are the deviators of the stress tensor

∼
σ

Trial
i+1 and the back-stress tensor

∼
αi and σY is the yield stress. The definition of the radial unit

tensor m is shown as the difference between the stress and the back-stress divided by the
Frobenius norm of the same difference as shown in Equation (7). The radial unit tensor m
characterises the relative contributions of the uniaxial and shear loading components. The
definition of back-stress tensor

∼
α is presented in the section titles ‘Stress Update Algorithm’.

ϑ(x) =
{

1 x ≥ 0
0 x < 0

(5)

∼
Ni+1 =

3
2
·
∼
S

Trial

i+1 −
∼
Ai

σY
(6)

∼
mi+1 =

∼
σ

Trial
i+1 − ∼

αi∥∥∥∥∼σTrial
i+1 − ∼

αi

∥∥∥∥
F

(7)

In Equation (4) there are three dependent parameters for the loading (subscript “L”)
and three for the unloading (subscript “U”). These parameters hL,U , zL,U , and dL,U are
material parameters which must be defined separately for loading and unloading, and
which depend on the magnitude of the load amplitude. These parameters are determined
by applying a hyperbolic tangent function to describe the plastic hardening behaviour as a
function of stress. The detailed procedure for fitting these parameters to the experimental
data is given in Section 4.1. The shear hardening components in Equation (3) are dependent
on the translated shear stress Σk, which is in relation to the absolute value of the shear
stress at the reversal point σR

k and is calculated as

Σk, i+1 =
∣∣∣∣∣∣σR

k

∣∣∣+ Sgn(Nk, i+1)·σk, i+1

∣∣∣; k = 12, 13, 23 (8)

A Ramberg–Osgood model, used for the description of shear hardening in Equation (3),
has two parameters: the exponent of the cyclic shear hardening n′

s and the coefficient of the
cyclic shear strength K′

s. The parameters are independent of the direction and amplitude of
the prescribed shear stress.

3.2. Stress Update Algorithm

After defining the required input data, the algorithm enters the main part—the stress
update algorithm [87]. This algorithm calculates the new stress state for each time increment

by using the elastic predictor—plastic corrector approach. The trial stress
∼
σ

Trial
as an elastic

predictor is calculated considering Hooke’s law and assuming that the total strain increment
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∆
∼
ε is fully elastic at the beginning of the time increment. The algorithm then proceeds with

a verification of the yield condition by evaluating whether the equivalent von Mises stress
exceeds the prescribed yield stress. If the yield condition is fulfilled, the trial stress is then
corrected according to the hardening law (plastic corrector) and calculated for a current
increment labelled i + 1:

∼
σ

Trial
i+1 =

∼
σi + [C]·∆∼

ε input,i+1 (9)

In Equation (9), the stress
∼
σi is the stress state from the previous increment. The initial

value of the stress is zero for all components unless the material has a prescribed history.
The matrix [C] is the elastic stiffness matrix, defined as

[C] =



2G + λ λ λ 0 0 0
λ 2G + λ λ 0 0 0
λ λ 2G + λ 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

, (10)

where G is the shear modulus and λ is the second Lame’s constant. The trial equivalent
stress is calculated using the von Mises yield criterion,

σTrial
VM, i+1 =

√
3
2
·
[
(S Trial

i+1 − Ai

)
: (S Trial

i+1 − Ai

)]
, (11)

and is then compared with the prescribed yield stress σY using the trial variable called ftrial ,

ftrial, i+1 = σTrial
VM, i+1 − σY < 0 (12)

If the condition in Equation (12) is met, then an elastic increment is considered and the

stress correction is not required. The new stress is the same as calculated in
∼
σ

Trial
i+1 ,

∼
σi+1 =

∼
σ

Trial
i+1 (13)

All other variables that depend on plasticity are considered to be constant, e.g., the
back-stress αk, the plastic strain εp,k and the equivalent plastic strain increment ∆p. If the
condition in Equation (12) ftrial < 0 is not fulfilled, plastic yielding sets in and the calculated
increment must be corrected according to the prescribed hardening so that the stress is
brought back to the yield surface. This procedure is referred to as the stress correction using
the plastic corrector. To ensure phenomenologically correct calculation for HCP metals, this
can be achieved by

σk,i+1 =

{
αk,i+1 + σY·mσ,k,i+1 + σH

i+1 ; k = 11, 22, 33

[C]·
(

∆εinput,k,i+1 − ∆pi+1 Nk,i+1

)
; k = 12, 13, 23

(14)

where hydrostatic stress σH
i+1 is calculated from the trial stress

∼
σ

Trial
i+1 . The increment of

the back-stress tensor ∆
∼
α and the deviatoric part of the back-stress tensor can now be

updated as
∆
∼
αi+1 =

(
[H]i+1·

∼
mσ,i+1

)
∆pi+1 (15)

and

∆
∼
Ai+1 =

(
[H]i+1·

∼
mσ,i+1 −

1
3

∼
I ·
(∼

I
T
·[H]i+1·

∼
mσ,i+1

))
∆pi+1 (16)

where ∆p is the equivalent plastic strain increment and
∼
mσ is the tensor flow direction

in Voigt notation. ∆p is the scalar measure of the accumulated plastic strain increment
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during the current time step, representing the magnitude of plastic deformation that occurs
when the yield condition is met.

∼
mσ represents the tensorial direction of plastic flow in the

material, indicating the orientation in which plastic deformation occurs relative to the stress
state. New values of the back-stress tensor

∼
αi+1 and the deviatoric part of the back-stress

tensor
∼
Ai+1 can now be calculated as

∼
αi+1 =

∼
αi + ∆

∼
αi+1 (17)

and
Ai+1 =

∼
αi + ∆

∼
Ai+1. (18)

The forward Euler integration algorithm is employed as a closed-form expression to
enhance computational efficiency by providing a straightforward and efficient method for
updating the stress and strain increments in each time step [70]. Importantly however, flow
direction, defined as [84]

∼
mσ,i+1 =

∼
σ

Trial
i+1 − ∼

αi −
(∼

I ·σH
i+1

)
σTrial

VM, i+1
(19)

must be used to ensure cyclically stable hysteresis modelling, resulting in the equivalent
plastic strain increment ∆p calculation equal to

∆pi+1 =

(∼
S

Trial

i+1 −
∼
Ai

)T

·
∼
Ni − σY(

[H]i+1·
∼
mσ,i+1 − 1

3

∼
I ·
(∼

I
T
·[H]i+1·

∼
mσ,i+1

))T

·
∼
Ni + 3G

(20)

Symbol
∼
I stands for the identity tensor in Voigt notation whilst the matrix [H] contains

the plastic moduli or hardening for uniaxial tensile–compressive and shear loads for all
directions [69]. The calculation of the components for uniaxial tensile–compressive and
shear hardening parameters used in the matrix [H] is provided in the Results section.

The main purpose of the improved stress update algorithm is to ensure the correct
stress state according to the loading directions; i.e., uniaxial normal or shear loading, plane
stress, or plane strain. The plastic corrector can, hence, successfully remove redundant
stress components from the stress tensor in these cases. The proposed constitutive model
also incorporates the reverse yielding criterion, which was first introduced by Lee et al. [88]
and is essential for a cyclic plasticity model to distinguish the changes in the loading
path. In this criterion, the angle between the two radial unit vectors in the neighbouring
increments Λ is compared with the reference angle Λr which is proposed as π/2 [70]. If
the condition

Λi+1 = cos−1
(

∼
m

T
i ·

∼
mi+1

)
≥ Λr (21)

is fulfilled, then reverse yielding occurs, and the hardening parameters should be updated,
otherwise forward yielding is considered. The criterion of reverse yielding is especially
important where loads with different amplitudes induce nested cycles and cyclic memory
rules must be applied.

3.3. Hardening Update Algorithm

At this point the internal loop (iteration symbol— i) of the proposed constitutive model
ends and the outer loop is entered (iteration symbol—j) which is responsible for ensuring
that the hysteresis loops are stabilised and closed and that there is no drift at the reversal
points in tensile or compressive directions. This is achieved by an additional optimisation
algorithm which checks the difference between the calculated stress components of the
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neighbouring cycles in comparison to the permissible stress difference tolerance or in
comparison to the difference to the experimental data for the first calibration, as shown in
Figure 2.
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Here, ∆
∼
σ

T
R defined as

∆σT
R,j = σT,N

R,i − σT,N−1
R,i ≤ ∆σT,Tol

R (22)

denotes the difference between two tensional reversal points of the neighbouring cycles

N. The stress
∼
σ

T,N
R,i belongs to the calculated

∼
σi at the increment at the reversal point of the

N-th cycle. The difference in the compression load is calculated in the same way,

∆σC
R,j = σC,N

R,i − σC,N−1
R,i ≤ ∆σC,Tol

R . (23)

If the conditions in Equations (22) and (23) are fulfilled, then the hardening parameters
are considered to be set optimally and do not need further updating. If the criteria are not
met, the hardening parameters must be further optimised so that the hysteresis loops are
stabilised and closed. In this case the algorithm must recalculate the stress update for the
entire input load.

To confirm that the hysteresis loops have the correct shape and stress values at reversal
points when the strain load changes direction, additional stress difference tolerances ∆σT

M
and ∆σC

M are specified:
∆σT

M,j = σT,N
M,i − σT,N−1

M,i ≤ ∆σT,Tol
M (24)

and
∆σC

M,j = σC,N
M,i − σC,N−1

M,i ≤ ∆σC,Tol
M . (25)

These two conditions are only used when the hardening parameters are still being
calibrated with the experimental data. During the use of the constitutive model, they are
no longer necessary.

The grid search method is used for updating the hardening parameters. The specific
hardening parameters are increased or decreased until the difference conditions have
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been met. The algorithm for updating the hardening parameters updates hL,U and zL,U
simultaneously at the end of each iteration of the outer loop. The updated hardening
parameters (e.g., for tension) are calculated as follows:

hL, j+1 = hL, j + ∆σT
R,j·Kh (26)

zL, j+1 = zL, j + ∆σT
R,j·Kz. (27)

Convergence parameters Kh and Kz are used to define the sensitivity to parameter
changes. The same convergence parameters are also used for compression (unloading). For
corrections at reversal points, the convergence parameters can have the same or different
values depending on the convergence rate. If these values are too high, the hardening
parameters can be overcorrected, and then correction is required in the reverse direction in
iteration j + 1. This type of optimisation always ensures the closure of hysteresis loops and
their correct shape. This refined approach integrated into the methodology is considered a
crucial improvement over the original method, marking it as one of the more important
novelties presented in this paper.

4. Results and Discussion

The proposed constitutive model for modelling of the cyclic stress–strain behaviour
of magnesium alloys or other materials with hexagonal close-packed metals was tested
and validated using the experimental data from AZ31 magnesium alloy under low-cycle
fatigue conditions. First, the procedure for defining the hardening parameters for both the
uniaxial normal and biaxial shear components is presented. Next, the validation of the
constitutive model is demonstrated by predicting the response of AZ31 sheet metal under
uniaxial tensile–compressive loading, pure shear loading, and as proportional loading.

4.1. Hardening Parameters Definition

Before using the proposed constitutive model in simulations, suitable functions of
material parameters must be defined for the components of the hardening matrix [H].

First, the extraction of the hardening parameters hL,U , zL,U , dL,U and H0 L,U from the
experimental data under uniaxial loading/unloading is explained. The components of
the hardening matrix Hk where k = (11, 22, 33) are extracted as the derivatives of the
stress component σ11 over the plastic strain component εp11. The plastic strain is obtained
from the decomposition of the total strain into the elastic and plastic parts. Then, the
function of plastic hardening component H11 is defined as a function of the uniaxial tension–
compression stress component Hk(σk), which was previously calculated by Equation (3).
The uniaxial stress component must then be translated with respect to the entire branch
of the hysteresis loop so that the origin of the zero value starts at the reversal point and
it only has positive (absolute) values. Figure 3a shows the experimental data of Šolinc
et al. [77] for strain amplitude ± 1%, whilst Figure 3b,c are plots of Hk(σk) extracted from
the experimental data.

A hyperbolic tangent function is used to describe the parameters, since it can conve-
niently outline the S-shaped branches of the hysteresis loop. When adjusting the hardening
parameters for the compressive branch (downwards) of the hysteresis loop, four param-
eters are used. The parameter H0U can be determined as the value of Hk(σk) when it no
longer changes significantly in its gradient (the curve is flattened). The other parameters
hU , zU and dU are determined using the non-linear least squares method between the
experimental data and the hyperbolic tangent function.

A similar procedure is followed for the tensile branch (upwards) of the hysteresis
loop, but with one significant difference. Due to the changing deformation mechanisms,
which range from detwinning to slipping and then twinning again at higher strain, there
is a specific S-shaped tensile branch of the hysteresis loop for which two sets of material
parameters are required. The material parameters hL1, zL1 and dL1 for untwinning and hL2,
zL2 and dL2 for twinning. The plastic hardening in the centre part or at the inflection point
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of the tensile branch of the hysteresis loop is described by H0L, which in turn is conveniently
identified by the value of Hk(σk) once it no longer changes significantly in its gradient and is
flattened. The other hardening parameters are again determined using the non-linear least
squares method between the experimental data and the hyperbolic tangent function. The
fitted function and the function corrected by the hardening parameters update algorithm
for the compressive loading are presented in Figure 4. The same functions for the tensile
loading can be found in Figure 5.
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(downwards) of the hysteresis loop, and (c) hardening component H11(σ11) for the tension
branch (upwards).

Since the size and the shape of the hysteresis loops depends on the applied load
amplitude, the hardening parameters can be defined as functions of the load amplitude. It
is recommended to calibrate the parameters for at least five strain amplitudes in steps of
0.25%. The interpolation function can then be used to describe the parameters between the
experimental curves. Here, a polynomial function has been used for the interpolation, but it
should be noted that it was limited to the range of strain amplitudes used in the calibration.
The interpolations for the hardening parameters of the observed experimental data are
shown in Figure 6. Table 1 shows the cyclic uniaxial tensile–compressive and pure shear
hardening parameters from experimental results for AZ31. The parameters, which are
functions of the strain amplitude, are presented as piecewise cubic interpolation functions

X(εa) =
{

A1,m ε3
a + A2,m ε2

a + A3,m εa + A4,m, i f εa ∈ m (28)

where m is

m = [[−0.015,−0.0125], (−0.0125,−0.01], (−0.01,−0.0075], (−0.0075,−0.005]] (29)
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Hardening parameters zU(εa), dU(εa), zL1(εa), zL2(εa), H0L(εa) as functions of strain
amplitude are presented as piecewise cubic interpolation functions:

zU(εa) =


7.17·107ε3

a + 3.23·106ε2
a + 5.08·104εa + 2.63·102, i f εa ∈ [−0.015,−0.0125]

4.60·106ε3
a + 7.11·105ε2

a + 1.93·104εa + 1.32·102, i f εa ∈ (−0.0125,−0.01]
−2.77·108ε3

a − 7.75·106ε2
a − 6.53·104εa − 1.50·102, i f εa ∈ (−0.01,−0.0075]

2.01·108ε3
a + 3.02·106ε2

a + 1.55·104εa + 5.20·101, i f εa ∈ (−0.0075,−0.005]

(30)

dU(εa) =


5.14·107ε3

a + 2.31·106ε2
a + 3.52·104εa + 1.34·102, i f εa ∈ [−0.015,−0.0125]

−6.51·107ε3
a − 2.05·106ε2

a − 1.94·104εa − 8.89·101, i f εa ∈ (−0.0125,−0.01]
1.71·107ε3

a + 4.11·105ε2
a + 5.23·103εa − 6.64, i f εa ∈ (−0.01,−0.0075]

−3.42·106ε3
a − 5.14ε4

a + 1.76·103εa − 1.53·101, i f εa ∈ (−0.0075,−0.005]

(31)

zL1(εa) =


−5.95·108ε3

a − 2.68·107ε2
a − 4.02·105εa − 1.98·103, i f εa ∈ [−0.015,−0.0125]

1.35·109ε3
a + 4.62·107ε2

a + 5.11·105εa + 1.82·103, i f εa ∈ (−0.0125,−0.01]
−1.43·109ε3

a − 3.74·107ε2
a − 3.26·105εa − 9.68·102, i f εa ∈ (−0.01,−0.0075]

6.81·108ε3
a + 1.02·107ε2

a + 3.13·104εa − 7.49·101, i f εa ∈ (−0.0075,−0.005]

(32)

zL2(εa) =


−3.76·108ε3

a − 1.69·107ε2
a − 2.54·105εa − 9.88·102, i f εa ∈ [−0.015,−0.0125]

5.06·108ε3
a + 1.61·107ε2

a + 1.59·105εa + 7.36·102, i f εa ∈ (−0.0125,−0.01]
−3.76·108ε3

a − 1.03·107ε2
a − 1.05·105εa − 1.46·102, i f εa ∈ (−0.01,−0.0075]

2.47·108ε3
a + 3.71·106ε2

a − 3.26·102εa + 1.16·102, i f εa ∈ (−0.0075,−0.005]

(33)

H0L(εa) =


−2.17·1010ε3

a − 9.77·108ε2
a − 1.29·107εa − 4.52·104, i f εa ∈ [−0.015,−0.0125]

1.25·1010ε3
a + 3.08·108ε2

a + 3.15·106εa + 2.17·104, i f εa ∈ (−0.0125,−0.01]
1.95·1011ε3

a + 5.79·109ε2
a + 5.80·107εa + 2.04·105, i f εa ∈ (−0.01,−0.0075]

−1.86·1011ε3
a − 2.79·109ε2

a − 6.40·106εa + 4.35·104, i f εa ∈ (−0.0075,−0.005]
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tangent function.

For the simulation of the stress–strain response, the static or the stabilised cyclic curve
must also be defined. The hardening parameters of the hysteresis loops cannot be used
in this case, since the curves are different in their sizes and shapes. Therefore, the static
hardening functions for uniaxial normal and biaxial shear loadings are defined as follows.
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These function parameters are determined by calibrating the function to the experimental
data of uniaxial plastic hardening as a function of stress.

Hstatic,11(σ11) = A11·(σ11 − σ0,11)
B11 + C11 (35)

Hstatic,12(σ12) = A12·(σ12 − σ0,12)
B12 (36)

The importance of the correct definitions of the hardening parameters is enormous,
because the quality of the simulation depends on the exact definitions of the parameter
values. If the values of the parameters are not accurately defined, there is a possibility
that the reversal points of the hysteresis loops will drift, which looks like ratchetting. If
the parameters are not correct, the twinning will occur too early or too late depending
on the current load. For this reason, it is important to use an algorithm to update the
hardening parameters that eliminates the drift of the reversal points. This approach is
a principal contribution to improving the accuracy and predictability of simulations for
AZ31. It represents a central objective of this paper, aiming to enhance the stability and
reliability of the simulation outcomes.
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Table 1. Hardening parameters of the proposed constitutive model for stabilised cyclic response of
AZ31 magnesium alloy sheet metal.

Dynamic Parameters Value Static Parameters Value

hU 645,057 MPa A11 1.453·107

H0U 2000 MPa σ0,11 34.06 MPa
hL1 −1,001,644 MPa B11 −0.9706
dL1 70 MPa C11 −70, 280 MPa
hL2 55,000 MPa A12 7.3·105

dL2 20 MPa σ0,12 5.12 MPa
n′

s 0.3024 B12 −0.99
K′

s 379.42 MPa

4.2. Uniaxial Tensile–Compressive and Pure Shear Loading

After completing the calibration of the material parameters, the proposed consti-
tutive model should be tested and validated against experimental observations. First,
the validation of the uniaxial tensile–compressive loading is presented. Figure 7 shows
the simulated results compared to the experimental data. It can be clearly seen that the
proposed constitutive model can predict the stress–strain response very well, which is
expected since the model was calibrated using these data. Figure 7f illustrates a simu-
lated stress–strain response for a strain amplitude of εa = ±1.1%, which falls between
the experimental data points. This particular strain amplitude was not included in the
experimental dataset. Despite this, the algorithm successfully simulates the response for
this amplitude, demonstrating its capability of extrapolating accurately beyond the range
of the experimental data. However, a limitation of this approach is that it cannot ensure
a precise and accurate prediction of the response for strains exceeding the maximum or
falling below the minimum values of the strain amplitudes of the experimental data.

Next, the consistency and the ability to perform closed hysteresis loops were tested
for the case of uniaxial tensile–compressive loading with a strain amplitude εa = ±1%.
As shown in Figure 8, the response is consistent with the load and the number of cycles
applied. The algorithm proposed in this study to update the hardening parameters ensures
that non-drifting closed hysteresis loops can be simulated. On the contrary, a drift of
the reversal points would be observed, which should not occur when simulating a stable
cyclic response.

The same validation study was then performed for pure shear loading. The calibrated
constitutive model was compared to the experimental data for different amplitudes of shear
stress, as shown in Figure 9. Again, the constitutive model simulated the responses correctly.
Since the hardening is symmetrically defined and does not depend on the direction of the
shear stress, the algorithm for updating the hardening parameters is not required, since the
hysteresis loops are already closed and also do not depend on the number of cycles.

Figure 9 shows that the magnitude of the yield stress plays an important role in
the simulations. It is visible here for the simulation of pure shear loads as a noticeable,
non-continuous transition from the elastic to the plastic part of the constitutive model in
comparison to the experimental data (dotted lines). This can be avoided by lowering the
yield stress, but then the missing elastic part must be replaced by the correspondingly
prescribed plastic hardening. However, the validity of the simulated response can become
compromised. As shown, the proposed constitutive model can simulate pure uniaxial
tensile–compressive and pure shear loading. Likewise, the static part of the stabilised
response is also included in the simulations, as it is crucial for the comprehensive ability
of the stress–strain response simulations. Figure 9f presents a shear strain amplitude that
falls between the experimental data points. This demonstrates the model’s capability to
interpolate and simulate responses accurately for strain amplitudes not explicitly tested in
the experimental dataset. However, a limitation of this approach is that it may not reliably
predict responses for shear strain amplitudes beyond the maximum or below the minimum
experimental data points for which the model was calibrated.
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4.3. Multiaxial Proportional and Non-Proportional Loading

Proportional loading was used for a further validation of the proposed constitutive
model. The simulated response is compared to the uniaxial tensile–compressive and shear
response previously presented in this study, as there are currently no experimental data on
proportional or non-proportional multiaxial loading of AZ31 sheet metal for these material
parameters. Nevertheless, the proposed constitutive model is able to simulate the stabilised
axial and shear stress–strain curves of proportional in-phase loading (Figure 10a–c). The
sigmoidal stress–strain response can be clearly seen, as well as the asymmetric behaviour
in tension and compression under uniaxial plastic deformation. The asymmetric shear
behaviour appears in this case, which is a consequence of the twinning and untwinning
saturation occurrence under normal tensile–compressive loading. All of the above phe-
nomena were observed by Albinmousa when performing multiaxial experiments on the
wrought magnesium alloy AZ31 under uniaxial tensile–compressive and torsional load-
ing [86]. Figure 10d therefore shows the comparison between the simulated response and
experimental data for the wrought magnesium alloy AZ31 [86] with modified hardening
parameters. These parameters are again situated between the experimental data points for
which the model was calibrated, demonstrating the model’s capability to interpolate and
accurately simulate responses within this range.
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The ability to simulate proportional and non-proportional multiaxial loads is very
important, as this type of loading is most similar to loads in the real environment. The
proposed constitutive model can therefore be applicable to simulations of the response
under proportional loading. It should be noted, however, that the material parameters
were calibrated on experimental results for AZ31 sheet metal under both uniaxial tensile–
compressive and biaxial shear loading. In the future, multiaxial experiments should be
performed on AZ31 sheets with uniaxial loading and in-plane shear loading to obtain a
direct comparison between the simulation and the experiments.

5. Conclusions

The enhanced cyclic plasticity model enables simulations of AZ31 sheet metal under
low-cycle fatigue conditions to observe experimentally consistent stress responses for the
given strain load history. This has been achieved by the suggested robust stress update
algorithm. Moreover, the constitutive model guarantees the closure of hysteresis loops,
which has been addressed by the new hardening parameter update algorithm using the
hyperbolic tangent function to describe hardening. The hardening parameters are iteratively
updated until the optimal conditions are met. Finally, the constitutive model has been
thoroughly tested and validated on the uniaxial experimental data, leading to excellent
matching results for AZ31 sheet metal. A multiaxial proportional validation has also
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been performed and has shown promising results. However, it is recognised that further
enhancements could be beneficial to improving the performance in predicting behaviour
under multiaxial loading conditions. The current simulated response to multiaxial loading
was compared against uniaxial tensile–compressive and torsional experiments on wrought
magnesium alloy AZ31 from the literature, rather than multiaxial loading experiments on
sheet metal specimens involving uniaxial tensile–compressive and in-plane shear loading.
Multiaxial loading experiments on sheet metal are necessary to complement the model’s
capabilities. The enhancements made to the hardening parameter definitions in this research
are crucial for achieving a more accurate simulation of the response for AZ31. It is important
to note that this work represents an upgrade to the existing constitutive model rather than
the development of an entirely new model. The next step in the research into the proposed
constitutive model is the integration of memory rules and the introduction of variable
loading amplitudes with nested load cycles. The proposed model can be implemented into
finite element analysis in the future.

Author Contributions: Conceptualization, A.L., J.K., M.N. and D.Š.; Methodology, A.L., J.K. and
D.Š.; Software, A.L. and D.Š.; Validation, A.L., J.K., M.N. and D.Š.; Formal analysis, A.L., J.K. and
D.Š.; Investigation, A.L., J.K. and D.Š.; Resources, J.K., M.N. and D.Š.; Data curation, A.L. and D.Š.;
Writing—original draft, A.L.; Writing—review & editing, J.K., M.N. and D.Š.; Visualization, A.L. and
D.Š.; Supervision, J.K., M.N. and D.Š.; Project administration, J.K. and D.Š.; Funding acquisition, J.K.
and M.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research Agency (ARRS), grant research
program P2-0182 (R&D evaluations—Razvojna vrednotenja) and a grant for a young researcher
ARRS-MR-LP-2020/544 (Aljaž Litrop).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, B.; Yang, J.; Zhang, X.; Yang, Q.; Zhang, J.; Li, X. Development and application of magnesium alloy parts for automotive

OEMs: A review. J. Magnes. Alloy. 2023, 11, 15–47. [CrossRef]
2. Zhang, J.; Miao, J.; Balasubramani, N.; Cho, D.H.; Avey, T.; Chang, C.-Y.; Luo, A.A. Magnesium research and applications: Past,

present and future. J. Magnes. Alloy. 2023, 11, 3867–3895. [CrossRef]
3. Joost, W.J.; Krajewski, P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017, 128, 107–112.

[CrossRef]
4. Golroudbary, S.R.; Makarava, I.; Repo, E.; Kraslawski, A.; Luukka, P. Magnesium Life Cycle in Automotive Industry. Procedia

CIRP 2022, 105, 589–594. [CrossRef]
5. Kiani, M.; Gandikota, I.; Rais-Rohani, M.; Motoyama, K. Design of lightweight magnesium car body structure under crash and

vibration constraints. J. Magnes. Alloy. 2014, 2, 99–108. [CrossRef]
6. Luo, A.A. Magnesium casting technology for structural applications. J. Magnes. Alloy. 2013, 1, 2–22. [CrossRef]
7. Li, Y.Q.; Li, F.; Kang, F.W.; Du, H.Q.; Chen, Z.Y. Recent research and advances in extrusion forming of magnesium alloys: A

review. J. Alloy. Compd. 2023, 953, 170080. [CrossRef]
8. Li, T.; Song, J.; Zhang, A.; You, G.; Yang, Y.; Jiang, B.; Qin, X.; Xu, C.; Pan, F. Progress and prospects in Mg-alloy super-sized high

pressure die casting for automotive structural components. J. Magnes. Alloy. 2023, 11, 4166–4180. [CrossRef]
9. Masuda, K.; Ishihara, S.; Oguma, N.; Ishiguro, M.; Sakamoto, Y. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg

Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation. Materials 2022, 15, 755. [CrossRef]
10. Zhang, W.; Liu, H.; Wang, Q.; He, J. A Fatigue Life Prediction Method Based on Strain Intensity Factor. Materials 2017, 10, 689.

[CrossRef]
11. Alaneme, K.K.; Okotete, E.A. Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent

developments. J. Magnes. Alloy. 2017, 5, 460–475. [CrossRef]
12. Suh, B.-C.; Shim, M.-S.; Shin, K.; Kim, N.J. Current issues in magnesium sheet alloys: Where do we go from here? Scr. Mater. 2014,

84–85, 1–6. [CrossRef]

https://doi.org/10.1016/j.jma.2022.12.015
https://doi.org/10.1016/j.jma.2023.11.007
https://doi.org/10.1016/j.scriptamat.2016.07.035
https://doi.org/10.1016/j.procir.2022.02.098
https://doi.org/10.1016/j.jma.2014.05.005
https://doi.org/10.1016/j.jma.2013.02.002
https://doi.org/10.1016/j.jallcom.2023.170080
https://doi.org/10.1016/j.jma.2023.11.003
https://doi.org/10.3390/ma15030755
https://doi.org/10.3390/ma10070689
https://doi.org/10.1016/j.jma.2017.11.001
https://doi.org/10.1016/j.scriptamat.2014.04.017


Materials 2024, 17, 4659 20 of 23

13. Catorceno, L.L.C.; de Abreu, H.F.G.; Padilha, A.F. Effects of cold and warm cross-rolling on microstructure and texture evolution
of AZ31B magnesium alloy sheet. J. Magnes. Alloy. 2018, 6, 121–133. [CrossRef]

14. Gryguc, A.; Shaha, S.K.; Behravesh, S.B.; Jahed, H.; Wells, M.; Williams, B. Improvement of Fatigue Properties of AZ31B Extruded
Magnesium Alloy through Forging. Frat. Ed Integrita Strutt. Struct. Integr. 2020, 14, 152–165. [CrossRef]

15. Wang, F.; Agnew, S.R. Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plast. 2016, 81, 63–86.
[CrossRef]

16. Frydrych, K.; Libura, T.; Kowalewski, Z.; Maj, M.; Kowalczyk-Gajewska, K. On the role of slip, twinning and detwinning in
magnesium alloy AZ31B sheet. Mater. Sci. Eng. A 2021, 813, 141152. [CrossRef]

17. Mackenzie, L.; Pekguleryuz, M. The influences of alloying additions and processing parameters on the rolling microstructures
and textures of magnesium alloys. Mater. Sci. Eng. A 2008, 480, 189–197. [CrossRef]

18. Nakata, T.; Kamado, S. Towards tailoring basal texture of rolled Mg alloy sheet by recrystallization for high room-temperature
formability: A review. J. Magnes. Alloy. 2023, 11, 3992–4010. [CrossRef]

19. Nguyen, N.-T.; Seo, O.S.; Lee, C.A.; Lee, M.-G.; Kim, J.-H.; Kim, H.Y. Mechanical Behavior of AZ31B Mg Alloy Sheets under
Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures. Materials 2014, 7, 1271–1295. [CrossRef]

20. Yang, Q.; Jiang, B.; Song, B.; Yu, Z.; He, D.; Chai, Y.; Zhang, J.; Pan, F. The effects of orientation control via tension-compression on
microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet. J. Magnes. Alloy. 2020, 10, 411–422. [CrossRef]

21. Dai, H.; Sun, M.; Cheng, Y. Deformation Behavior of AZ31 Magnesium Alloy with Pre-Twins under Biaxial Tension. Materials
2024, 17, 3377. [CrossRef] [PubMed]

22. Shi, B.; Yang, C.; Peng, Y.; Zhang, F.; Pan, F. Anisotropy of wrought magnesium alloys: A focused overview. J. Magnes. Alloy. 2022,
10, 1476–1510. [CrossRef]

23. Sadeghi, A.; Mortezapour, H.; Samei, J.; Pekguleryuz, M.; Wilkinson, D. Anisotropy of mechanical properties and crystallographic
texture in hot rolled AZ31+XSr sheets. J. Magnes. Alloy. 2019, 7, 466–473. [CrossRef]

24. Park, S.H.; Hong, S.-G.; Bang, W.; Lee, C.S. Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy.
Mater. Sci. Eng. A 2009, 527, 417–423. [CrossRef]

25. Zhu, X.; Wang, Y.; Carneiro, L.; Wang, H.; Jiang, Y. Evaluation of elastic-viscoplastic self-consistent models for a rolled AZ31B
magnesium alloy under monotonic loading along five different material orientations and free-end torsion. J. Magnes. Alloy. 2023,
11, 1264–1275. [CrossRef]

26. Guo, X.; Chapuis, A.; Wu, P.; Liu, Q.; Mao, X. Experimental and numerical investigation of anisotropic and twinning behavior in
Mg alloy under uniaxial tension. Mater. Des. 2016, 98, 333–343. [CrossRef]

27. Liu, T.; Yang, Q.; Guo, N.; Lu, Y.; Song, B. Stability of twins in Mg alloys—A short review. J. Magnes. Alloy. 2020, 8, 66–77.
[CrossRef]

28. Peng, P.; Yu, D.; Guo, X.; Zhang, P.; Chai, S.; Dai, Q.; Lu, J. Significantly improvement in formability and ductility of AZ31 Mg
alloy by differential temperature rolling. J. Mater. Res. Technol. 2023, 26, 1293–1305. [CrossRef]

29. Dallmeier, J.; Huber, O.; Saage, H.; Eigenfeld, K. Uniaxial cyclic deformation and fatigue behavior of AM50 magnesium alloy
sheet metals under symmetric and asymmetric loadings. Mater. Des. 2015, 70, 10–30. [CrossRef]

30. Gong, W.; Zheng, R.; Harjo, S.; Kawasaki, T.; Aizawa, K.; Tsuji, N. In-situ observation of twinning and detwinning in AZ31 alloy.
J. Magnes. Alloy. 2022, 10, 3418–3432. [CrossRef]

31. Lei, Y.; Wang, Z.; Kang, G. Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy. J. Magnes. Alloy.
2023, 11, 3255–3271. [CrossRef]

32. Hama, T.; Nakata, T.; Higuchi, K.; Yoshida, H.; Jono, Y. Plastic deformation behavior of a Mg-1.5Zn-0.1Ca (mass%) alloy sheet
under different strain paths. Mater. Sci. Eng. A 2023, 869, 144772. [CrossRef]

33. Lei, Y.; Wang, Z.; Hu, B.; Yu, C.; Kang, G. Experimental study on temperature-dependent ratchetting-fatigue interaction of
extruded AZ31 magnesium alloy. Int. J. Fatigue 2024, 180, 108106. [CrossRef]

34. Lv, L.; Shao, L.; Lin, H.; Jin, T. Deformation and mechanical responses of AZ31B magnesium alloy under combined shear-
compression loading conditions. Mater. Today Commun. 2022, 31, 103551. [CrossRef]

35. Li, H.; Kang, G.; Liu, Y.; Jiang, H. Non-proportionally multiaxial cyclic deformation of AZ31 magnesium alloy: Experimental
observations. Mater. Sci. Eng. A 2016, 671, 70–81. [CrossRef]
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