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Abstract: Within the scope of these investigations, the feasibility of a material bond between Ti-6Al-4V
and the magnesium alloy AZ91 is analyzed. Ti-6Al-4V is frequently used for implants due to its
biocompatibility, corrosion resistance, and specific strength. However, depending on the surface
quality, the attachment behavior of the bone to the implant varies. Magnesium implants promote
the regeneration of bone tissue and biodegrade as the bone tissue heals. Combining the properties
of both materials in one implant enables a reduced implant volume and increased stability. For
this reason, this study aims to demonstrate the feasibility of creating a material bond between the
materials Ti-6Al-4V and AZ91. For this purpose, Ti-6Al-4V truncated cones and AZ91 sleeves were
produced using the additive manufacturing process of laser powder bed fusion (L-PBF). The as-built
sleeves were then pressed onto machined truncated cones. Since zinc serves as a lubricant and
has good diffusion properties with the materials used as a result of heat treatment, a comparison
was made between zinc-coated and the as-built Ti-6Al-4V samples. This showed that a bond was
created after hot isostatic pressing and that the push-out force could be increased by more than
4.5 times. Consequently, a proof of feasibility was demonstrated, and a high potential for applications
in medical technology was shown.

Keywords: AZ91; Ti-6Al-4V; additive manufacturing; L-PBF; implant technology

1. Introduction
1.1. Materials for Implant Applications

Currently, the various materials approved in medical technology are combined in
joint replacements using different individual parts. The aim is to combine permanent
and non-permanent or resorbable and non-resorbable materials [1]. However, a hybrid
implant consisting of two different materials has yet to be created. Regarding the material
combinations, the following applies: the greater the differences between the implant
material and the bone in terms of mechanical properties, the greater the stress shielding.
Stress shielding refers to the bone resorption caused by the inserted implant’s load shielding
on the bone. This can cause a permanent implant to loosen over the years and results in the
relative movement of the implant under load. Once the implant has loosened, the implant
must be removed and replaced with a new one. This is a significant factor in the field of
joint replacements [2].

Because magnesium has positive effects on bone growth, the combination of the
materials magnesium and titanium within a hybrid implant is suitable. It leads to a
significant improvement in usage properties, such as ingrowth behavior and longevity [3].
This is caused by the similar strength properties between magnesium alloys and human
bone; see Figure 1 [4].

Materials 2024, 17, 4667. https://doi.org/10.3390/ma17184667 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17184667
https://doi.org/10.3390/ma17184667
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8209-7229
https://orcid.org/0000-0001-8927-0573
https://doi.org/10.3390/ma17184667
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17184667?type=check_update&version=1


Materials 2024, 17, 4667 2 of 11
Materials 2024, 17, x FOR PEER REVIEW 2 of 12 

Figure 1. Overview of the material properties of metallic materials in medical technology compared 
to human bone according to [4]. 

Consequently, magnesium alloys are highly suitable compared to other resorbable 
material alternatives. The aim when creating hybrid implants is to match the resorption 
of the material as closely as possible to the growth rate of the bone and consequently op-
timize bone ingrowth. Titanium represents the gold standard of permanent materials and 
is used as the permanent base material in this study. Figure 2 shows an abstraction of the 
hybrid implant. 

Figure 2. Illustration of the possible implementation of a hybrid implant. 

1.2. Titanium and Magnesium in L-PBF Processes 
The laser powder bed fusion (L-PBF) process holds great potential for lightweight 

construction. As a result, research into titanium and magnesium materials is being pushed 
forward. Due to its good mechanical properties, corrosion resistance, and biocompatibil-
ity, the material Ti-6Al-V4 is approved for implants in Germany. Consequently, it is fre-
quently used for additive-manufactured implants, as can be seen in different publications 
about cranial prostheses, auxiliary surgical components, shoulder blade prostheses, knee 
prostheses, dental implants, elements of the spinal column, acetabular cup implants, or 
hip and femur implants [5–9]. 

To ensure that the body integrates the metallic implant without problems, the in-
serted component must match the replaced bone and its structure as closely as possible. 
To achieve a suitable combination of elasticity and strength for the implants, Falkowska 
et al., Ataee et al., and Bartolomeu et al. examined various grid structures made of Ti-6Al-
4V regarding their mechanical properties [6–8]. 

Figure 1. Overview of the material properties of metallic materials in medical technology compared
to human bone according to [4].

Consequently, magnesium alloys are highly suitable compared to other resorbable
material alternatives. The aim when creating hybrid implants is to match the resorption
of the material as closely as possible to the growth rate of the bone and consequently
optimize bone ingrowth. Titanium represents the gold standard of permanent materials
and is used as the permanent base material in this study. Figure 2 shows an abstraction of
the hybrid implant.
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1.2. Titanium and Magnesium in L-PBF Processes

The laser powder bed fusion (L-PBF) process holds great potential for lightweight
construction. As a result, research into titanium and magnesium materials is being pushed
forward. Due to its good mechanical properties, corrosion resistance, and biocompatibility,
the material Ti-6Al-V4 is approved for implants in Germany. Consequently, it is frequently
used for additive-manufactured implants, as can be seen in different publications about
cranial prostheses, auxiliary surgical components, shoulder blade prostheses, knee prosthe-
ses, dental implants, elements of the spinal column, acetabular cup implants, or hip and
femur implants [5–9].

To ensure that the body integrates the metallic implant without problems, the inserted
component must match the replaced bone and its structure as closely as possible. To achieve
a suitable combination of elasticity and strength for the implants, Falkowska et al., Ataee
et al., and Bartolomeu et al. examined various grid structures made of Ti-6Al-4V regarding
their mechanical properties [6–8].
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Another option for harmonizing the stiffness of bone and the implant is the targeted
production of components with an increased porosity by varying the process parameters
of laser power, exposure speed, and hatching distance [9]. The surface quality of the
component plays a particularly decisive role in the connection of the implant to the body.
The work of Alipal et al. [10] provides an overview of the surface requirements for additively
manufactured implants. Since the surface erosion of the implant can lead to dangerous
reactions with the organs, the material’s corrosion resistance is also very important. Based
on the work of Sharma et al., it was shown that Ti-6Al-4V exhibits very high corrosion
resistance in environments containing NaOH, SBF, and NaCl [11].

Magnesium alloys are suitable as the second component of the hybrid implant. These
are also biodegradable, meaning they naturally degrade in the body and do not have
to be surgically removed after healing. Their mechanical properties, similar to those of
human bone, also enhance compatibility. Various studies have already recorded possible
process parameters of magnesium, such as those by Wu et al. and Savalani et al. Ng
et al. have investigated the process parameters and the resulting density and corrosion
resistance of the manufactured components [12–14]. In addition, promising investigations
with lattice structures for magnesium alloys were carried out, to improve the further
adaptation of the mechanical properties between implant and bone and consequently
improve biodegradability [15]. Matena et al. have demonstrated the promising properties
of coated magnesium implants in a comparative study. The results are comparable with the
already common titanium implants [16]. Vignesh et al., Kaushik et al., and Manakari et al.
provide an overview of the current applications, challenges, and opportunities of additively
manufactured magnesium components in biomedical engineering [17–19]. The studies
clearly show that depending on the application and powder size, different parameter
settings can lead to the desired manufacturing result.

1.3. Material Composites Made of Titanium and Magnesium

Both titanium and magnesium have a hexagonal structure at room temperature and are
lightweight materials due to their low density. However, combining the two elements poses
a major challenge. In particular, the large difference between the melting temperatures
and the mutual solubility is the reason for this. The melting temperature of magnesium
is approx. 649.5 ◦C and for titanium, approx. 1668 ◦C. In addition, a maximum of 1.6 at%
magnesium is dissolved in titanium at 865 ◦C. At the same temperature, only 0.12 at% of
titanium can be dissolved in magnesium [20]. This means there is a large mixing gap be-
tween the two elements, in which both elements solidify separately [20–22]. Consequently,
direct solid-state diffusion is not possible. In addition to solid–liquid diffusion, which is
difficult to implement, intermediate elements can be used for diffusion bonding in both
directions, as shown in [23]. In this case, the boundary layer and the newly formed phases
have the greatest influence on the mechanical properties of the diffusion bond.

The best-known alloy groups for magnesium are based on aluminum, manganese, and
zinc, and for titanium alloys on aluminum, vanadium, tin, zirconium, niobium, vanadium,
and molybdenum (see [22,24]). Due to their use in alloys, all these elements have already
been examined for their suitability as intermediate elements. According to [25], the most
promising elements are zinc, aluminum, and nickel.

For the manufacture of hip implants, the possibilities for creating the diffusion layer
are limited by the geometry of the two components. Direct unidirectional heat input
at the interface, as through friction or laser welding, is not possible. Accordingly, only
solid-state diffusion up to the melting point of the magnesium alloy or molten diffusion
through low-melting elements or eutectics can be used. However, solid-state diffusion
requires a form closure. This cannot be completely guaranteed due to the component
geometries. Consequently, transient liquid phase (TLP) bonding is an effective option.
Zinc, aluminum, and nickel can be considered as interlayer elements. Using aluminum as
the main alloying element of Mg- and Ti-alloys would be preferable. Using an additional
aluminum layer leads to the formation of two eutectics at 450 ◦C and 437 ◦C on the
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magnesium side. However, the formation of many other intermetallic phases on the
titanium side is problematic and difficult to control. Due to the high diffusion rate of
aluminum in titanium, pores increasingly form on the aluminum side, as was shown
in [26].

Zinc, with a melting temperature of 419.5 ◦C, and nickel, combined with the low-
melting eutectic of MgNi at 508 ◦C, can also be used for TLP bonding. The two materials
form further intermetallic phases until the solid solution is saturated. Compared to alu-
minum, these are mainly limited to TiNi3 and Mg2Ni or to MgZn2 for the zinc interlayer [27].
As a result of the eutectic reaction, the intermediate layer MgZn2 is formed almost exclu-
sively. The reason for this is the acceleration of the diffusion process, which prevents the
formation of intermetallic phases on the titanium side.

The intermediate layers are introduced into the diffusion system via coatings, pastes,
or films. The layer thickness is a significant influencing parameter here. Due to the high
corrosion tendency of magnesium, heat treatment in a vacuum or inert gas atmosphere
is essential. Although the Mg-X-Ti composite is pressed at room temperature, a certain
pressure must also be generated during diffusion annealing, especially when using the
intermediate elements mentioned. This ensures that the shrinkage of the hybrid body does
not lead to delamination of the boundary layer. Hot isostatic pressing (HIP) can be used
to prevent deformation of the component geometry. In this process, atmospheric pressure
is applied to the coated three-dimensional component surface. Tests on SUS 304 stainless
steel have shown that the high pressure during HIP produces a defect-free diffusion zone
and has a positive effect on the surface roughness [28].

This article aims to produce a material-locking connection between L-PBF-manufactured
Ti-6Al-4V and AZ91 components utilizing suitable joining mechanisms. For this purpose,
both uncoated and coated surface conditions will be considered. The final result should
provide a basic understanding of the design and process chain for the production of a
joint between titanium and magnesium alloys and thus serve as a starting point for further
research into the production and application of such hybrid implants.

2. Materials and Methods
2.1. Materials

Powder of the magnesium alloy AZ91D, which was produced by Hana AMT Co.,
Ltd. (Cheongju-si, Republic of Korea), was used to manufacture the press-on sleeves.
The powder has a chemical composition according to Table 1 and was processed with a
particle size between 20 and 63 µm. The melting point of the material is 533 ◦C. The cones
were made of the titanium alloy Ti-6Al-4V. The powder was produced by m4p materials
solutions GmbH and also has a particle size of 20 to 63 µm. The chemical composition of
the powder is shown in Table 1.

Table 1. Chemical composition [wt.%] of the used AZ91D and Ti-6Al-4V powder.

Material Ti Mg Al V Fe Zn Mn

AZ91D - bal 8.00 - 0.009 0.97 0.2
Ti-6Al-4V bal - 6.33 3.98 0.16 - -

2.2. Methods
2.2.1. Part Manufacturing

The AZ91D sleeves were produced on an AconityMIDI (Aconity3D GmbH, Herzo-
genrath, Germany) equipped with a laser of 1070 nm wavelength with a focus diameter of
80 µm, under an argon atmosphere. A layer thickness of 30 µm and a hatching distance of
60 µm were used for all 16 components, whereby the substrate plate was not preheated.
Before manufacturing the sleeves, suitable process parameters were determined in a pre-
vious test using a parameter matrix in which the laser power was varied between 150 W
and 225 W in 25 W steps and the exposure speed between 400 mm/s and 850 mm/s in
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150 mm/s steps. The two parameter sets of 150 W and 400 mm/s (sleeves 17 to 24) and
150 W and 550 mm/s (sleeves 25 to 32), which had the lowest porosity, were subsequently
used to produce eight sleeves each. These were used to further realize and analyze a joint
between Ti-6Al-4V and AZ91. Due to the use of the same manufacturing parameters, it can
be assumed that sleeves 17 to 24 and sleeves 25 to 32 have approximately the same porosity
of 0.77% and 0.44%, respectively, and surface quality (Figure 3).
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The Ti-6Al-4V cones were produced on an EOS M290 (EOS GmbH, Krailling/München,
Germany), whose laser also has a wavelength of 1070 nm and a focal diameter of 80 µm.
The L-PBF process was carried out under an argon atmosphere, and the substrate plate was
preheated to 35 ◦C. The various cones were produced using the same parameters: a laser
power of 340 W, an exposure speed of 1250 mm/s, a hatching distance of 120 µm, and a
layer thickness of 60 µm. The 75 mm long cone had a diameter of 19.9 mm on the narrow
side, which increased at an angle of 1◦ to the wider side.

2.2.2. Joining Components and Testing of the Joint

After production, the support structure was removed, and the sample height of the
magnesium sleeves was standardized to 9 mm by machining. Furthermore, the inner
diameters of the samples were measured. For the tests, samples with an inner diameter
between 19.19 mm and 19.26 mm were selected. Accordingly, the geometric difference in
the sample bodies in the thousandths range is considered to be negligible.

The samples were pressed on and pushed out using the Zwick Z250 (ZwickRoell
GmbH & Co. KG, Ulm, Germany) available at the Department of Hybrid Manufacturing.
The associated test setup is shown in Figure 4.

For this purpose, the titanium cones were first machined to ensure a comparable
surface quality and comparable geometries. Furthermore, the sleeve could be placed
entirely on the conical surface. A pre-test was carried out to determine the maximum load
capacity. In this test, a magnesium sleeve without a zinc intermediate layer was pressed
onto the titanium cone until failure. The subsequent pressing of the sleeves followed the
test plan shown in Table 2.
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Table 2. Visualization of the test design.

Test
Number

Maximum
Force [kN]

Traverse
Distance [mm]

Zinc
Intermediate Layer [Yes/No]

1
(Pre-Test) to be determined maximum No

2 to be determined 2.5 No

3 1.72 to be determined No

4 1.72 to be determined Yes

5 1.72 to be determined Yes

The first reference test (1) defined the reference force for the remaining tests. These
were carried out under force control up to a press-on force of 1.72 kN. Force-controlled
pressing was chosen to compensate for the possible influences of small geometry differences.
As a result, the same press-on force results in a similar surface pressure for the samples.
For a surface area of 551 mm², this results in a contact pressure of around 3.12 MPa. The
zinc intermediate layer was applied with the zinc spray SF7800 Loctite (Henkel AG &
Co. KGaA, Düsseldorf, Germany), which is heat-resistant up to 550 ◦C. This thermal
resistance is important to avoid the vaporization of the zinc layer, which would inhibit the
achievement of the targeted joint.

The samples with a zinc coating were then post-treated using the HIP process (Quintus
Hot Isostatic Press QIH 15L (Quintus Technologies AB, Västerås, Sweden)). The process
parameters were as follows:

• Temperature: 490 ◦C;
• Time: 3 h;
• Pressure: 100 MPa.

Following the HIP process, the push-out force of samples 2, 3, and 4 was deter-
mined. Specimen 5 was intentionally not tested in the push-out test. This was embedded
for metallography and examined for a possible material bond using optical microscopy
(VHX7000—Keyence Deutschland GmbH (Neu-Isenburg, Germany)) and scanning elec-
tron microscope (SEM) (Phenom XL Generation 2—FEI Deutschland GmbH (Dreieich, Ger-
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many)) examinations. Before the metallographic investigations, the sample was cut, embed-
ded, ground, and polished (320 P Grit (Struers S.A.S, Champigny sur Marne, France)/9 µm
diamond suspension (Struers S.A.S, Champigny sur Marne, France)/colloidal silica fin-
ishing polish (ATM Qness GmbH, Mammelzen, Germany)). The sample etching was
unsuccessful, as the two metals react very differently to etching reagents (titanium needs
strong reagents that would dissolve the magnesium).

3. Results
3.1. Results of the Press-On Process

The press-on was carried out according to the test plan in Table 2. Figure 5 shows the
force–displacement curves for these samples.
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Figure 5. Force–displacement curve of the press-on process.

The curves for tests 2 and 3 show a similar increase. These reference tests were
carried out identically and without the intermediate layer of zinc in order to calibrate the
reference value. Accordingly, the only remaining influencing factor is the difference in the
as-built structure of the inner diameter of the sleeve. This influence is considered negligible
due to the slight difference in the curves and the inner diameter tolerance in the range
of thousandths.

Tests 4 and 5 were carried out with an intermediate layer of zinc. These also show
similar behavior, but the increase is less than with the dry pressed-on sleeves. The curves
thus show that due to the lubricating effect of the coating, the friction between the sleeve and
the cone could be reduced, resulting in the sleeve being pressed on over a longer distance.

3.2. Results of the Push-Out Tests

The push-out tests were carried out following the press-on and the HIP process. The
corresponding force–displacement curves and a comparison of the maximum push-out
force are shown in Figure 6.

The analysis of the push-out force curves shows similar release forces for the dry-
pressed samples. Sample 2 has a release force of around 0.9 kN, and sample 3 has a push-out
force of around 0.95 kN. On average, this results in a push-out force of 0.93 kN. The push-
out test of sample 4 is around 4.50 kN. Consequently, this is more than 4.5 times higher than
the release force of the reference samples. Therefore, it is assumed that the applied zinc
coating, in combination with the HIP process, has created a material connection between
the titanium cone and the magnesium sleeve. This assumption is to be confirmed by the
metallographic examination of sample 5. This sample was intentionally not subjected to
the push-out test to perform metallographic analyses.
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Figure 6. Force–displacement curve of the push-out tests.

3.3. Results of Metallographic Investigations

The metallographic preparation of this material combination proved difficult. An
overview of the bonding interface is shown in Figure 7. The dense Ti-6Al-4V is visible in
the left part of the image, as well as the relatively porous AZ91 sleeve on the right side.
The dark material visible on the interface is most likely the embedding material. The Zn
bonding agent was not visible in the optical and SEM investigations. Due to its low melting
point and solubility in magnesium and aluminum, it is assumed that upon melting, the
zinc readily dissolves into the magnesium alloy, as supported by an EDS mapping shown
in Figure 8. SEM investigations revealed multiple different features in the AZ91 sleeve at
the interface to the Ti-6Al-4V cone.
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between the distribution of these elements.

4. Discussion

The bonding of titanium and magnesium presents a challenge, as mentioned at the
beginning of this article. The reasons for this are the substantial differences in the melt-
ing temperature and the low diffusion rate of 1.6 atomic% magnesium in titanium and
0.12 atomic% titanium in magnesium [20]. Due to the resulting mixing gap, a bond in
the solid state is immediately impossible [20–22]. Consequently, an interlayer of zinc was
used as part of this work. This is considered one of the most promising intermediate
elements [22,24,25]. However, the diffusion bond can only be created by applying pressure
and temperature. Due to the high corrosion tendency of magnesium, the use of shielding
gas is essential. The HIP process was used accordingly. This was applied at a temperature
of 490 ◦C, corresponding to approx. 90% of the melting temperature of the magnesium;
a pressure of 100 MPa; and a duration of 3 h. The comparison of the dissolution forces
determined in the push-out tests shows that those of the heat-treated samples with a zinc
interlayer are more than 4.5 times higher than the comparative values. Ohashi and Kaieda
successfully achieved diffusion bonding at around 73% of the melting temperature of
stainless steel [28]. In the test with the uncoated cone, a material bond could not be estab-
lished. A bond between a zinc-coated Ti-6Al-4V cone and an AZ91 sleeve was achieved.
However, the dynamics behind the bonding mechanism are not fully understood as yet.
Multiple features in the AZ91 sleeve in the area of the Ti-6Al-4V interface are revealed by
preliminary SEM investigations, leading to the assumption that the melting and dissolution
of the Zn bonding agent in the AZ91 sleeve influences the phase formation and, ultimately,
the bonding of both components. A more detailed analysis (SEM, XRD . . .) is necessary to
understand the nature of the bond formed in these experiments. To improve the bonding of
the components, a surface treatment for the inner surface of the sleeve should be considered,
to close off any open porosity present at the surface. Generally, the porosity of the AZ91
sleeve could be considered beneficial, as it should promote tissue and bone growth when
used as a medical implant.

5. Conclusions

Within the scope of the research, it was possible to create a bond between the titanium
and magnesium materials. For this purpose, an intermediate layer of zinc was applied,
and a HIP process was carried out at approx. 90% of the melting temperature of the AZ91
alloy. However, the initial investigations did not lead to a sufficient understanding of
the bonding mechanics. Furthermore, the process parameters did not allow the full use
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of the as-built components. Accordingly, the Ti-6Al-4V truncated cone was reworked by
machining. Nevertheless, it could be demonstrated that the resulting bond improves the
push-out forces by more than 4.5 times compared to pure frictional adhesion. Consequently,
there is great potential for applications in medical technology. Follow-up investigations
aim to optimize the process parameters for the use of as-built structures and to investigate
the influence of the surface roughness of the as-built structures, the zinc layer thickness,
and the surface pressure.
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