Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO2 as a Fixed Film
Abstract
:1. Introduction
2. Methods
2.1. Chemicals and Materials
2.2. Experimental Setup and Procedure
- -
- Successive increase UV-LED power by 10% from 0 to 90% with a duration of 60 s:
- ○
- Blinking of LED every 5 s (ON/OFF);
- ○
- Continuous measurement of photocurrent.
- -
- Successive increase VIS-LED power by 10% from 0 to 90% with a duration of 60 s:
- ○
- Blinking of LED every 5 s (ON/OFF);
- ○
- Continuous measurement of photocurrent.
- -
- Successive increase UV- and VIS-LED power by 10% from 0 to 90% with a duration of 60 s:
- ○
- Blinking of LED every 5 s (ON/OFF);
- ○
- Continuous measurement of photocurrent.
- -
- Constant voltammetry with 1.5 V;
- -
- Sampling rate: 5 per second;
- -
- Current range: 5000 µA.
2.3. Analytical Methods
3. Results and Discussion
3.1. The Effect of the Oxide Addition on the Photocatalytic Properties of TiO2 as a Thin Fixed Film
3.2. Measurement of the Photocurrent
3.3. SEM Results
3.4. The Effect of Doping with Other Oxides on the Band Gap of the Titanium Dioxide Base Material
3.5. The Effect of Additives on the Photocatalytic Efficiency of TiO2
3.5.1. Photocatalytic Degradation of Ketoprofen
3.5.2. Photocatalytic Degradation of Diclofenac
3.6. Kinetic Study of Ketoprofen and Diclofenac Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sebastine, I.M.; Wakeman, R.J. Consumption and Environmental Hazards of Pharmaceutical Substances in the UK. Process Saf. Environ. Prot. 2003, 81, 229–235. [Google Scholar] [CrossRef]
- Fekadu, G.; Dugassa, D.; Negera, G.; Bakala, T.; Turi, E.; Tolossa, T.; Fetensa, G.; Assefa, L.; Getachew, M.; Shibiru, T. Self-Medication Practices and Associated Factors among Health-Care Professionals in Selected Hospitals of Western Ethiopia. Patient Prefer. Adherence 2020, 14, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Apostolescu, N.; Tataru Farmus, R.E.; Harja, M.; Vizitiu, M.A.; Cernatescu, C.; Cobzaru, C.; Apostolescu, G.A. Photocatalytic Removal of Antibiotics from Wastewater Using the CeO2/ZnO Heterojunction. Materials 2023, 16, 850. [Google Scholar] [CrossRef] [PubMed]
- Sein, M.M.; Zedda, M.; Tuerk, J.; Schmidt, T.C.; Golloch, A.; Von Sonntag, C. Oxidation of Diclofenac with Ozone in Aqueous Solution. Environ. Sci. Technol. 2008, 42, 6656–6662. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Nie, E.; Xu, J.; Yan, S.; Cooper, W.J.; Song, W. Degradation of Diclofenac by Advanced Oxidation and Reduction Processes: Kinetic Studies, Degradation Pathways and Toxicity Assessments. Water Res. 2013, 47, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip. Rev. Water 2015, 2, 457–487. [Google Scholar] [CrossRef]
- Perisic, D.J.; Gilja, V.; Stankov, M.N.; Katancic, Z.; Kusic, H.; Stangar, U.L.; Dionysiou, D.D.; Bozic, A.L. Removal of diclofenac from water by zeolite-assisted advanced oxidation processes. J. Photochem. Photobiol. A Chem. 2016, 321, 238–247. [Google Scholar] [CrossRef]
- Lhiaubet, V.; Paillous, N.; Chouini-Lalanne, N. Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer. Photochem. Photobiol. 2007, 74, 670–678. [Google Scholar] [CrossRef]
- Acuña, V.; Ginebreda, A.; Mor, J.R.; Petrovic, M.; Sabater, S.; Sumpter, J.; Barceló, D. Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example. Environ. Int. 2015, 85, 327–333. [Google Scholar] [CrossRef]
- Schwarz, S.; Schmieg, H.; Scheurer, M.; Köhler, H.-R.; Triebskorn, R. Impact of the NSAID diclofenac on survival, development, behaviour and health of embryonic and juvenile stages of brown trout, Salmo trutta f. fario. Sci. Total Environ. 2017, 607, 1026–1036. [Google Scholar] [CrossRef]
- Bonnefille, B.; Gomez, E.; Courant, F.; Escande, A.; Fenet, H. Diclofenac in the marine environment: A review of its occurrence and effects. Mar. Pollut. Bull. 2018, 131, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Ledezma-Espinoza, A.; Challis, J.K.; Roa-Gutierrez, F.; Sánchez-Kopper, A.; Castellón, E.; Wong, C.S. Photolysis of the nonsteroidal anti-inflammatory drug sulindac: Elucidation of kinetic behaviour and photodegradation pathways in water. Environ. Sci. Process. Impacts 2021, 23, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Farzan, M.; Roth, R.; Schoelkopf, J.; Huwyler, J.; Puchkov, M. The processes behind drug loading and release in porous drug delivery systems. Eur. J. Pharm. Biopharm. 2023, 189, 133–151. [Google Scholar] [CrossRef] [PubMed]
- Ek, M.; Baresel, C.; Magnér, J.; Bergström, R.; Harding, M. Activated carbon for the removal of pharmaceutical residues from treated wastewater. Water Sci. Technol. 2014, 69, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic. eScience 2024, 4, 100208. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Miessner, H.; Mueller, S.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J. 2017, 313, 1033–1041. [Google Scholar] [CrossRef]
- Umar, M.; Abdul, H. Photocatalytic Degradation of Organic Pollutants in Water. In Organic Pollutants—Monitoring, Risk and Treatment; Rashed, M.N., Ed.; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Dar, M.I.; Chandiran, A.K.; Grätzel, M.; Nazeeruddin, M.K.; Shivashankar, S.A. Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 1662–1667. [Google Scholar] [CrossRef]
- Autin, O.; Romelot, C.; Rust, L.; Hart, J.; Jarvis, P.; MacAdam, J.; Parsons, S.A.; Jefferson, B. Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes. Chemosphere 2013, 92, 745–751. [Google Scholar] [CrossRef]
- Juang, R.-S.; Lin, S.-H.; Hsueh, P.-Y. Removal of binary azo dyes from water by UV-irradiated degradation in TiO2 suspensions. J. Hazard. Mater. 2010, 182, 820–826. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Lee, T.-G.; Hwangbo, S.-A.; Jeong, J.-R. Effect of the TiO2 Colloidal Size Distribution on the Degradation of Methylene Blue. Nanomaterials 2023, 13, 302. [Google Scholar] [CrossRef] [PubMed]
- Navidpour, A.H.; Ahmed, M.B.; Zhou, J.L. Photocatalytic Degradation of Pharmaceutical Residues from Water and Sewage Effluent Using Different TiO2 Nanomaterials. Nanomaterials 2024, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Tolić Čop, K.; Mutavdžić Pavlović, D.; Gazivoda Kraljević, T. Photocatalytic Activity of TiO2 for the Degradation of Anticancer Drugs. Nanomaterials 2022, 12, 3532. [Google Scholar] [CrossRef] [PubMed]
- Musial, J.; Mlynarczyk, D.T.; Stanisz, B.J. Photocatalytic degradation of sulfamethoxazole using TiO2-based materials—Perspectives for the development of a sustainable water treatment technology. Sci. Total Environ. 2023, 856, 159122. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.; Mondal, A.; Islam, S.; Khatun, M.A.; Rahaman, M.H.; Chakraborty, A.K.; Rahman, M.S.; Rahman, M.M.; Nur, A.S.M. Strategic development of metal doped TiO2 photocatalysts for enhanced dye degradation activity under UV-Vis irradiation: A review. Curr. Res. Green Sustain. Chem. 2023, 7, 100383. [Google Scholar] [CrossRef]
- Piątkowska, A.; Janus, M.; Szymański, K.; Mozia, S. C-, N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts 2021, 11, 144. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Kubiak, A.; Piasecki, A.; Goscianska, J.; Nowaczyk, G.; Jurga, S.; Jesionowski, T. TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials 2018, 11, 841. [Google Scholar] [CrossRef]
- Ran, Z.; Fang, Y.; Sun, J.; Ma, C.; Li, S. Photocatalytic Oxidative Degradation of Carbamazepine by TiO2 Irradiated by UV Light Emitting Diode. Catalysts 2020, 10, 540. [Google Scholar] [CrossRef]
- Ding, H.; Hu, J. Degradation of ibuprofen by UVA-LED/TiO2/persulfate process: Kinetics, mechanism, water matrix effects, intermediates and energy consumption. Chem. Eng. J. 2020, 397, 125462. [Google Scholar] [CrossRef]
- Yu, L.; Achari, G.; Langford, C.H. Design and Evaluation of a Novel Light-Emitting Diode Photocatalytic Reactor for Water Treatment. J. Environ. Eng. 2018, 144, 04018014. [Google Scholar] [CrossRef]
- Ghosh, J.P.; Achari, G.; Langford, C.H. Design and evaluation of a UV LED Photocatalytic Reactor Using Anodized TiO2 Nanotubes. Water Environ. Res. 2016, 88, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.D.; Nguyen, D.Q.; Do, P.T.; Tran, U.N.P. Kinetics of photocatalytic degradation of organic compounds: A mini-review and new approach. RSC Adv. 2023, 13, 16915–16925. [Google Scholar] [CrossRef]
- Chaki Borrás, M.; Sluyter, R.; Barker, P.J.; Konstantinov, K.; Bakand, S. Y2O3 decorated TiO2 nanoparticles: Enhanced UV attenuation and suppressed photocatalytic activity with promise for cosmetic and sunscreen applications. J. Photochem. Photobiol. B Biol. 2020, 207, 111883. [Google Scholar] [CrossRef] [PubMed]
- Boga, B.; Székely, I.; Pap, Z.; Baia, L.; Baia, M. Detailed Spectroscopic and Structural Analysis of TiO2/WO3 Composite Semiconductors. J. Spectrosc. 2018, 2018, 6260458. [Google Scholar] [CrossRef]
- Ahamed, S.T.; Ghosh, A.; Show, B.; Mondal, A. Fabrication of n-TiO2/p-CuO thin-film heterojunction for efficient photocatalytic degradation of toxic organic dyes and reduction of metal ions in solution. J. Mater. Sci. Mater. Electron. 2020, 31, 16616–16633. [Google Scholar] [CrossRef]
- Schnabel, T.; Dutschke, M.; Mehling, S.; Springer, C.A.; Londong, J. Investigation of Factors Influencing the Photocatalytic Degradation of Pharmaceuticals, a Novel Investigation on Supported Catalysts Using UV-A LEDs as Light Source. ChemistrySelect 2022, 7, e202103759. [Google Scholar] [CrossRef]
- Daneshvar, N.; Rasoulifard, M.H.; Khataee, A.R.; Hosseinzadeh, F. Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J. Hazard. Mater. 2007, 143, 95–101. [Google Scholar] [CrossRef]
- Velegraki, T.; Poulios, I.; Charalabaki, M.; Kalogerakis, N.; Samaras, P.; Mantzavinos, D. Photocatalytic and sonolytic oxidation of acid orange 7 in aqueous solution. Appl. Catal. B Environ. 2006, 62, 159–168. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Retamoso, C.; Escalona, N.; González, M.; Barrientos, L.; Allende-González, P.; Stancovich, S.; Serpell, R.; Fierro, J.L.G.; Lopez, M. Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. J. Photochem. Photobiol. A Chem. 2019, 378, 136–141. [Google Scholar] [CrossRef]
Ga2O3 | Y2O3 | |
---|---|---|
Precursors | 2.6 g of 99.9% Ga(NO3)3·nH2O (Sigma-Aldrich) 100 mL Deionized Water NH4OH | 99.9% Y(C2H3O2)3·4H2O (Alfa Aesar, Haverhill, MA, USA) 12 mL Deionized Water (0.3 M) 96% NaOH |
Reached pH | 9 | 13 |
Method synthesis | Precipitation (95 °C/5 h) Calcination (1000 °C/3 h) | Hydrothermal (200 °C/2 h and then 180 °C/5 h) Calcination (1000 °C/3 h) |
Treatment of recovered product | Filtration Washing with DW Drying 80 °C/5 h | Centrifugation 6000 rpm/15 min Washing with DW Drying 80 °C/10 h |
Product before calcination | GaOOH nanorods | Y(OH)3 |
Final product | β-Ga2O3 nanorods | Y2O3 nanorods |
Oxide Phase | Slope (µA/W/cm2)/(W/m2) | R2 |
---|---|---|
TiO2 | 0.361 | 0.999 |
TiO2/WO3 | 0.366 | 0.999 |
TiO2/Y2O3 | 0.128 | 0.998 |
TiO2/Ga2O3 | 0.103 | 0.996 |
Catalyst | Pollutant | k [1/min] | Half-Time [min] | R2 [-] |
---|---|---|---|---|
TiO2 | DICLO | 0.000918 | 755.0 | 0.993 |
TiO2/Y2O3 | DICLO | 0.003224 | 214.9 | 0.980 |
TiO2 | KETO | 0.002941 | 235.6 | 0.845 |
TiO2/Y2O3 | KETO | 0.001987 | 348.7 | 0.965 |
TiO2/Ga2O3 | KETO | 0.002235 | 310.0 | 0.883 |
TiO2/WO3 | KETO | 0.001740 | 398.2 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiloufi, M.; Schnabel, T.; Mehling, S.; Kouass, S. Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO2 as a Fixed Film. Materials 2024, 17, 4671. https://doi.org/10.3390/ma17184671
Ghiloufi M, Schnabel T, Mehling S, Kouass S. Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO2 as a Fixed Film. Materials. 2024; 17(18):4671. https://doi.org/10.3390/ma17184671
Chicago/Turabian StyleGhiloufi, Mabrouka, Tobias Schnabel, Simon Mehling, and Salah Kouass. 2024. "Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO2 as a Fixed Film" Materials 17, no. 18: 4671. https://doi.org/10.3390/ma17184671
APA StyleGhiloufi, M., Schnabel, T., Mehling, S., & Kouass, S. (2024). Investigation of the Effect of Oxide Additives on the Band Gap and Photocatalytic Efficiency of TiO2 as a Fixed Film. Materials, 17(18), 4671. https://doi.org/10.3390/ma17184671