Enhanced Cycling Performance of Spinel LiNi0.5Mn1.5O4 Cathodes through Mg-Mn Hetero-Valent Doping via Microwave Sol-Gel Method
Abstract
:1. Introduction
2. Experimental Section
2.1. Material Synthesis
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structure and Morphology
3.2. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manthiram, A.; Chemelewski, K.; Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 2014, 7, 1339–1350. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2009, 22, 587–603. [Google Scholar] [CrossRef]
- Yi, T.-F.; Mei, J.; Zhu, Y.-R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J. Power Sources 2016, 316, 85–105. [Google Scholar] [CrossRef]
- Xu, X.; Deng, S.; Wang, H.; Liu, J.; Yan, H. Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery. Nanomicro. Lett. 2017, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Trottier, W.Z.J.; Gagnon, C.; Barray, F.; Guerfi, A.; Mauger, A.; Groult, H.; Julien, C.M.; Goodenough, J.B.; Zaghib, K. Spinel materials for high-voltage cathodes in Li-ion batteries. Rsc. Adv. 2014, 4, 154–167. [Google Scholar] [CrossRef]
- Kim, J.H.; Pieczonka, N.P.; Yang, L. Challenges and approaches for high-voltage spinel lithium-ion batteries. Chemphyschem 2014, 15, 1940–1954. [Google Scholar] [CrossRef]
- Liang, G.; Peterson, V.K.; See, K.W.; Guo, Z.; Pang, W.K. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: Current achievements and future prospects. J. Mater. Chem. A 2020, 8, 15373–15398. [Google Scholar] [CrossRef]
- Ma, J.; Hu, P.; Cui, G.; Chen, L. Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chem. Mater. 2016, 28, 3578–3606. [Google Scholar] [CrossRef]
- Norberg, N.S.; Lux, S.F.; Kostecki, R. Interfacial side-reactions at a LiNi0.5Mn1.5O4 electrode in organic carbonate-based electrolytes. Electrochem. Commun. 2013, 34, 29–32. [Google Scholar] [CrossRef]
- Matsui, M.; Dokko, K.; Kanamura, K. Surface Layer Formation and Stripping Process on LiMn2O4 and LiNi1/2Mn3/2O4 Thin Film Electrodes. J. Electrochem. Soc. 2010, 157, A121. [Google Scholar]
- Wang, J.; Yao, S.; Lin, W.; Wu, B.; He, X.; Li, J.; Zhao, J. Improving the electrochemical properties of high-voltage lithium nickel manganese oxide by surface coating with vanadium oxides for lithium ion batteries. J. Power Sources 2015, 280, 114–124. [Google Scholar] [CrossRef]
- Lin, M.; Ben, L.; Sun, Y.; Wang, H.; Yang, Z.; Gu, L.; Yu, X.; Yang, X.-Q.; Zhao, H.; Yu, R.; et al. Insight into the Atomic Structure of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material in the First Cycle. Chem. Mater. 2014, 27, 292–303. [Google Scholar] [CrossRef]
- Ryoo, H.; Bae, H.B.; Kim, Y.M.; Kim, J.G.; Lee, S.; Chung, S.Y. Frenkel-Defect-Mediated Chemical Ordering Transition in a Li–Mn–Ni Spinel Oxide. Angew. Chem. Int. Ed. 2015, 54, 7963–7967. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Olsson, E.; Zou, J.; Wu, Z.; Li, J.; Lu, C.Z.; D’Angelo, A.M.; Johannessen, B.; Thomsen, L.; Cowie, B.; et al. Introducing 4s–2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202201969. [Google Scholar] [CrossRef]
- Wang, J.; Nie, P.; Xu, G.; Jiang, J.; Wu, Y.; Fu, R.; Dou, H.; Zhang, X. High-Voltage LiNi0.45Cr0.1Mn1.45O4 Cathode with Superlong Cycle Performance for Wide Temperature Lithium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1704808. [Google Scholar] [CrossRef]
- Tian, T.; Lu, L.L.; Yin, Y.C.; Tan, Y.H.; Zhang, T.W.; Li, F.; Yao, H.B. Trace Doping of Multiple Elements Enables Stable Cycling of High Areal Capacity LiNi0.5Mn1.5O4 Cathode. Small 2022, 18, e2106898. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Dong, W.; Shi, Z.; Hong, J. Phase Transition Dominated High-Rate Performances of the High Voltage LiNi0.5Mn1.5O4 Cathode: Improvement on Structure Evolution and Ionic Diffusivity by Cr Doping. J. Phys. Chem. C 2018, 122, 25229–25236. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, Y.-S.; Xia, Y.; Deng, L.; Que, L.-F.; Yu, F.-D.; Wang, Z.-B. Suppressed phase separation in spinel LiNi0.5Mn1.5O4 cathode via interstitial sites modulation. Nano Energy 2022, 91, 106636. [Google Scholar] [CrossRef]
- Liang, G.; Wu, Z.; Didier, C.; Zhang, W.; Cuan, J.; Li, B.; Ko, K.Y.; Hung, P.Y.; Lu, C.Z.; Chen, Y.; et al. A Long Cycle-Life High-Voltage Spinel Lithium-Ion Battery Electrode Achieved by Site-Selective Doping. Angew Chem. Int. Ed. Engl. 2020, 59, 10594–10602. [Google Scholar] [CrossRef]
- Shiu, J.-J.; Pang, W.K.; Wu, S.-H. Preparation and characterization of spinel LiNi0.5−xMgxMn1.5O4 cathode materials via spray pyrolysis method. J. Power Sources 2013, 244, 35–42. [Google Scholar] [CrossRef]
- Xiao, Z.-H.; Cui, Q.-Q.; Li, X.-L.; Wang, H.-L.; Zhou, Q. Ionothermal synthesis for Mg-doped LiMn1.5Ni0.5O4 spinel with structural stability and high-rate performance. Ionics 2014, 21, 1261–1267. [Google Scholar] [CrossRef]
- Nayaka, G.P.; Pai, K.V.; Manjanna, J.; Anjaneya, K.C.; Periasamy, P.; Tripathi, V.S. Structural, electrical and electrochemical studies of LiNi0.4M0.1Mn1.5O4 (M = Co, Mg) solid solutions for lithium ion battery. Bull. Mater. Sci. 2016, 39, 1279–1284. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Sun, L.; Wang, L. A new strategy to diminish the 4V voltage plateau of LiNi0.5Mn1.5O4. Mater. Res. Bull. 2013, 48, 4960–4962. [Google Scholar] [CrossRef]
- Liu, G.; Sun, H.; Kong, X.; Li, Y.; Wang, B. Facile synthesis of high performance Lini0.5Mn1.4Mg0.1O4 and Lini0.5Mn1.4Al0.1O4 by a low temperature solution combustion synthesis method. Int. J. Electrochem. Sci. 2015, 10, 6651–6662. [Google Scholar] [CrossRef]
- Minakshi, M.; Singh, P.; Ralph, D.; Appadoo, D.; Blackford, M.; Ionescu, M. Structural characteristics of olivine Li(Mg0.5Ni0.5)PO4 via TEM analysis. Ionics 2012, 18, 583–590. [Google Scholar] [CrossRef]
- Pasero, D.; Reeves, N.; Pralong, V.; West, A.R. Oxygen nonstoichiometry and phase transitions in LiMn1.5Ni0.54−δ. J. Electrochem. Soc. 2008, 155, A282. [Google Scholar] [CrossRef]
- Kunduraci, M.; Al-Sharab, J.F.; Amatucci, G.G. High-Power Nanostructured LiMn2−xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials: Electrochemical Impact of Electronic Conductivity and Morphology. Chem. Mater. 2006, 18, 3585–3592. [Google Scholar] [CrossRef]
- Yang, T.; Sun, K.; Lei, Z.; Zhang, N.; Lang, Y. The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery. J. Alloys Compd. 2010, 502, 215–219. [Google Scholar] [CrossRef]
- Kunduraci, M.; Amatucci, G.G. Synthesis and Characterization of Nanostructured 4.7 V LixMn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries. J. Electrochem. Soc. 2006, 153, A1345. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Huang, X. Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping. Comput. Mater. Sci. 2016, 115, 109–116. [Google Scholar] [CrossRef]
- Sun, H.; Hu, A.; Spence, S.; Kuai, C.; Hou, D.; Mu, L.; Liu, J.; Li, L.; Sun, C.; Sainio, S. Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of High-Voltage LiNi0.5Mn1.5O4 Spinel Cathode Materials. Adv. Funct. Mater. 2022, 32, 2112279. [Google Scholar] [CrossRef]
- Tariq, H.A.; Abraham, J.J.; Quddus, A.A.; AlQaradawi, S.; Kahraman, R.; Shakoor, R.A. Graphene wrapped Y2O3 coated LiNi0.5Mn1.5O4 quasi-spheres as novel cathode materials for lithium-ion batteries. J. Mater. Res. Technol. 2021, 14, 1377–1389. [Google Scholar] [CrossRef]
- Liu, H.; Kloepsch, R.; Wang, J.; Winter, M.; Li, J. Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultralong-life lithium-ion battery: Positive (100) surfaces in high-voltage spinel system. J. Power Sources 2015, 300, 430–437. [Google Scholar] [CrossRef]
- Stüble, P.; Geßwein, H.; Indris, S.; Müller, M.; Binder, J.R. On the electrochemical properties of the Fe–Ti doped LNMO material LiNi0.5Mn1.37Fe0.1Ti0.03O3.95. J. Mater. Chem. A 2022, 10, 9010–9024. [Google Scholar] [CrossRef]
- Alva, G.; Kim, C.; Yi, T.; Cook, J.B.; Xu, L.; Nolis, G.M.; Cabana, J. Surface Chemistry Consequences of Mg-Based Coatings on LiNi0.5Mn1.5O4 Electrode Materials upon Operation at High Voltage. J. Phys. Chem. C 2014, 118, 10596–10605. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Zhang, X.; Zhao, C.; Xu, Y. Microwave synthesis of LiMg0.05Mn1.95O4 and electrochemical performance at elevated temperature for lithium-ion batteries. J. Solid State Electrochem. 2013, 18, 569–575. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Zhang, X.; Zhou, D.; Qi, X.; Qiu, B.; Fang, J.; Kloepsch, R.; Schumacher, G.; Liu, Z.; et al. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. ACS Appl. Mater. Interfaces 2016, 8, 4661–4675. [Google Scholar] [CrossRef]
- Jiang, C.; Tang, Z.; Wang, S.; Zhang, Z. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries. J. Power Sources 2017, 357, 144–148. [Google Scholar] [CrossRef]
- Maiti, S.; Sclar, H.; Wu, X.; Grinblat, J.; Talianker, M.; Kondrakov, A.; Markovsky, B.; Aurbach, D. Zeolites as multifunctional additives stabilize high-voltage Li-batteries based on LiNi0.5Mn1.5O4 cathodes, mechanistic studies. Energy Storage Mater. 2023, 56, 25–39. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, D.; Lou, X. LiNi0.5Mn1.5O4 Hollow Structures as High-Performance Cathodes for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2012, 51, 239–241. [Google Scholar] [CrossRef]
- Kang, B.; Kim, H.; Kim, M.; Kim, D.; Cho, M. Unraveling divalent pillar effects for the prolonged cycling of high-energy-density cathodes. J. Mater. Chem. A 2021, 9, 26820–26828. [Google Scholar] [CrossRef]
- Vasileiadis, A.; Carlsen, B.; de Klerk, N.J.J.; Wagemaker, M. Ab Initio Study of Sodium Insertion in the λ−Mn2O4 and Dis/Ordered λ−Mn1.5Ni0.5O4 Spinels. Chem. Mater. 2018, 30, 6646–6659. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, M.; Dong, X.; Dai, X.; Huang, B.; Shen, M.; Xu, T.; Liu, Q. Enhanced Cycling Performance of Spinel LiNi0.5Mn1.5O4 Cathodes through Mg-Mn Hetero-Valent Doping via Microwave Sol-Gel Method. Materials 2024, 17, 4714. https://doi.org/10.3390/ma17194714
Su M, Dong X, Dai X, Huang B, Shen M, Xu T, Liu Q. Enhanced Cycling Performance of Spinel LiNi0.5Mn1.5O4 Cathodes through Mg-Mn Hetero-Valent Doping via Microwave Sol-Gel Method. Materials. 2024; 17(19):4714. https://doi.org/10.3390/ma17194714
Chicago/Turabian StyleSu, Mingyin, Xiongwen Dong, Xinyi Dai, Bingbing Huang, Min Shen, Teng Xu, and Qibin Liu. 2024. "Enhanced Cycling Performance of Spinel LiNi0.5Mn1.5O4 Cathodes through Mg-Mn Hetero-Valent Doping via Microwave Sol-Gel Method" Materials 17, no. 19: 4714. https://doi.org/10.3390/ma17194714
APA StyleSu, M., Dong, X., Dai, X., Huang, B., Shen, M., Xu, T., & Liu, Q. (2024). Enhanced Cycling Performance of Spinel LiNi0.5Mn1.5O4 Cathodes through Mg-Mn Hetero-Valent Doping via Microwave Sol-Gel Method. Materials, 17(19), 4714. https://doi.org/10.3390/ma17194714