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Abstract: Waste cooking oil (WCO) recycled asphalt is facing issues regarding insufficient thermal
oxidation stability and aging resistance. In this research, glycerol esterification was adopted to
pretreat WCO, and the consequences of this treatment on the aging resistance and thermal stability of
WCO were analyzed. The impacts of varying levels of esterification of WCO on the high-temperature,
low-temperature performances, fatigue properties, and aging resistance of recycled asphalt were
investigated. Furthermore, the mechanisms of regeneration and the anti-aging of deeply esterified
WCO recycled asphalt were revealed by Fourier transform infrared spectroscopy (FTIR) and gel per-
meation chromatography (GPC) tests. The results indicated that variations in the physical properties
of WCO during the aging process were reduced, and its aging resistance was improved following
glycerol esterification therapy. The initial thermal decomposition temperature was increased by
approximately 115 ◦C, which resulted in the enhancement of thermal stability significantly. Recycled
asphalt obtained from deeply esterified WCO exhibited superior high-temperature, low-temperature
performances, and fatigue properties. Moreover, the thermal oxidation stability and aging resistance
of recycled asphalt with deep-esterified WCO could be promoted by reducing the oxidation and
volatilization of light components during the aging process, with the complex modulus ageing
resistance index decreasing by 13.27% and the phase angle ageing resistance index increasing by
14.71%.

Keywords: recycled asphalt; waste cooking oil; glycerol esterification; thermo-oxidative stability;
anti-aging properties

1. Introduction

According to the statistical bulletin on the development of the transportation industry
published by the Ministry of Transport of China in 2022, 99.9% of China’s gross roadway
miles, which amount to over 5.3 million kilometers, are currently undergoing maintenance.
Annually, approximately 300 million tons of reclaimed asphalt pavement (RAP) materials
are generated during medium and major repair projects [1–3]. However, it is reported that
less than 30% of pavement materials are recycled, which is significantly lower than the
over 80% recycling rates prevalent in developed countries, resulting in enormous resource
waste and ecological harm [4,5]. Consequently, it is acknowledged that recycling RAP on
an extensive scale employing recycling technologies is an essential method to accomplish
green construction in the highway transportation sector [6,7], motivate synergistic effects
in reducing pollution and carbon emissions, as well as enable a comprehensive green
transformation of social and economic development [8–12].

Existing research typically focuses on rejuvenating aging asphalt in RAP with low
molecular weight rejuvenators to achieve objectives, including minimizing resource con-
sumption, saving construction costs, and diminishing carbon emissions [13,14]. Based
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on research into the rheological properties and recycling mechanisms of aged asphalt, it
has been discovered that the addition of light oils can enhance the relative contents of
saturated and aromatic fractions in aged asphalt, adjust the colloidal structure, as well as
restore the crack resistance, water damage resistance, and durability of the aged asphalt,
facilitating it to satisfy road performance requirements [15,16]. Asphalt rejuvenators are
currently classified into two main categories: petroleum-based and bio-based. However,
petroleum-based rejuvenators (including aromatic oil extracts and naphthenic oils) possess
deprived high-temperature stability, resulting in insufficient anti-aging performance of the
recycled asphalt, as well as high material costs and non-renewability, which contradict the
concepts of sustainability [17]. Consequently, the pursuit of a low-cost, environmentally
friendly, and significantly effective asphalt rejuvenator is considered crucial for achieving
the rational and efficient recycling of asphalt [18]. It has been estimated that the amount of
WCO formed globally each year is enormous, with China alone producing up to 20 million
tons of WCO each year, whereinthe major components of WCO are comparable to the
lightweight components lost during the aging process of asphalt [19–21]. Moreover, com-
pared to petroleum-based rejuvenators, a lower dosage of WCO is adequate to convey aged
asphalt’s penetration, softening point, and viscosity back up to virgin asphalt levels [22–25].
The dual waste utilization of RAP and WCO has been successfully established through
the development and promotion of WCO recycled asphalt, offering significant benefits in
terms of the economy, environment, and resources.

Nonetheless, the intricate origins of WCO have resulted in problems, including uneven
quality and erratic rejuvenator effectiveness [26,27]. WCO rejuvenators with high acid
values include substantial levels of free unsaturated fatty acids, which are susceptible to
volatilization and oxidation, hastening the aging process and performance degradation
of recycled asphalt [28,29]. As of this moment, dehydration and simple impurity removal
are the most prevalent methods to handle WCO [30], but the impact that fluctuations in
WCO acid values have on the rejuvenator and how effectively it performs with recycled
asphalt have not been given sufficient attention. Thus, in order to enhance the durability
of recycled asphalt, it is imperative to investigate effective pretreatment techniques for
WCO rejuvenators.

In this study, WCO has been pre-treated using glycerol esterification techniques, and
the impacts of various esterification levels on the properties of rejuvenated asphalt have
been examined, along with the performance outcomes of esterified WCO rejuvenators in
terms of thermal oxidative stability. Additionally, the mechanism of action of esterified
WCO rejuvenators has been explored through microscopic experiments, revealing how
the performance of aged asphalt could be improved. This research not only establishes a
relatively reliable method for optimizing the performance of WCO rejuvenator but also
provides a theoretical basis for the widespread application of WCO recycled asphalt.

2. Materials and Methods
2.1. Materials
2.1.1. Base Asphalt

The base asphalt is 70# A-grade road petroleum asphalt from Hunan Baoli Asphalt
Co., Ltd. (Changsha, China), and the specific performance indicators are shown in Table 1.

Table 1. Performance indexes of matrix asphalt.

Technical Indexes Results Test Methods

Penetration at 25 ◦C (0.1 mm) 65 ASTM D5 [31]
Softening point (◦C) 50.0 ASTM D36 [32]

Ductility at 15 ◦C (cm) >100 ASTM D113 [33]
Viscosity at 135 ◦C (Pa·s) 611.9 ASTM D4402 [34]

Flash point (◦C) 290 ASTM D92 [35]
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2.1.2. Waste Cooking Oil

The waste cooking oil (WCO) provided by a waste oil recovery company in a certain
region of Shandong is dark brown, with an average molecular weight of 890. Before the
experiment, contaminants were removed using a simple filtration method, eliminating the
moisture and impurity content of the WCO to mitigate more than 1%. The results of its
conventional physical attributes are displayed in Table 2.

Table 2. Conventional physical attributes of WCO.

Technical Indexes Results Test Methods

Density at 15 ◦C (g/cm3) 0.91 ASTM D1298 [36]
Viscosity at 60 ◦C (mPa·s) 19 ASTM D445 [37]
Acid value (mgKOH/g) 65.28 ASTM D974 [38]
Iodine value (g/100 g) 131.13 ASTM D5558 [39]

Color blackish brown -

2.2. Test Methods
2.2.1. Pre-Treatment of WCO

In this study, WCO was pretreated using the glycerol esterification method, and the
optimum test conditions were 240 ◦C, 60 min, 500 r/min, and an oil–alcohol molar ratio of
1.1:1. The glycerol esterification reaction test equipment is depicted in Figure 1. Nitrogen
gas was released through a wash bottle holding the organic solvent after it passed from the
vent through the liquid’s surface during the test. In this period, water vapor was produced,
which was then condensed through a condensation tube and gathered in a collection device.
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2.2.2. Preparation of Aged Asphalt

Following ASTM D2872 [40], 35 g ± 0.5 g of virgin asphalt (VA) was aged for 85 min
at 163 ◦C in a rotating thin-film oven (RTFOT) to generate short-term aged asphalt (SA).
Subsequently, under ASTM D6521 [41], the collected short-term aged asphalt was placed in
a pressure aging vessel (PAV) and aged for 20 h under conditions of 100 ◦C and 2.1 MPa
pressure to obtain long-term aged asphalt (LA). The performance indicators of the virgin
asphalt and the asphalt at different aging levels are shown in Table 3.
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Table 3. Performance indicators of the virgin asphalt and the asphalt at different aging levels.

Type of Asphalt Penetration
(25 ◦C, 100 g, 5 s)/(0.1 mm)

Softening Point
(Ring and Ball Method)/◦C

Ductility
(15 ◦C, 5 cm/min)/cm

Viscosity
(mPa·s)

VA 57.5 50 >100 611.9
SA 49.4 55 7 826.4
LA 21.4 63 3.2 1130

2.2.3. Preparation of Recycled Asphalt

In order to investigate the impact of esterified WCO on the performance of recycled as-
phalt, three types of WCO were distinguished according to varying degrees of pretreatment:
original WCO that was not treated (O-WCO), moderately esterified WCO (M-WCO) with a
glycerol-to-fatty acid molar ratio of 0.5:1, and WCO that was deeply esterified (D-WCO),
which satisfied the optimum pretreatment conditions. Referring to the optimal dosage
range for restoring aged asphalt performance, these three rejuvenators with different de-
grees of esterification were added at a fixed dosage of 6% to 300g of long-term aged asphalt
in molten form. Utilizing a high-speed shear mixer set to 2000 r/min for 30 min, the
mixture was sheared to produce recycled asphalt, with the heating jacket maintained at a
temperature of 135 ◦C ± 5 ◦C. Based on the esterification degree of the added rejuvenators,
the recycled asphalts were named O-RA, M-RA and D-RA [42]. The acid value ranges
of different degrees of esterified WCO rejuvenators and the corresponding names of the
recycled asphalts are shown in Table 4.

Table 4. Names of rejuvenators and recycled asphalt with different acid value levels.

Name of Rejuvenator Acid Value of WCO (mg KOH/g) Name of Recycled Asphalt

O-WCO 60 ± 2 O-RA
M-WCO 30 ± 2 M-RA
D-WCO 4 ± 2 D-RA

2.2.4. Determination of the Acid Value of WCO

According to ASTM D974, the hot ethanol technique was utilized to determine the
acid value of WCO under various reaction circumstances. To neutralize free fatty acids, a
0.1 mol/L sodium hydroxide solution was titrated in a moderately boiling ethanol–WCO
solution. The volume of the standard solution needed to reach the titration’s endpoint was
measured to determine the acid value.

2.2.5. Viscosity Measurement of WCO

A Brookfield rotational viscometer from the USA was used to determine the 60 ◦C
rotational viscosity of the same mass (50 g ± 0.5 g) of O-WCO and D-WCO placed in a
film oven at 163 ◦C after 2, 4, 6, and 8 h of thermo-oxidative aging treatment, and then the
differences in the viscosity changes of the different rejuvenators were analyzed.

2.2.6. Thermal Decomposition Test

The relationship between the thermal decomposition of WCO and temperature under
a nitrogen atmosphere were obtained by thermogravimetry–derivative thermogravimetry
(TG-DTG) simultaneous analyzer to determine the effect of glycerol esterification pretreat-
ment on the thermo-oxidative stability of regeneration. We aimed for 800 ◦C as the target
temperature, and we set the rate of temperature increase to 10 ◦C/min.

2.2.7. Rheological Properties Test of Asphalt

The high-temperature stability, low-temperature cracking resistance, fatigue perfor-
mance, and resistance to thermal-oxidative aging of recycled asphalt made from WCO at
varying degrees of esterification were all assessed in this study through an Anton Paar
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MCR 302 rheometer via frequency scanning (temperature: 5, 10, 15, 28, 40, and 52 ◦C;
frequency: 0.016 Hz~16 Hz), temperature scanning (temperature: 43 ◦C~82 ◦C; angular
frequency: 10 rad/s; strain level: 6%), linear amplitude scans (temperature: 25 ◦C; strain
level: 0.1%~30%), and multiple stress creep recovery tests (1. Stresses: 0.1 kPa, cyclicality:
20; 2. Stresses: 3.2 kPa, cyclicality: 10).

2.2.8. Microstructure Testing of Asphalt

The functional group properties of WCO, aged asphalt, and WCO-recycled asphalt
were examined using Fourier transform infrared spectroscopy (Nicolet iS50) from Thermo
Fisher Scientific Inc., Carlsbad, CA, USA. with the wavelength range of 500 cm−1 to
4000 cm−1, which offers a qualitative analysis of the evolution of the microscopic structure
during the recycling and aging processes of asphalt.

Gel permeation chromatography (PL-GPC50) was used to investigate the effects of
the WCO rejuvenator on the components of aged asphalt, the aging mechanism of asphalt
via molecular weight distribution, and the anti-aging performance of deeply esterified
WCO-recycled asphalt. Tetrahydrofuran (THF) at a concentration of 2 mg/mL was chosen
as the organic solvent. The elution procedure took place over 20 min, with a temperature
control of 40 ◦C.

3. Results
3.1. Anti-Aging Properties of WCO Regenerations with Different Degrees of Esterification

The fluctuation patterns of the two WCOs’ three physical properties (mass, viscosity,
and acid value) against the thermo-oxidative aging period are shown in Figures 2–4, which
show how the esterification treatment affects the WCO regenerator’s performance.
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3.1.1. Effect of Thermo-Oxidative Aging on Regenerants’ Acid Value

The initial acid value of D-WCO was almost 96% lower than that of O-WCO, as
evidenced by the data in Figure 2, suggesting that glycerol esterification significantly
decreased the acid value of WCO. A modest increase in the acid value of D-WCO was seen
with an increase in the thermo-oxidative aging duration. This could be attributed to the
conversion of readily oxidizable functional groups in the oil to carboxyl groups during the
thermo-oxidative aging process [43]. However, despite the increase in acid value, it was
maintained at a low level compared to O-WCO, showing excellent performance stability.

The initial acid value for O-WCO was high, but as the duration of thermal oxygen
treatment increased, it showed a slightly decreasing tendency. This may be due to the
fact that it contained high levels of thermally less stable free fatty acids that decompose at
high temperatures, and the amount of decomposition exceeds the amount of unsaturated
fatty acids produced during the oxidation process, thus slightly lowering the acid value.
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When consumed to a certain extent, the acid value slowly increased as the oxidation
process proceeded.

3.1.2. Effect of Thermo-Oxidative Aging on Regenerants’ Rate of Mass Loss

The mass loss of D-WCO and O-WCO during the thermal oxidative aging process
are shown in Figure 3. According to the research, both oil samples had mass changes
during thermal-oxidative aging; however, O-WCO shows a significantly higher mass loss
rate than D-WCO. This indicates that during the glycerol esterification reaction, some of
the compounds such as alcohols, aldehydes, ketones and heterocycles, which are readily
volatile and decomposable under thermal oxidative conditions, were consumed, leading to
a more stable performance of the pre-treated oil and effectively improving the rejuvenator’s
resistance to thermal–oxidative aging.

3.1.3. Effect of Thermo-Oxidative Aging on Regenerants’ Viscosity

Figure 4 illustrates how the viscosity of both oil samples increased as the thermal oxida-
tive aging period increased. This phenomenon was primarily attributed to the presence of
a large number of unsaturated fatty acids (such as linoleic acid and alpha-linolenic acid) in
the regenerants, whose α-position carbon–hydrogen bonds are easily attacked, promoting
free radical chain reactions that generate oxidation and polymerization products, which
caused a significant increase in viscosity. When exposed to thermal–oxidative conditions,
D-WCO exhibited a more modest increase in viscosity than O-WCO, suggesting that the
esterification reaction can effectively postpone the aging process of the WCO rejuvenator.

3.2. Pyrolysis Characteristics of WCO Regenerants with Different Degrees of Esterification

Good pyrolysis characteristics help ensure the stability of regenerant performance,
as regenerants are prepared and used under high temperature conditions. The present
investigation employed the thermogravimetric analysis (TGA) technique to examine the
regenerant’s thermal decomposition behavior. Additionally, thermogravimetric (TG) curves
and derivative thermogravimetry (DTG) curves were plotted to visualize the variations
in the WCO mass retention and weight loss rate with temperature during the warming
process (Figure 5).

The thermal decomposition of WCO could be separated into three major stages, as
evidenced by the trends in the mass retention and mass loss rates of the regenerant. The first
stage (<350 ◦C) was the initial reaction phase, where the mass loss of the rejuvenator was
primarily due to the volatilization of lighter components and small molecular oils in WCO
under high-temperature conditions, resulting in a low weight loss rate. The second stage
(350 ◦C–450 ◦C) was the reaction phase, in which the main components of the rejuvenator
began to combust and decompose, reaching the highest weight loss rate. The third stage
(>450 ◦C) was the end of the reaction phase; during this stage, both the mass retention and
weight loss rate curves of the rejuvenator exhibited a more stable trend, indicating that the
main components of the rejuvenator were largely burnt out.

The main differences between O-WCO and D-WCO’s thermal breakdown characteris-
tics were evident in the first stage, with the second and third stages showing significant
similarities. O-WCO began to decompose at 235 ◦C, whereas D-WCO’s initial decompo-
sition temperature was boosted to more than 340 ◦C, representing a 48.81% increase. In
comparison to D-WCO, the DTG curve of O-WCO had one small mass loss rate peak in the
first stage, which indicates that the glycerol esterification almost completely consumed the
components of WCO that were susceptible to volatilization under pyrolysis conditions and
effectively improved the thermal stability of the WCO regenerant below 350 ◦C.
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Figure 5. TG and DTG curves of WCO at varying esterification degrees.

Based on kinetic equations and the Coats–Redfern method, a kinetic model of the
thermal decomposition reaction of two oil samples was created. Kinetic parameters, such
as the activation energy E and fingering front factor A, were then calculated to serve as a
reference for the quantitative investigation of the regenerant’s thermal stability [44]. The
outcomes are displayed in Table 5.

Table 5. Reaction mechanism model fitting and kinetic parameterization of regenerant’s thermal
decomposition process under nitrogen atmosphere.

Sample
Name

Reaction
Model Simultaneous Equations Correlation

Coefficient E A ∆H ∆G ∆S

D-WCO D1 y = −3455.9x – 4.9965 0.9611 28,732 234 25,432 108,906 −210
O-WCO F1 y = −601.9x – 12.071 0.9907 5004 0.0344 1577 118,599 −283

From the perspective of activation energy, D-WCO exhibited a higher activation energy
E, indicating that the energy barrier for the thermal decomposition reaction was greater,
making the decomposition process less likely to occur compared to O-WCO. Considering
the change in enthalpy, the enthalpy change value of D-WCO was significantly greater than
that of the untreated oil, suggesting that a larger amount of reaction heat was required for
the thermochemical decomposition of WCO after glycerol esterification treatment, which
reinforces the conclusion that the thermal decomposition reactions were less likely to occur.
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This supports the findings of the activation energy analysis and provides more evidence
that the esterification reaction can significantly improve the thermal stability of WCO.

3.3. Performance Analysis of WCO Recycled Asphalt with Different Acid Values
3.3.1. High-Temperature Stability

A multiple stress creep recovery (MSCR) test was applied to investigate the rheological
properties of the recycled asphalts, calculate the stress sensitivity coefficients Rdiff and Jnr-diff
of the various recycled asphalts, and analyze the impact of the esterification degree of waste
cooking oil (WCO) on the high-temperature stability of the recycled asphalt. From Figure 6,
it can be seen that the Rdiff and Jnr-diff values for the three types of recycled asphalts at 64 ◦C
were all higher than those at 58 ◦C, indicating greater viscoelastic changes and higher stress
sensitivity at elevated temperatures; this observation is consistent with the phenomenon
of rutting in asphalt under high-temperature service conditions. Comparing the recycled
asphalt prepared with the same dosage of three different esterification levels of reclaimers,
D-RA showed the lowest stress sensitivity at the same temperature, indicating that the
esterification treatment can improve the high temperature stability performance of this
recycled asphalt.
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3.3.2. Low-Temperature Crack Resistance

The viscoelastic behavior of the asphalts at varying loading frequencies was investi-
gated with the dynamic shear rheometer’s frequency scanning mode. The asphalt storage
modulus G′ and loss modulus G′′ occurring in the high frequency range were determined
utilizing the time–temperature equivalency concept, and the corresponding logarithmic
curves were plotted. When the two lines connect, the cross-modulus and cross-frequency
can be found, allowing for the evaluation of the asphalt material’s crack resistance [45,46], as
illustrated in Figure 7. Higher crossover frequencies were associated with lower asphaltene
content, as the values demonstrated a strong association with asphaltene content [47]. D-RA
had the highest crossover frequency, followed by M-RA and O-RA. This demonstrates
that D-RA has better low-temperature cracking resistance, since it has lighter compo-
nents and less asphaltene. The low-temperature cracking resistance of WCO-recycled
asphalt improved as the esterification degree rose, according to an analysis of the crossover
frequency trend.



Materials 2024, 17, 4725 10 of 16

Materials 2024, 17, x FOR PEER REVIEW 10 of 17 
 

 

asphalt improved as the esterification degree rose, according to an analysis of the crosso-
ver frequency trend. 

  
(a) O-RA (b) M-RA 

 
(c) D-RA 

Figure 7. Cross-modulus and cross-frequency values of WCO recycled asphalts with different es-
terification degrees. 

3.3.3. Fatigue Property 
To assess the fatigue performance levels of the asphalts, the Linear Amplitude Sweep 

(LAS) test method, as outlined in AASHTO TP 101-12, was utilized in this study. Figure 8 
displays the stress–strain curves of the recycled asphalts with varying acid values. When 
compared to the other two rejuvenators, D-RA showed the highest peak shear stress and 
maximum yield stress, indicating greater fatigue performance. Additionally, D-RA exhib-
ited a significantly broader half peak than M-RA and O-RA, which indicates that it has 
the longest fatigue life. In conclusion, the oil components treated with esterification posi-
tively influenced the fatigue performance of recycled asphalt, improving the yield stress 
and extending the fatigue life. 

Figure 7. Cross-modulus and cross-frequency values of WCO recycled asphalts with different
esterification degrees.

3.3.3. Fatigue Property

To assess the fatigue performance levels of the asphalts, the Linear Amplitude Sweep
(LAS) test method, as outlined in AASHTO TP 101-12, was utilized in this study. Figure 8
displays the stress–strain curves of the recycled asphalts with varying acid values. When
compared to the other two rejuvenators, D-RA showed the highest peak shear stress
and maximum yield stress, indicating greater fatigue performance. Additionally, D-RA
exhibited a significantly broader half peak than M-RA and O-RA, which indicates that it
has the longest fatigue life. In conclusion, the oil components treated with esterification
positively influenced the fatigue performance of recycled asphalt, improving the yield
stress and extending the fatigue life.

3.3.4. Thermo-Oxidative Aging Resistance

Following short-term and long-term aging of the base asphalt and three types of
recycled asphalts, temperature scans of the asphalt specimens were conducted. The complex
modulus aging index (CAI) and phase angle aging index (PAI) were then utilized as the
evaluation indexes of the asphalts’ resistance to aging. For clarity of presentation, the short-
and long-term aging resistance indexes of the complex modulus were denoted as R-CAI
and P-CAI, and the short- and long-term aging resistance indexes of the phase angles as
R-PAI and P-PAI. As shown in Figures 9 and 10, the complex modulus values rose, while
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the phase angles decreased as the asphalt aged, so the lower CAI and higher PAI values
indicate better asphalt resistance to aging.

From the perspective of CAI, the R-CAI values of the WCO recycled asphalt with
different degrees of esterification were quite similar and slightly higher than the short-term
anti-aging index values of the base asphalt. This indicates that pretreatment has less of
an effect on recycled asphalt’s resistance to short-term aging. This could be as a result of
less volatilization of the lightweight components under short-term aging circumstances
of 163 ◦C and 85 min, leading to a closer change in the complex modulus. In contrast, the
base asphalt has fewer lightweight components and a smaller molecule oil content than
recycled asphalt, so it showed better resistance to short-term aging. D-RA had the lowest
P-CAI among the three types of recycled asphalt, which was comparable to the base asphalt
according to the trend of P-CAI changes in the recycled asphalt. This suggests that glycerol
esterification treatment can enhance the thermal stability of the reclaimer, maintain the
proportion of lightweight components of the reclaimed asphalt, and improve the resistance
to long-term aging.
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The effect of aging on the percentage of viscoelastic materials in asphalt was repre-
sented by the PAI values. D-RA exhibited the lowest phase angle loss during age under
the identical regenerant dosing conditions, with M-RA and O-RA showing the greatest
phase angle reductions in that order. This indicates that among rejuvenators with varying
degrees of esterification, the deeply esterified rejuvenator has the most significant effect on
slowing down the changes in the proportion of viscoelastic components in asphalt during
the aging process. In addition to providing support for the lightweight components, the
pre-treated rejuvenator also improved the thermo-oxidative stability of the recycled asphalt,
reduced the loss of volatile components during thermo-oxidative aging, and increased the
performance of the recycled asphalt retention capacity.

3.4. Microstructural and Mechanistic Analysis of Recycled Asphalt
3.4.1. Analysis of WCO Recycled Asphalt’s Functional Group Changes and
Antioxidant Properties

The infrared spectral tests were conducted on long-term aged bade asphalt, recycled
asphalt, long0term aged recycled asphalt, and D-WCO using a Fourier transform infrared
spectrometer (Nicolet iS50) with a wavelength test range from 500 cm−1 to 4000 cm−1,

and the infrared spectrogram is shown in Figure 11. LA stands for long-term aged matrix
asphalt, RA denotes recycled asphalt, and RA-P refers to long-term aged recycled asphalt.

Stretching vibration peaks were seen in the spectra for methyl groups (2093 cm−3),
methylene groups (2850 cm−3), and benzene rings (1700 cm−3) for LA, RA, RA-P, and
D-WCO. Furthermore, deformation vibration peaks, which belong to methylene groups,
were visible at 1375 and 1450 cm−1. Additionally, D-WCO showed characteristic peaks at
1740 cm−1, 1375 cm−1, and 1450 cm−1, indicating that the functional group contains an
ester group. When D-WCO was added to LA, a new ester carbonyl (-C=O-) absorption
peak appeared in RA. In the recycled asphalt, besides the classic peaks of D-WCO and
LA, no additional new absorption peaks were identified. This indicates that the physical
co-mingling between WCO and asphalt was predominant and that no chemical reaction
occurred or that the reaction was weak. The strength of the sulfoxide (-S=O-) absorption
peak at 1030 cm−3 in LA decreased from 0.06 to around 0.04 after D-WCO was added, and
then it increased to approximately 0.05 after long-term aging, which was still less than
the initial value. This indicates that the sulfoxide intensity was effectively reduced by
the addition of D-WCO and that the esterification reaction also somewhat increased the
oxidative resistance of the D-WCO recycled asphalt.
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3.4.2. Laws of Molecular Evolution during Aging of Base Asphalt and Recycled Asphalt

The molecular weight and distribution properties of base asphalt, short-term aged
asphalt, long-term aged asphalt, recycled asphalt, and recycled asphalt with varying
degrees of aging were examined in this study using gel chromatography (PL-GPC50). The
relative proportions of molecular weights are displayed in Figure 12.
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By introducing the rejuvenator, the proportion of large molecular weight substances
(LMSs) could be reduced while diluting the aged asphalt according to its rich light compo-
nents, thereby adjusting the molecular weight distribution. In addition to the diluting effect,
the depolymerization of asphalt dimers was also included in the rejuvenator’s mechanism
of action, which further reduces the aggregation of large molecules [48]. By reducing
the proportion of large molecular weight compounds (LMSs) and boosting the amounts
of small molecular weight substances (SMSs) and medium molecular weight molecules
(MMSs), this process efficiently optimizes the molecular composition of aged asphalt. Dur-
ing the aging process of the asphalt materials, the proportion of LMSs increased while the
proportion of SMSs decreased, revealing the impact of aging on the molecular composition
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of the asphalt. This phenomenon could be attributed to the volatilization and oxidation of
light small molecular components during the aging stage, leading to a decrease in small
molecular quantities or their transformation into medium and large molecular weight sub-
stances [49]. Since WCO rejuvenators primarily achieve the regeneration of aged asphalt
by supplementing a large number of light components, the aging process of rejuvenated
asphalt is also marked by the molecular change phenomena.

The number-average molecular weight (Mn), weight-average molecular weight (Mw),
and polydispersity index (PDI) of asphalt at different aging degrees are listed in Table 6. The
volatilization of oil components after aging leads to an increase in the Mn and a decrease in
the Mw of the composite rejuvenated asphalt; however, the data presented show a trend
of increasing Mw, indicating that aggregation occurs between asphaltene molecules after
asphalt aging, resulting in an increase in the large molecular content [50].

Table 6. Effect of aging on molecular weight distribution parameters of base and recycled asphalt.

Molecular Mass Mn (g/mol) Mw (g/mol) PDI (Mw/Mn)

Aging degree Unaged RTFO PAV Unaged RTFO PAV Unaged RTFO PAV
Base asphalt 822 880 894 1704 2230 2570 2.07 2.48 2.59

Recycled asphalt 864 980 991 2111 2463 2647 2.44 2.51 2.67

The polydispersity index (PDI) in the GPC results of asphalt were correlated with
the high-temperature performance outcomes of the asphalts. As the PDI increased, the
high-temperature performance improved [51]. With the increase in the aging degree, the
PDIs of the asphalts also increased, and the PDIs of the recycled asphalts at each stage
were greater than that of the base asphalt. This indicates that following pretreatment, the
WCO eliminated some tiny molecules with poor thermal stability, producing a more stable
and effective light component supplement for the aged asphalt that reduced volatility and
improves the recycled asphalt’s performance at high temperatures.

4. Conclusions

(1) After 2, 4, 6, and 8 h of thermal oxidation aging, the mass, viscosity, and acid value
changes of D-WCO were all smaller than those of O-WCO, and no thermal decompo-
sition happened below 350 ◦C. This suggests that glycerol esterification can effectively
improve WCO rejuvenators’ resistance to thermal–oxidative aging and improve the
stability of their performance.

(2) The rheological performance test results indicate that D-RA is characterized by the
lowest temperature sensitivity, a higher content of light components, superior high-
temperature stability, and low-temperature crack resistance.

(3) Strong evidence for improving the durability of the recycled asphalt pavement is
provided by the esterification treatment, which makes sure that the small molecular
components added to the aged asphalt during the incorporation of WCO are more
stable. This reduces the volatilization and oxidation during the thermal oxidation
aging of the recycled asphalt.
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