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Abstract: The reactivity of nitrogen oxide, NO, as a ligand in complexes with [Fe2-S2] and [Co2-S2]
non-planar rhombic cores is examined by density functional theory (DFT). The cobalt-containing
nitrosyl complexes are less stable than the iron complexes because the Co-S bonds in the [Co2-S2]
core are weakened upon NO coordination. Various positions of NO were examined, including its
binding to sulfur centers. The release of NO molecules can be monitored photochemically. The ability
of NO to form a (NO)2 dimer provides a favorable route of electrochemical reduction, as protonation
significantly stabilizes the dimeric species over the monomers. The quasilinear dimer ONNO, with
trans-orientation of oxygen atoms, gains higher stability under protonation and reduction via proton–
electron transfer. The first two reduction steps lead to an N2O intermediate, whose reduction is
more energy demanding: in the two latter reaction steps the highest energy barrier for Co2S2(CO)6 is
109 kJ mol−1, and for Fe2S2(CO)6, it is 133 kJ mol−1. Again, the presence of favorable light absorption
bands allows for a photochemical route to overcome these energy barriers. All elementary steps are
exothermic, and the final products are molecular nitrogen and water.

Keywords: ab initio methods; DFT; transition metal sulfides; carbonyl complexes; nitrosyls

1. Introduction

Nitrogen oxides are produced mainly by vehicles, but also by coal power stations.
They are harmful to the environment, contributing to acid rain, and pose a danger to human
health [1,2]. There is very limited direct usage of NO and N2O, as is the case with CO2.
NO and N2O find application in medicine, with N2O being used as an anesthetic, while
the nitrosyl ligand in diiron–disulfur [Fe2-S2] and dicobalt–disulfur [Co2-S2] complexes
proved efficient to deliver NO to targeted cells [3–6]. The active core [Fe2-S2] is made
of natural ferredoxin and hydrogenase enzymes, with the coordination of carbonyl and
cyanide ligands [7,8]. Whether coordinated by nitrosyl, or by carbonyl ligands, the [Fe2-S2]
and [Co2-S2] complexes possess photo-reactivity [3–9]. The chemistry and photochemistry
of nitrosyl and carbonyl complexes differ considerably. Up to six carbonyl ligands can
be coordinated to a [Fe2-S2] core, but the maximum coordination number for nitrosyl
groups is four [3,5,9]. The tetra-nitrosyls are less stable than the corresponding carbonyl
complexes, and the cobalt-containing nitrosyls are less stable than their iron analogs [3,5]. In
carbonyl complexes, the release of carbonyl ligands is energy-demanding, while in nitrosyl
complexes, the NO ligands have smaller binding energies and thus are more easily released.
The nitrogen oxide molecule, NO, is more reactive than CO and it forms a dimer, O-N-N-O, in
two conformations: with cis-orientation of oxygen atoms and with trans-orientation [10–12].
The cis-configuration is the global minimum, though it has a strongly lengthened N-N
bond [10]. Experimental studies proved the co-existence of the monomer, NO, and the
dimer, (NO)2, in gaseous nitrogen oxide, [11]. Despite the higher reactivity of NO and
N2O as compared to CO2, in the selective catalytic reduction of NOx, most often carbon
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monoxide (CO), or a hydrocarbon, such as propane, is used as a reducing agent over a broad
range of catalyst materials: transition metal sulfides [13] and transition metal surfaces [14].
Novel approaches with hydrogen as a reducing agent as an eco-friendly alternative were
also proposed [15]. Irrespective of the reducing compound used, N2O always appears as
an intermediate product. The direct decomposition of N2O, without a co-reactant, was
studied on transition metal oxides [16] and transition metal cation-exchanged zeolites, [17].
Transition metal sulfide complexes, with their powerful redox catalyst capacity, boosted by
photo-reactivity, are good candidates for NO electro-photochemical redox catalysts.

The present theoretical study explores the electrocatalytic reduction of NO with the
hexacarbonyl complexes Fe2S2(CO)6 and Co2S2(CO)6, already known as water-splitting
electro-photocatalysts. The dimer (NO)2 is used as a reactant for the reaction of dissociation
to N2 and O2, as it has much higher proton and proton–electron (H+,e−) affinities compared
to the monomer NO. The reaction mechanism is followed by transition state theory. As the
monomer NO is also present in real conditions, the interaction and coordination of NO to
the complexes were also studied. The substitution of CO by NO as a ligand in Fe2S2(CO)6
and Co2S2(CO)6 is examined at different levels of substitution, by one, two, and up to four
NO groups, provided that the resulting complexes remain stable. All possible coordination
sites for NO are considered, including its binding to a sulfur center. The structures and
electron distributions are determined by density functional theory (DFT) and compared
to experimental data, where available. The mixed carbonyl–nitrosyl complexes are also
studied by time-dependent DFT (TD-DFT) to reveal the excitation bands, favoring NO
release by these complexes.

2. Materials and Methods

The calculations in the present study are performed with density functional theory
methods as implemented in Gaussian 16 [18]. Details on basis sets and methods are pre-
sented in Supplementary Materials. In their global minima, Fe2(S2)(CO)6 is diamagnetic,
Co2(S2)(CO)6 is antiferromagnetic, and both complexes have a non-planar core with bridg-
ing disulfur (see Figure S1 in Supplementary Materials). Though the two complexes have
different magnetic structures, the attachment of proton–electron coupling, [H+,e−], during
the path of electrochemical reduction, changes the electronic state of both hexacarbonyl
complexes to a doublet state. The nitrogen oxide dimer (NO)2 exists in two isomeric forms:
the cis form, with a lengthened N-N bond and the two oxygen atoms on one side; and a
quasilinear trans-form, with the two oxygen atoms on different sides of the N-N bond (see
Table 1 and Figure S2 in Supplementary Materials). The nitrogen oxide molecule attaches a
proton at the N-center, while in N2O, the protons may be attached at both ends. N2O has a
higher proton affinity than NO, and the preferred position for protonation is the oxygen
atom. The attachment of a proton–electron couple to N2O, however, leads to hydroxyl
group dissociation even without the presence of a catalyst. The NO dimer, (NO)2, has a
much higher proton affinity and proton–electron affinity, as compared to all other NOx
species. The protonation renders the trans-quasilinear isomer ONNO as more stable than
the cis-isomer by 42 kJ mol−1, as its proton affinity is much higher. The proton–electron
affinity [H+,e−] of ONNO is also higher. These results indicate that the nitrosyl dimer,
ONNO, is a good candidate for starting the process of catalytic reduction.

Table 1. Bond lengths, proton affinities (PAs), and H+,e− affinities of nitrogen oxides: NO, N2O, and
the NO dimer, N2O2.

Molecule Bond Length
N-O, Å

Bond Length
N-N, Å PA, kJ mol−1

H+,e−
Affinity, kJ
mol−1

NO 1.1456 529 233
Exp, Ref. [18] 1.1508 531

N2O 1.1840 1.1210 554 at N
582 at O
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Table 1. Cont.

Molecule Bond Length
N-O, Å

Bond Length
N-N, Å PA, kJ mol−1

H+,e−
Affinity, kJ
mol−1

Exp, Ref. [19] 1.1860 1.1260 549.8 at N
575.2 at O

(NO)2 cis, N2O2 1.1471 1.9730 638 286
(NO)2 trans-ONNO 1.2118 1.1564 682 311

3. Results and Discussion
3.1. Binding of NO to the Carbonyl Complexes Fe2S2(CO)6 and Co2S2(CO)6

The nitrosyl ligand can bind either directly to the metal cation at the place of one or
two carbonyl groups; it can also form an entire nitrosyl complex with a maximum of four
nitrosyl groups, Fe2S2(NO)4 and Co2S2(NO)4 as shown in Figure 1, which were synthesized
experimentally [3–5]. Our calculations indicate that nitrosyl binding to a sulfur site is also
possible in the hexacarbonyls (see Figure 1c) though with significantly lower binding energy
(Table 2). The binding of nitrosyl groups to dicobalt–disulfide is considerably weaker than
the binding to the diiron–disulfide complex, in agreement with experimental results [5].
In the dicobalt–disulfide tetra-nitrosyl complex Co2S2(NO)4, the Co-N bonds are slightly
lengthened, by 0.005 Å, as compared to Fe2S2(NO)4, but the Co-S bonds are lengthened
more significantly, by 0.149 Å. The coordination of nitrosyl groups in all cases breaks the S-S
bond, present in the global minima of the hexacarbonyl complexes. Natural bond orbital
analysis (NBO) reveals that the N-O bonds are less polarized than the C-O bonds. The local
natural charge on N is +0.342, and −0.152 on O of the nitrosyl, whereas it is +0.815 on C
and −0.426 on O of the CO ligand. The nitrosyl groups acquire some spin density of the
order 0.3 to 0.4, while the carbonyl groups acquire negligible spin density.
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Figure 1. Mixed nitrosyl–carbonyl and pure nitrosyl complexes: (a) Co2S2(CO)5(NO);
(b) Co2S2(CO)4(NO)2; (c) Co2S2(NO)4; and (d) Co2S2(CO)6(NO) with S-NO bond. Legend: cobalt
cations are light-blue large balls, sulfur atoms are yellow, nitrogen is dark blue, oxygen is red, and
carbon is gray. N-O bond lengths are marked red, and C-O bond lengths are black. The M-S bonds,
M-N bonds, and S-N bonds are described in Table 2. The corresponding Fe complexes are presented
in Figure S3 in Supplementary Materials.
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Table 2. Selected bond lengths in mixed carbonyl–nitrosyl complexes with M2S2 core (M = Fe, Co)
and nitrosyl group binding energies (BEs) at different sites.

Molecule Bond Length
M-S, Å

Bond Length
M-N, Å

Bond Length
S-N, Å

NO BE, kJ
mol−1

Co2S2(CO)5(NO)
Co-NO bond 2.236 1.964 17.4

Co2S2(CO)4(NO)2
2 Co-NO bonds 2.245 1.821 30.1

Co2S2(NO)4 2.317 1.641 76.1
Co2S2(CO)6(NO)
S-NO bond 2.297; 2.373 1.864 22.4

Fe2S2(CO)5(NO)
Fe-NO bond 2.236 1.726 50.4

Fe2S2(CO)4(NO)2
2 Fe-NO bonds 2.275 1.722 58.6

Fe2S2(NO)4 2.168 1.636 88.5
Fe2S2(CO)6(NO)
S-NO bond 2.231; 2.273 1.939 32.1

All of the nitrosyl complexes have their most intense light absorption bands in the
visible region of the spectrum. In the mixed carbonyl–nitrosyl complexes with the nitrosyl
groups coordinating the metal cations, the bands of the diiron–disulfide complex are
red-shifted compared to the dicobalt–disulfide complex (Table 3). In the complexes with
S-NO bonds, the most intense absorption bands of the dicobalt–disulfide complex become
red-shifted to 820 nm. The nitrosyl ligands are weakly bonded, as compared to carbonyl
ligands—the release of a carbonyl group from Fe2S2(CO)6 requires 154 kJ mol−1 [20]. The
highest energy needed for nitrosyl group release is found in the tetra-nitrosyl of iron
Fe2S2(NO)4, at 88.5 kJ mol−1. The excitation band at 535 nm and even the near-IR band at
1057 nm provide enough energy for the release of nitrosyl groups in this stable complex.
The bands in the visible region of the spectrum have a dominant Metal-to-Ligand Charge
Transfer (MLCT) character, and electron transfer to the nitrosyl ligand occurs.

Table 3. TD-DFT results for nitrosyl and hydroxyl complexes. The most intense lines are listed.
UV-VIS spectra are illustrated in Supplementary Materials in Figures S4–S6.

Complex, Bonds Light Absorption, nm Oscillator Strength

Co2S2(CO)5(NO)
Co-NO bond 663 0.0025

Fe2S2(CO)5(NO)
Fe-NO bond 739 0.0065

Co2S2(NO)4 524 0.0174

Fe2S2(NO)4
535
1057

0.0011
0.0087

Co2S2(CO)6(NO)
S-NO bond 820 0.0133

Fe2S2(CO)6(NO)
S-NO bond 739 0.0065

Co2S2(CO)6(OH)
S-OH bond 874 0.0282

Fe2S2(CO)6(OH)
S-OH bond 965 0.0205

Fe2S2(CO)6(OH)
Fe-OH-Fe bond 679 0.0091
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3.2. Reduction of NO in the Form of Its Dimer, (NO)2

The strong proton affinity of the quasilinear trans-ONNO, 682 kJ mol−1, comparable to
the proton affinity of Fe2(S2)(CO)6, 717 kJ mol−1, renders the nitrosyl dimer as a promising
reactant for selective electrocatalytic reduction in the following reaction scheme :

M2S2(CO)6 + H+,e− + ONNO ⇒ M2S2(CO)6[ H+,e−] + ONNO ⇒ M2S2(CO)6 + ONNOH· (1)

M2S2(CO)6 + ONNOH· + H+,e− ⇒ M2S2(CO)6[ H+,e−] + ONNOH· ⇒ M2S2(CO)6 + N2O + H2O (2)

M2S2(CO)6 + N2O + H+,e− ⇒ M2S2(CO)6[H+,e−] + N2O ⇒ M2S2(CO)6 + N2 + OH· (3)

M2S2(CO)6 + H+,e− + OH· ⇒ M2S2(CO)6[H+,e−][OH·] ⇒ M2S2(CO)6 +H2O (4)

Steps (1) and (2) lead to N2O, and at this stage, Co2S2(CO)6 and Fe2S2(CO)6 perform
equally well, with a small difference in the energy barriers of 10–11 kJ mol−1 (see Figure 2).
For the first step of N2O2 hydrogenation, the cobalt complex Co2S2(CO)6 provides a low
energy barrier of only 33 kJ mol−1; for the iron complex, the energy barrier is only 11 kJ
mol−1 higher, at 44 kJ mol−1. This reaction step is weakly exothermic, at 38 kJ mol−1 for
the cobalt complex, and at 36 kJ mol−1 for the iron complex—the values are again very
close. The reaction barrier of the second elementary step (2) to the formation of N2O and
release of a water molecule is about twice as high for the cobalt complex (68 kJ mol−1) as
compared to the first step. For this step, the iron complex provides a similar, slightly lower
energy barrier.
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Figure 2. The reaction path of N2O2 dissociation to N2O on Co2S2(CO)6 and Fe2S2(CO)6. TS1
denotes the energy barrier of reaction step (1) and TS2is the energy barrier of elementary step (2).
RC—reaction coordinate.

The subsequent reduction of N2O proceeds via elementary steps (3) and (4) and yields
molecular nitrogen and water. For reaction step 3, the Co2S2(CO)6 complex provides a
much lower energy barrier of 77 kJ mol−1 vs. 133 kJ mol−1 for the Fe2S2(CO)6 complex
(Figure 3). In this step, molecular nitrogen is formed and an OH· group is released, which
becomes attached to the disulfide core of the complexes. Step (3) is thus strongly exothermic,
as it leads to the release of molecular nitrogen, together with the formation of a hydroxyl-
bonded disulfide complex (Figure 4). Only Fe2S2(CO)6 provides two alternative locations
of the OH· group: a midway position, attached to both iron centers symmetrically via the
oxygen atom of OH·; and coordination to a sulfur atom, with the formation of a relatively
short S-O bond (Figure 4b). In the Co2S2(CO)6 complex, the OH· group is allowed to bind
to the sulfur center only; see Figure S7 in Supplementary Materials. The final step (4) of
the ONNO reduction reaction is the release of a water molecule to restore the catalyst
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center. In this step, the diiron–disulfide complex has a lower energy barrier of 78 kJ mol−1,
which is possibly due to the flexibility of the OH· group binding. The energy barrier of the
dicobalt–disulfide complex is a bit higher, at 109 kJ mol−1.
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Figure 4. The binding of the OH· group to Fe2S2(CO)6. (a) Midway position of the OH· group bonded
directly to the Fe centers; (b) OH· group bonded to the sulfur atom. Configuration (a) is the global
minimum, found as 30 kJ mol−1 below configuration (b). Iron cations are large aqua-blue balls, sulfur
atoms are yellow, nitrogen is dark blue, oxygen is red, and carbon is gray. The cobalt complex is
presented in Figure S7 in Supplementary Materials.

The reaction route is exothermic in all four elementary steps. Transition states 1 and
2 are closer to the configuration of the initial reactants than to the reaction products. TS3
is about midway in the route to the final products in this step: the release of the N2 and
OH· groups (see Figure 5). For the cobalt complex, N2O is linear in TS3 and is closer to the
initial state, while the iron complex reaches TS3 upon bending the N2O molecule, resulting
in a much higher energy barrier.
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Figure 5. Transition state structures along the reaction path of ONNO reduction for the [Co2-S2]
complex. TS1 reveals the first reduction step of ONNO. TS2 corresponds to the reduction of ONNOH·.
TS3 refers to the reduction of N2O. Legend is the same as Figure 1. The transition states TS1, TS2, TS3,
and TS4 (water molecule release) for the [Fe2-S2] complex are presented as Supplementary Materials
in Figure S7, and their coordinates are included.

Though the highly exothermic elementary steps may compensate for the subsequent
high energy barriers, the possibility of performing a photocatalyzed reaction was also
examined in Table 3. The OH• group containing complexes possess strongly intense bands
in the visible spectral region, particularly for isomers with S-OH bonds, and they are thus
capable of providing the necessary energy for the barrier in step (4) and restoring the
catalyst to its initial state.

4. Conclusions

The reactivity of nitrogen oxide, NO, was examined as a ligand in carbonyl complexes
with [Fe2-S2] and [Co2-S2] non-planar rhombic cores. By increasing the number of nitrosyl
ligands, the M-N bond is strengthened, particularly in the iron complexes, but the release
of NO can be achieved photochemically. The dimerization of NO opens up a possibility
for a low-energy pathway of electrocatalytic reduction. The greatest advantage over other
reaction schemes is that there is no oxygen abstraction, but water formation occurs in
the elementary steps. The highest energy barriers are reached in the reduction of N2O,
which appears as an intermediate product, but for Co2S2(CO)6, the highest energy barrier
is 109 kJ mol−1, and for Fe2S2(CO)6, it is 133 kJ mol−1. The presence of favorable light
absorption bands in the visible spectrum provides an opportunity for photocatalyzed
electrochemical reduction.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ma17194764/s1: Computational details: structures of complexes
and reactants; Figures S1–S3; UV-VIS spectra; Figures S4–S6: Transition state structures and interme-
diates; Figures S7 and S8: Transition state structures and their coordinates. References [21–40] are
cited in the Supplementary Materials.
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