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Abstract: Due to their extraordinary qualities, including fire resistance, excellent crashworthiness,
low thermal conductivity, permeability, non-toxicity, and reduced density, cellular materials have
found extensive use in various engineering applications. This study uses a finite element analysis
(FEA) to model the dynamic compressive behaviour of agglomerated cork to ascertain how its
material density and stress relaxation behaviour are related. Adding the Mullins effect into the
constitutive modelling of impact tests, its rebound phase and subsequent second impact were further
examined and simulated. Quasi-static and dynamic compression tests were used to evaluate the
mechanical properties of three distinct agglomerated cork composite samples to feed the numerical
model. According to the results, agglomerated cork has a significant capacity for elastic rebound,
especially under dynamic strain rates, with minimal permanent deformation. For instance, the
minimum value of its bounce-back energy is 11.8% of the initial kinetic energy, and its maximum
permanent plastic deformation is less than 10%. The material’s model simulation adequately depicts
the agglomerated cork’s response to initial and follow-up impacts by accurately reproducing the
material’s dynamic compressive behaviour. In terms of innovation, this work stands out since it
tackles the rebounding phenomena, which was not previously investigated in this group’s prior
publication, either numerically or experimentally. Thus, this group has expanded the research on
cork materials’ attributes.

Keywords: finite element analysis (FEA); cork agglomerates; mechanical behaviour; Mullins effect

1. Introduction

Cellular materials have been successfully employed in various fields, including build-
ing and aerospace. These materials have mainly been used in engineering applications
where a high ratio between mechanical properties and weight is desirable. Their essen-
tial features include qualities like damping, insulation, and crashworthiness, to name a
few [1,2].

Cellular materials are divided various subcategories, including natural, synthetic,
open-cell, and closed-cell materials [3]. In terms of the internal porous nature of these
materials, their cellular pores may be open or closed. Open pores share only their edges,
whereas closed pores share edges and cell walls. They share the ability to absorb significant
energy by deforming under compressive loads while maintaining low stress levels. Their
uniaxial compressive stress–strain curves typically show a linear elastic zone, a plateau
region, and a densification zone. These materials are commonly employed in protective and
packaging applications (e.g., motorcycle helmets [4]). Cellular materials include expanded
polypropylene (EPP), polystyrene (EPS), and metal foams. The choice of material depends

Materials 2024, 17, 4772. https://doi.org/10.3390/ma17194772 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17194772
https://doi.org/10.3390/ma17194772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-6341-8071
https://orcid.org/0000-0001-7039-5181
https://orcid.org/0000-0001-6668-5485
https://orcid.org/0000-0001-9751-8807
https://orcid.org/0000-0002-5848-6424
https://doi.org/10.3390/ma17194772
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17194772?type=check_update&version=1


Materials 2024, 17, 4772 2 of 22

on its specific application, as factors like density, strain rate, and chemical composition can
significantly influence its mechanical properties. Researchers often study these materials
under quasi-static and dynamic stress due to their practical significance [5,6]. Synthetic
cellular materials excel in single-impact applications, absorbing more energy and reducing
acceleration peaks [7]. However, some synthetic materials, like EPS, offer limited protection
in cases of a second impact, as they deform mainly plastically and exhibit minimal elastic
recovery [8].

Recent awareness of going green and demands regarding more sustainable production
patterns are promoting the usage of natural alternatives to synthetic cellular materials. In
this regard, cork, a naturally occurring cellular substance with significant crashworthiness
and insulation properties, is a material that is the natural choice to replace synthetic
materials. Typically, its cells consist of closed hexagonal prisms arranged in rows so that
two cells share the same hexagonal face. Nevertheless, the rows are spaced apart such that
the membranes covering the hexagonal faces are not continuous throughout the rows. Cork,
in its agglomerated form, is distinguished by having both a high viscoelastic return and a
good energy absorption capacity, which indicates that after an impact, this material’s ability
to continue absorbing energy is essentially intact and it deforms more elastically [9,10]. In
addition to its excellent compressibility and dimensional recovery, cork exhibits strong
chemical stability, excellent insulating qualities, and a very low permeability to liquids and
gasses [11]. Strong interest has been raised in using agglomerated cork to replace synthetic
cellular materials because of its sustainability, low carbon footprint, and alignment with
the Sustainable Development Goals (SDGs).

Researchers looking for new uses for this eco-friendly, sustainable material have been
active [12,13]. Researchers [14] have explored the use of agglomerated cork stoppers for
still wines and spirits in the packaging sector. A non-supervised exploratory analysis
was conducted on various cork samples, revealing that only 4 or 5 initial parameters are
needed to determine the appropriate stopper. This suggests that fewer criteria are needed
to accurately characterize the mechanical properties of agglomerated cork, enabling the
selection of the best material for the intended use. Serra et al. [15] created a multi-layer
helmet based on agglomerated cork that provides energy absorption and protection levels
comparable to current helmets on the market, but with a substantially lower environmental
impact. According to research, cork can absorb energy similarly to EPS and withstand
multiple impacts because of its ability to withstand a large amount of deformation without
causing significant harm to its viscoelastic cellular structure. This allows the cork to recover
after loading [16]. In addition, multiple models with varying features were produced,
and impact testing was carried out in an accredited laboratory. This helmet addresses
the absence of material recovery or recycling and signals a change toward sustainability
in an industry that relies heavily on petroleum-based components. Compared to regular
bike helmets, the materials used, the ease of dismantling, and its recycling produce 42%
fewer carbon emissions. Another investigative team [17] developed novel homogenous
composite materials based on agglomerated cork infused with non-Newtonian fluids
(shear thickening) to prevent cell crushing and boost energy absorption. The researchers
discovered that samples containing 10 wt. % could bear loads from both a first and
second hit without exhibiting macroscopic fissuring or any other apparent effects. This
demonstrates that it is possible, by maintaining their fluid and structural integrity, to create
samples that can endure many hits, significantly reducing user damage, and that are far
more sustainable than those currently employed in body safety applications.

Natural cork is a complex biological substance [11]. Numerous studies have assessed
the essential characteristics of cork’s mechanical behaviour, such as Young’s modulus,
Poisson’s ratio, plateau stress, densification strain, and energy density, under quasi-static
axial compressive loads [18,19] and under dynamic circumstances [20]. Anjos et al. [21]
have researched the impact of cork density on the material’s mechanical behaviour, such
as its Young’s modulus, stress plateau, and the shape of the stress–strain curve, both
when compressed and after the subsequent recovery of its dimensions. The investigative
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team found out that the density influenced the compression such that the corks with a
high density presented higher stiffness, but the dimension recovery was higher for corks
with a low density. Santos et al. [22] investigated the effects of density, resin type, binder
weight percentage, and grain size on the mechanical properties of composite materials
based on agglomerated cork under compression and impact. The study team came to
the following conclusions: larger grains produce composites with a higher plateau stress
and Young’s modulus; increased density leads to a higher plateau stress but a lower
densification deformation; and the mass proportion of the binder delays the densification
stage. However, only a few researchers examined the mechanical behaviour of cork under
dynamic compressions. Gameiro et al. [23] investigated the mechanical behaviour of cork
(as a filler for square aluminium tubes), specifically in terms of its Young’s modulus, stress
plateau, and energy density (natural and agglomerated), under impact loading at strain
rates ranging from 200 to 600/s. The scientists noted that fillers like agglomerate and micro-
agglomerate cork provided clear benefits, in terms of energy absorption and deceleration,
for the square aluminium tubes under study. Additionally, cork is less expensive and lighter
than some metallic foams, which may encourage the usage of cork in innovative lightweight
energy-absorbent structures. Its recovery dimensions at dynamic rates, however, were not
investigated. Cork’s compressive behaviour under impact was simulated by Fernandes
et al. [24], along with the material’s relaxation following dynamic compression, using both
the Hyperfoam material model and the Mullins effect material model available in Abaqus.
A finite element analysis (FEA) was used for the numerical simulations, and the resultant
material model was evaluated against the outcomes of the experiments. As a preliminary
validation, the authors numerically reproduced the experiments performed in [23] via an
FEA and obtained good accuracy. After validation, a dynamic test resorting to a drop tower
was carried out successfully, validating the model and adequately representing cork’s
mechanical behaviour under dynamic compressions. The Hyperfoam and Mullins effect
material models worked together to replicate the actual behaviour of agglomerated cork
during compression and the relaxation that followed.

Several academics have concentrated on creating numerical models that mirror the
mechanical behaviour of cork agglomerates in various situations. Gomez et al. [25] investi-
gated the behaviour of sandwich panels made of cork cores and carbon/epoxy face sheets
when impacted at intermediate velocities. The researchers used a nonlinear/explicit finite
element model and applied continuous damage models to predict how damage occurs
within and between the layers of face sheets. Additionally, they employed a hyperelastic
elastomeric foam model with multiaxial failure criteria to describe the fundamental material
behaviour of the panels. The progression of the face sheet’s intra- and inter-laminar damage
was predicted using continuous damage models. Using a continuum damage model (CDM)
approach for fabric-reinforced composites, which was implemented in Abaqus/explicit
through the built-in VUMAT subroutine ABQ_PLY, developed by Jhonson [26] based on
the Ladeveze et Le-Dantec damage continuum model [27], the intra-laminar damage in the
face sheets was modelled. Ply is an orthotropic elastic material that can withstand plastic
deformation under shear force and gradual deterioration due to fibre/matrix cracking. The
Tsai–Wu fracture criteria were used with a VUSDFLD user function to implement element
deletion [28]. This numerical model successfully replicated the actual behaviour of the ply.
Another research team led by Sergi et al. [29] investigated the impact response to puncture
of bio-based sandwich structures with an intraply flax/basalt hybrid core and agglomerated
cork core. The excellent agreement between an FEA and the experimental results ensures
a trustworthy prediction of the dynamic response of the core. The same researcher [30]
also performed a finite element analysis on the high-velocity impact responses of sandwich
materials made with PVC foam and agglomerated cork. Alcântara et al. [1] performed a
constitutive and numerical study to evaluate the energy absorption capabilities of metallic
tube structures that have an agglomerated cork core to uncover new applications for this
composite material.
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Despite the intensive work in this area, no computational model can simulate the
mechanical response of composite materials made of cork agglomerates when subjected
to repetitive loads. This work intends to fill this knowledge gap. While superb numeri-
cally, Fernandes et al.’s work [24] can only simulate a single impact. This means that the
dimensional recovery potential of agglomerated cork composites, which can withstand
multiple impacts with essentially no plastic deformation, is not implemented. This is
important since cork-based composite materials, due to their ability to absorb energy after
various impacts, have the possibility of replacing, in an environmentally sustainable way,
the current synthetic materials used in safety applications, such as EPS, which deforms
permanently after its first impact and must be replaced immediately.

In this study, the dynamic compressive behaviour of agglomerated cork, and specif-
ically its Young’s modulus, stress plateau, stress–strain curve, and energy density, was
simulated using a finite element analysis (FEA), as was the relaxation of the material during
its unloading. It also determined the relationship between the sample’s density, relaxation
behaviour, and Mullins effect material parameters, with the type of binder, weight percent-
age of binder, and grain size being independent parameters. Additionally, as opposed to
Fernandes’s numerical model [24], the simulation was run while considering gravity.

2. Materials and Methods

Cork can be categorized as a honeycomb substance made of approximately hexagonal,
prismatic, closed cells arranged to produce rows parallel to the tree’s radial growth direction.
Approximately 15% of the overall volume of the material is made up of these closed
compartments [24]. As can be seen in Figure 1, the cell walls exhibit substantial corrugations
along the axis of the prism. These undulations and corrugations provide the cell walls with
considerable flexibility, which dictates the mechanical behaviour of the cork [11].
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Figure 1. Ideal cork cell topology and size parameters.

Agglomerated cork, a byproduct of cork stopper production, is employed in this
investigation. It can be produced in moulded blocks, and parameters such as its density,
grain size, and binder can be tuned to achieve desirable properties [22]. Due to the random
orientation of its grains, and its small grains (0.5–2.0 mm), its mechanical and thermal
behaviour is practically isotropic, which is an advantage compared to the anisotropic
behaviour of natural cork. Furthermore, natural cork has a limited range of dimensions
because of its extraction process.

2.1. Fundamentals and Constitutive Laws

NOTE: The Abaqus Analysis User’s Manual [31] is the source of all equations that are
shown in this section.

Abaqus (Dassault Systèmes Simulia Corp., Vélizy-Villacoublay, France) provides a
material library suitable for modelling a wide range of materials [31]. Agglomerated cork,
under compression, mainly displays a visco-hyperelastic behaviour, with plastic behaviour
making up a relatively minor portion of the material’s mechanical properties and only
occurring at very high deformations and strain energies. Modelling agglomerated cork
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with Abaqus (version 2017) nonlinear hyperelastic models is a solid starting point. In doing
so, the Hyperfoam material model was employed. This is a typical isotropic and nonlinear
model used to describe the hyperelastic behaviour of elastomeric foams. It is also designed
for applications involving finite strains of up to 90% during uniaxial compression.

The isotropic elastic properties of a hyperelastic material model may be expressed in
terms of a strain energy (stored energy) function, which is generally a function of the three
invariants of each of the two Cauchy–Green deformation tensors and given in terms of their
primary extension ratios, or stretches. Due to their distinctive characteristics and properties,
several strain energy formulations are suitable for describing various hyperelastic material
systems [32]. The elastic behaviour of the foams in the Hyperfoam material model relies
upon the following strain energy function:

∼
Us =

N

∑
i=1

2µi

α2
i

[
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3 +

1
βi

(
(J)−αi βi − 1

)]
(1)

where N is a material parameter related to the polynomial order, λi are the principal
stretches, and J is the elastic volume ratio, given by

J = λ1λ2λ3 (2)

The shear modulus is given by µi, whereas αi and βi are curve-fitting non-integral
exponents. The initial shear modulus, µ0, and the coefficients µi are linked by

µ0 =
N

∑
i=1

µi (3)

The last-mentioned symbols, βi, are concerned with the compressibility of the material,
and the initial bulk modulus, K0, is determined by the following expression:

K0 =
N

∑
i=1

2µi

(
1
3
+ βi

)
(4)

The coefficients βi define how compressible each term in the energy function is. The
following expressions connect βi and νi, which is Poisson’s ratio:

βi =
vi

1 − 2vi
(5)

νi =
βi

1 − 2βi
(6)

So, if βi is constant over all terms, there is only one effective Poisson’s ratio, ν. This
effective Poisson ratio holds true for finite values of the principal logarithmic strains ε1, ε2,
and ε3. Under uniaxial tension, the equation (ε2 = ε3 = −ν ε1) is valid. The primary nominal
strains are correlated to the principal stretches by the following expression:

εi = λi − 1 (7)

The Mullins effect model is used with the Hyperfoam material model to extend the
isotropic elastomeric foam model and accurately represent the long-term energy dissipation
and stress softening effects in agglomerated cork. The Mullins effect material model
that Abaqus offers is designed to simulate the phenomenon of stress softening, which is
frequently seen in filled rubber elastomers due to strain-related degradation. The stress
required on reloading is less than that of the first loading for stretches up to the maximum
stretch achieved on the initial loading when an elastomeric test specimen is exposed to
simple tension from its virgin state, unloaded, and reloaded. The Mullins effect is a
phenomenon that reduces stress.
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Figure 2 is based on research by Ogden and Roxburgh [33]. Consider the main loading
path (abb’) of a previously unstressed material with loading up to point (b’). Unloading
from b’ follows the path b’Ba. The softened path is retraced as aBb’ when the material is
loaded again. For further loads, this procedure is repeated (abb’ → b’Ba → aBb’cc’ → c’Ca
→ aCc’d). This is a prime example of the Mullins effect. The loading route abb’cc’d shall
hereafter be known as the “primary material response,” and the constitutive behaviour
of the primary response can be specified using the standard energy potentials of the
hyperelasticity models in Abaqus [33].
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This material model simulates the energy absorption in foam components subjected to
dynamic loading at rapid deformation rates relative to their typical foam relaxation time.
In these circumstances, it is reasonable to presume that the foam material has sustained
long-term damage. An enhanced strain energy density function with the following formula
is introduced into this model to account for the impacts of energy dissipation:

Us(λi, η) = η
∼

Us(λi) + ϕ(η) (8)

where λi (i = 1, 2, 3) symbolizes the main mechanical stretches and Ũs (λi) is the strain
energy potential of the essential foam behaviour defined by Equation (1). The function
ϕ(η) is a continuous function of the damage variable, η, and is referred to as the “damage
function.” Throughout the deformation, the damage variable, η, fluctuates constantly
within 0 < η < 1. The damage function ϕ(η) must become ϕ(η) = 0 when the damage
variable is equal to one, which makes the material’s deformation state reliant on the curve
that depicts its primary foam behaviour Us (λi, 1) = Ũs (λi). Hence, the augmented energy
function then reduces to the strain energy potential of the primary foam behaviour, and
only the Hyperfoam material model is, therefore, capable of simulating the material’s
mechanical behaviour.

Considering the Mullins effect, the stresses can be calculated by

σ(λi, η) = η
∼
σ(λi) (9)

where
∼
σ is the stress corresponding to the principal foam behaviour at the current deforma-

tion level λi; therefore, the stress is calculated by simply multiplying the damage variable, η,
by the stress of the essential foam behaviour. The model predicts unloading and reloading
from any given strain level along a single curve that passes through the stress–strain plot’s
origin and generally deviates from the material’s principal behaviour. Additionally, the
model forecasts energy loss in the case of volumetric deformation only.
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With respect to the deformation, the damage variable, η, varies as follows:

η = 1 − 1
r

er f
(

Um
s − Us

m + βUm
s

)
(10)

where r, β, and m are material parameters, Um
s is the greatest value of Ũs at a specific

moment in a material’s deformation history, and erf(x) is the error function. In contrast to
the dimensionless parameters r and β, the parameter m has stress-related dimensions. The
constraints r > 1, β ≥ 0, and m ≥ 0 (the parameters β and m cannot both be zero) apply to
these material parameters.

Generally speaking, there are no apparent physical meanings for these metrics. The m
parameter describes the rate of material deterioration following unloading. However, a
nonzero m leads to little or no damage at low strain levels. The parameter r controls the
amount of damage; the larger the r value, the less the damage is. The β parameter decreases
the stress reduction following a strain reversal.

The PolymerFEM [34] website offers a numerical parametric analysis of the Mullins
effect model. The effects of the three parameters (r, m, and β) of the Ogden–Roxburgh–
Mullins Damage model on the projected stress–strain response were investigated and
are graphically displayed below. Figure 3, while simply suggestive, helps to explain
our conclusions.
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When η = 1 is attained, then Ũs = Um
s , corresponding to a point on the primary curve.

Conversely, the damage variable, η, achieves its minimum value, ηm, when deformation is
eliminated and Ũs = 0, as given by

ηm = 1 − 1
r

er f
(

Um
s

m + βUm
s

)
(11)

The value of η varies repeatedly between 1.0 and ηm for all intermediate values of Ũs.
By deducting the dissipated energy from the enhanced energy, the recoverable portion of
the energy is obtained as follows:

Urecoverable = η
∼

Us(λi) + ϕ(η)− ϕ(ηm) (12)

where the energy lost as a result of material damage after the load has been completely
unloaded is represented by the residual value of the augmented energy function, ϕ(ηm).

2.2. Finite Element Simulation

Uniaxial compression testing data were described in order to define the strain energy
function parameters. Abaqus uses a least squares fitting methodology to calculate the
Hyperfoam material parameters. The experimental compression tests carried out at almost
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static rates were multiplied by a scaling factor (the function of the strain rate), yielding the
stress–strain curve imported into Abaqus. This scaling up is conceivable in agglomerated
cork since the stress–strain curve for this material has a constant shape [23]. The scale
factor employed has a value of 2.1, which is marginally more than the scale factor of value
3 utilized in the simulations of Gameiro et al. [23], with a different FE code (LSDYNA),
and the scale factor value of 3.1 employed by Fernandes et al. [24]. Gameiro et al. [22]
recommend using a scale factor value of 3 for micro-agglomerated cork (grain sizes of 0.5
to 1.0 mm) and a scale factor value of 2 for standard agglomerated cork (grain sizes of 2.0
to 4.0). A null Poisson coefficient was considered because the experimental testing allows
for the conclusion that there is essentially little lateral deformation and, as a result, that it
is negligible.

To numerally simulate the guided drop tests, a sample 50 mm in length, 50 mm in
width, and 25 mm in thickness was modelled with the use of reduced integrated, hourglass-
stabilized, 8-node hexahedral finite elements (C3D8R). The sample mesh was carefully built
to avoid warped and distorted elements to produce accurate results unaffected by mesh
element size while still having an appropriate computational processing time. Numerous
simulations were run, each time adding more elements until the results converged, to
establish the appropriate number of elements for the sample’s mesh. The optimum mesh
contained 37,044 elements in total, with 42 elements along each edge’s length and width
and 21 elements along each edge’s thickness. Additionally, a model of an analytical rigid
body in a disc was modelled to represent the stainless steel impactor. Figure 4 displays
this setup. The simulations were carried out using an explicit solution method. No mass
scaling was employed during the simulations.
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Figure 4. Numerical setup of the drop test.

In these experiments, the rigid impactor only had one degree of freedom in the
compression direction. A “hard” surface-to-surface contact was used to describe the
interaction between the sample and the rigid bodies [24]. The impactor was assigned a
predetermined field velocity of 3.84 m/s.

2.3. Agglomerated Cork Samples

Amorim Cork Composites (ACC, Mozelos, Portugal) provided the materials for this
experimental campaign. The three types of materials made accessible by the ACC will now
be referred to as types A, B, and C for confidentiality reasons. The most pertinent details
and traits of each type of material are displayed in Table 1. All the samples had a 6–8%
moisture content, and all the experiments were conducted in 70–80% relative humidity.
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Table 1. Design of the samples used in the experiments.

Material Density [kg/m3] Grain Size [mm] Binder Binder Content [wt.%]

A 210 2–4 PU Rigid 15
B 300 2–5 PU Rigid 14
C 400 2–4 PU Rigid 12

These three distinct types of materials are all composites based on agglomerated cork,
with the grain size of types A and C ranging from 2 to 4 mm and that of type B ranging
from 2 to 5 mm, whose binder is a hard matrix resin with a polyurethane-based adhesive.
In terms of density, type A material weighs 210 kg/m3, type B weighs 300 kg/m3, and type
C weighs 400 kg/m3. The percentage of binder by mass is 15 wt.% for type A, 14 wt.%
for type B, and 12 wt.% for type C. The same moulding process was used to create all
three types of materials. Therefore, the density of the composite is the only factor that can
significantly affect the various mechanical behaviours of these materials.

The samples were square-faced parallelepipeds measuring 50 mm on one side and
25 mm thick and used for both the impact and quasi-static compression tests. Because
the materials from ACC were provided in plates with a 25 mm thickness, a square of
50 × 50 mm guarantees that their mechanical properties are consistent. The three different
sample types are depicted in Figure 5 using microscopic amplification at 8× and 35× (in
the smallest rectangle). It is easy to see how the samples’ compaction levels differ; sample C
has nearly no voids, indicating a higher density and, hence, a greater degree of compaction,
while sample A exhibits some voids due to its lower density.
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3. Experimental Campaign
3.1. Uniaxial Quasi-Static Compression Test

Uniaxial quasi-static compressive tests were carried out using a Shimadzu AG- 100 kN
testing machine, as seen in Figure 6a. The uniaxial compression test lasted until the agglom-
erated cork densification stage, which is roughly 80% of its nominal strain, or 20 mm of
displacement. However, on occasion, it was not possible to attain an 80% nominal extension
because of the rapidly increasing force in the densification zone, and the test had to be
manually terminated for safety reasons. To guarantee the repeatability of the results, a
minimum of four samples of each type of material were evaluated. These samples were pre-
cisely centred, and a meagre, continuous strain rate of 3.33 × 10−3/s was used to compress
them. Two research discoveries led to the adoption of this strain rate. The compressive
behaviour of agglomerated cork is nearly strain-rate-independent across strain rates rang-
ing from 9.62 × 10−4/s to 4.82 × 10−3/s, according to Fernandes et al. [24]. Moreover,
Gameiro et al. [23] suggest that when compressed at strain rates between 1.25 × 10−3/s
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and 1.60 × 10−3/s, agglomerated cork exhibits strain rate independence. The output
force–displacement curves made it possible to calculate the stress–strain curves and the
amount of energy absorbed per volume.
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3.2. Impact Tests

The Instron 9440 (Instron, Pianezza, Italy) drop tower was employed for the impact
tests. Two setups were prepared to carry out tests at 60 J and 120 J. The 8.15 kg impactor was
raised to a height of around 750 mm for experiments with 60 J impacts. For experiments
with 120 J of energy, an additional 5 kg of mass was added, bringing the total mass to
13.15 kg. The impactor was also elevated to a height of roughly 931 mm. It should be noted
that the 120 J energy level test was carried out to verify a hypothesis that will be discussed
later in the current research.

The impact test drop tower and selected impactor are depicted in Figure 6b. The
load, position, and time data were gathered using a 45 kN load cell and a position encoder
that were integrated into the machine in order to determine the time–acceleration history,
forced displacement, and nominal stress–strain curves of all the samples. Bluehill Impact
software (version number 4.26.0.16174) was used to synchronize and process the data. Both
a smoothing with ten smoothing points and a CFC1000 digital filter following SAE J211:95
were used to reduce the noise.

The samples were 50 × 50 × 25 mm in size. Following the initial impact, a second
impact of the same energy was made with a delay of 30–40 s to allow the impactor to
reach its full height. According to Fernandes et al. [24], cork agglomerates’ form recovery
happens in milliseconds. Hence, 30–40 s is more than adequate time for the samples to
almost completely recover their dimensions. Similar to quasi-static studies, these aim
to ascertain how the density of the composites affects the mechanical response of cork
agglomerates under dynamic loading.

In order to determine whether a material can withstand several hits, how its me-
chanical response degrades based on the damage sustained between the first and second
impact will also be evaluated. The assessment of energy densities, acceleration peaks, and
stress–strain curves will be covered in the section that follows. The energy density (Ev),
or the amount of energy absorbed per unit volume, can be determined by integrating the
equation of the stress–strain curve, since the absorbed energy is equal to the area under the
stress–strain curve.

4. Results and Discussion
4.1. Uniaxial Quasi-Static Compressive Tests

Beginning this study with the elastic linear zone, an increase in the composite’s density
causes an increase in its Young’s modulus, meaning that the sample’s resistance to elastic
deformation rises as its density does. Additionally, it is possible to confirm that this zone
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is reasonably reduced (Figure 7) for samples with lower densities. It is interesting to note
that the plateau region flattens out and lengthens as the density of the composite lowers.
The densification strain, which marks the transition between the plateau and densification
regions, is around 0.5 for a sample with a density of 400 kg/m3. In contrast, it is 0.7
for a sample with a density of 210 kg/m3. For some applications where longer and less
abrupt energy absorption is sought, more extended plateau zones are attractive. As will be
seen later, the plateau stress does, however, fall with decreasing density, which results in
decreased energy density. In the examination of Figure 7’s last zone, the densification zone,
it is conceivable to say that an increase in sample density causes the anticipation of cell
crushing. In other words, the lower their composite density, the greater the deformation
the samples experience. These findings and conclusions are consistent with the research
conducted by Santos et al. [22], where these researchers assessed the impact of their samples’
density on the mechanical behaviour of cork agglomerates under compression, in addition
to other factors. This current research extends and supports the findings of Santos et al. [22]
because those researchers only looked at densities in a narrow range, between 120 and
200 kg/m3.
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For the various samples, four absorbed energy density values—400, 600, 800, and
1000 kJ/m3—were computed. The energy released during unloading is not factored into
the absorbed energy. Given the nature of the isocurves, it is acceptable to approximate
them to straight lines. All four isocurves have a negative slope, but as the amount of
absorbed energy rises, the slope tends to become smaller. A negative slope shows that, as
the sample’s density declines, lower stresses are needed, but more significant deformations
are required, to attain the desired energy values. As a demonstration, the isocurve already
has a positive slope at an energy density of 1500 kJ/m3, indicating that the inflexion point
lies between the energy levels of 1000 and 1500 kJ/m3. Although they might be challenging
to interpret, energy density isocurves are crucial tools in the sample selection process. For
some applications and intended energy levels, a lower stress is preferred, at the cost of
deformation. However, for other applications, the desired outcome may be the opposite.
This is why choosing the optimal sample is tied to the intended application.

However, possibly the most significant finding from examining these isocurves is that
larger sample densities result in higher energy densities, as seen in Table 2. Drawing a
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tangent line to the stress–strain curve in the densification zone and intersecting it with the
abscissa axis allowed for the calculation of the densification strain.

Table 2. Results of the absorbed energy density of the samples while under densification strain.

Material Densification Strain Energy Density [MJ/m3]

Type A 0.718 0.929
Type B 0.698 1.276
Type C 0.502 1.374

Although the numerical results exhibit stresses that are slightly higher than the ex-
perimental ones, it can be concluded from the numerical results and a comparison with
the experimental results using Figure 8 that the numerical model accurately simulates the
actual behaviour of the samples, with minimal deviation.
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4.2. Dynamic Impact Tests

It becomes clear through the examination of Figure 9 that, for dynamic impact tests, the
stress–strain curve no longer resembles the traditional S-shaped curve of cellular materials
under compression. The strain rate difference between the quasi-static and dynamic tests
can explain this.

As a result, Figure 10 only emphasizes the portion of a stress–strain curve correspond-
ing to the sample’s impact phase. The type A sample is the only one that makes it possible
to distinguish between a linear elastic zone and a plateau region with varying degrees of
ease. Up to 10% of the deformation in this sample can be regarded as the linear elastic zone
and the remaining curve as the plateau zone, although the stress gradually rises in this
zone. It is impossible to distinguish any of the three distinctive zones of the stress–strain
curve for cellular materials under compression that are made of samples B or C.
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Figure 10. Nominal impact stress–strain curves of the three samples at four energy levels (the smaller
graph is an enlarged section of the initial loading).

By analyzing Figure 10, it is reasonable to conclude that the stress–strain curve tends
to “open” as the sample density rises, reaching ever more significant stresses for more
minor strains. A few mean parameters, along with their corresponding standard deviations
(SDs), from the impact testing that support the previous conclusion are shown in Table 3.

Table 3. Data on the sample impact tests that were performed.

Material Density
[kg/m3]

Peak Force
[N]

SD
Force

Peak
Acceleration [g]

SD
Acceleration Peak Strain SD Strain

Type A 210 6549.05 9.33 81.94 0.12 0.583 0.00346
Type B 300 8022.17 101.37 100.37 1.26 0.516 0.00531
Type C 400 10717.18 386.80 134.09 4.84 0.365 0.00575
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Only the isocurve connected to the 200 kJ/m3 energy density has a distinctive, almost
parabolic shape. All three isocurves, apart from the 200 kJ/m3 isocurve, have a negative
slope; however, as the amount of absorbed energy increases, the slope tends to decrease.

However, as the samples’ densities increase, the samples’ energy densities decrease,
as shown in Table 4. This is the reverse of what occurs with the stress–strain curves of the
quasi-static compression experiments. Impact experiments with a 120 J impact energy were
performed to verify this tendency. The energy density likewise declines with increasing
sample density, as shown in Table 4. Although this discovery is intriguing, these energy
levels are very comparable.

Table 4. Results of the absorbed energy density of the samples and their densification strain under
both 60 J and 120 J impact energies.

Impact Energy [J] 60 120

Material Strain Energy Density [MJ/m3] Strain Energy Density [MJ/m3]

A 0.584 0.931 0.776 1.882
B 0.515 0.912 0.675 1.845
C 0.364 0.889 0.514 1.838

4.2.1. Acceleration Peaks

One of the most important considerations when using cellular materials in safety
devices is their maximum acceleration value, which is associated with the likelihood of
injuries occurring. In order to prevent or limit injury to the user, it is ideal to obtain minimal
acceleration peaks [24]. Similar to this, smaller acceleration peaks can protect the covered
goods from more harm if the material is utilized in packaging.

The peak linear acceleration (PLA) indeed relates to a deceleration, or, to put it another
way, it relates to the impactor’s slowing acceleration. The same energy (60 J) was applied
twice to three sets of samples with three different densities. The PLA of these impacts were
recorded and are shown in Figure 11.
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With a value of roughly 82 g, the sample with the lowest density (210 kg/m3) has the
lowest peak acceleration during the first impact. Samples B and C, in contrast, attained
accelerations of about 100 and 134 g, respectively. This acceleration increase with sample
density can be explained by the fact that a lower density causes more cellular wall deforma-
tion and, as a result, a less abrupt acceleration. For the second impact, samples A, B, and C,
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respectively, recorded peak acceleration values of 103, 113, and 144 g. Thus, it is feasible
to deduce that for samples A, B, and C, there was an increase in the acceleration between
impacts of approximately 26, 13, and 7%, respectively. So, it follows that an increase in
density will result in a smaller rise in acceleration between strikes. This can be explained by
the fact that samples with a lower density are more likely to deform after their first impact,
sustaining more damage and losing crashworthiness properties before the second impact.

4.2.2. Rebound Velocity and Bounce-Back

As a result of their viscoelastic properties, cork agglomerates can restore (almost
completely) their original dimensions following deformation. The percentage of the impact
energy immediately returned to the impactor is also measured and is now referred to as
the bounce-back effect or rebound energy (Figure 12a). For safety devices, it is typically
undesirable for a considerable portion of the impact energy to return to its load source.
Therefore, a compromise between absorbed and returned energy must be maintained for
devices enduring many impacts. Naturally, the bounce-back value increases from the first
to the second impact for all samples examined. However, although cork grains retain
their crashworthiness and elasticity after multiple collisions, the same cannot be said for
polyurethane binders, which plastically absorb energy.
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Furthermore, energy will be dispersed through microcracks formed in the cork
grain/binder interfaces rather than being absorbed by plastic deformation during suc-
cessive impacts. When the load is unloaded, more energy will be viscoelastically stored
and released. The variance in bounce velocity between impacts, as shown in Figure 12b,
further supports the claims above. The impactor’s exit velocity rises with increasing
density. Additionally, all samples’ impactor output speeds increase from the first to the
second impact.

4.2.3. Unloading Phase

The relaxation phase, which is the period in which the impactor no longer presses on
the sample, but rather the opposite, is going to be addressed. This crucial stage is nearly
always overlooked. It is reasonable to infer from the analysis of Figure 13 that a higher
sample density causes a shorter relaxation period for the samples’ dimensions. For samples
A, B, and C, a strain recovery of around 23.5, 21.8, and 13.7%, respectively, is revealed.
When conducting numerical simulations, and specifically when deciding the values of the
material parameters r, m, and β, depicted in Section 2.1, it is crucial to keep in mind that
the relaxation curve’s shape changes depending on the sample’s density.
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4.2.4. Impact Tests’ Numerical Results

The link between the stress and strain tensors is derived from the strain energy
potential function U, which is unique to each hyperelastic model. The invariants (I1, I2,
I3) of the strain tensor S, which is determined by the deformation gradient tensor F, are
typically used to define the strain energy function U. The following relation is established
using the deformation tensor B, which is the left Cauchy–Green tensor:

B = FFT (13)

The invariants of B are defined as follows:

I1 = tr(B) = λ2
1 + λ2

2 + λ2
3 (14)

I2 =
1
2

[
tr(B)2 − tr(B2)

]
= λ2

1λ2
2 + λ2

2λ2
3 + λ2

1λ2
3 (15)

I3 = detB = J2 = (det(F))2 = λ2
1λ2

2λ2
3 (16)

where λi are the principal stretches and J is the total volume ratio given by the determinant
of the deformation gradient.

Agglomerated cork was modelled as a nonlinear elastic solid. Due to the extremely low
level of plasticity that was experimentally discovered, this simplification holds. Once again,
agglomerated cork was modelled using a combination of the Hyperfoam and Mullins effect
material models. The quasi-static compression curves shown in Figure 7, derived from a
sample compressed at 5 mm/min, were scaled by a factor of 2.1, as mentioned earlier. To
ascertain such a factor, independent dynamic compressive tests utilizing split Hopkinson
pressure bars (SHPBs) or high-speed Zwick, MTC, Instron, or a comparable apparatus on
cork samples are required for greater accuracy and scientific validity. However, because
of the study facility’s technical constraints, a trial-and-error method involving multiple
simulations determined this scaling factor value. Nevertheless, as seen in Figures 14 and 15,
this strategy worked and produced positive outcomes.

Additionally introduced into the model were the material densities, ρ, of 210, 300,
and 400 kg/m3 for samples A, B, and C, respectively; the Poisson’s ratio, ν, which was
approximately 0; and the strain energy potential order, N, which was of value 2. Table 5
presents these, as well as the other parameters added to the Mullins effect material model.
A strain energy potential order of value 2 yielded more reliable results in this study.
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Table 5. Mullins effect parameters introduced to characterize agglomerated cork.

Material Density [kg/m3] Poisson Ratio N r m β

Type A 210
≈0 2 1.1

0.07 0.01
Type B 300 0.08 0.02
Type C 400 0.14 0.01

The outcomes of the simulations and the experiments were contrasted. The entire
(loading and unloading) stress–strain curve of both the numerical and experimental meth-
ods is shown in Figure 14. Similar to Table 3, Table 6 also contained the maximum force,
acceleration, and strain values of the experimental and numerical data, allowing for their
comparison and evaluation. Overall, as can be shown, the FEA findings are comparable
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to the ones measured experimentally, even if the numerical results show slightly greater
stresses and strains.

Table 6. Comparison of the data from sample impact tests that were experimentally performed and
numerically simulated.

Material
Peak Force [N] Peak Acceleration [g] Peak Strain

Exp. Num. Exp. Num. Exp. Num.

Type A 6459.05 6789.98 81.94 86.13 0.364 0.365
Type B 8022.17 8363.25 101.37 105.68 0.521 0.551
Type C 10,717.18 11,813.88 134.09 147.81 0.591 0.627

It can be said that the values of the material parameters (r, m, and β) were correctly cho-
sen because samples A and C exhibit relaxation behaviours that are remarkably comparable
to those observed in the experiments during the period of recovery.

However, the numerical findings for the relaxation step in sample B may be enhanced.
Along with the experimental and numerical data of sample B’s relaxation phase, Figure 15
also shows sample B’s ideal numerical behaviour. It would be better if the numerical
curve shifted slightly to the right in the region denoted by number 1, which corresponds
to the initial fall in stress. It would be ideal for the numerical behaviour not to display
such a sharp apex in the region denoted by number 2, which is a region connected to the
conclusion of the abrupt reduction in stress.

Recalling Figure 3, an attempt was made in zone 1 to raise the m parameter, and an
attempt was made in zone 2 to lower the β parameter. Despite numerous attempts and
parameter combinations, none proved to be numerically stable. So, in further work, this is
an area that needs to be improved. Nevertheless, we can be said to achieve a numerical
behaviour related to the relaxation phase that is close to the actual behaviour of the sample;
the parameter m must likewise grow as the sample density does. Even if the model is not
perfectly optimized and has a few flaws, when used in conjunction with critical thinking, it
can be deemed to be acceptable and capable of providing accurate results.

Additionally, especially considering the substantial validation provided, Figure 16a,b
display some numerical results. Both the model’s kinetic and internal energy are plotted
in Figure 16a. In Figure 16b, the strain energy of the model and the amount of energy
dissipated due to damage are displayed.

Materials 2024, 17, x FOR PEER REVIEW 20 of 24 
 

 

However, the numerical findings for the relaxation step in sample B may be en-
hanced. Along with the experimental and numerical data of sample B’s relaxation phase, 
Figure 15 also shows sample B’s ideal numerical behaviour. It would be better if the nu-
merical curve shifted slightly to the right in the region denoted by number 1, which cor-
responds to the initial fall in stress. It would be ideal for the numerical behaviour not to 
display such a sharp apex in the region denoted by number 2, which is a region connected 
to the conclusion of the abrupt reduction in stress. 

Recalling Figure 3, an attempt was made in zone 1 to raise the m parameter, and an 
attempt was made in zone 2 to lower the 𝛽 parameter. Despite numerous attempts and 
parameter combinations, none proved to be numerically stable. So, in further work, this 
is an area that needs to be improved. Nevertheless, we can be said to achieve a numerical 
behaviour related to the relaxation phase that is close to the actual behaviour of the sam-
ple; the parameter m must likewise grow as the sample density does. Even if the model is 
not perfectly optimized and has a few flaws, when used in conjunction with critical think-
ing, it can be deemed to be acceptable and capable of providing accurate results. 

Additionally, especially considering the substantial validation provided, Figure 
16a,b display some numerical results. Both the model’s kinetic and internal energy are 
plotted in Figure 16a. In Figure 16b, the strain energy of the model and the amount of 
energy dissipated due to damage are displayed. 

 
Figure 16. Time evolution of (a) internal and kinetic energy and (b) strain and damage dissipation 
energy. 

According to these findings, the model was able to dissipate 52.48, 51.77, and 50.09 J 
for samples A, B, and C, respectively, through damage. These values correspond to 87.8, 
86.6, and 83.8% of the original kinetic energy, respectively. These numbers support the 
deductions made from the experimental findings that an increase in density causes a loss 
in the samples’ capacity to absorb energy during impact. Additionally, some energy is lost 
due to frictional effects, but since this amount is insignificant, we decided not to include 
it in these graphs. For samples A, B, and C, respectively, the kinetic energy reached its 
minimum at 4.2, 3.9, and 3.2 ms, indicating that the impactor’s velocity was zero and the 
rebound had just begun. As was previously observed, a rise in density encourages more 
abrupt deceleration. The maximum strain energy and damage dissipation energy oc-
curred, as expected, at the same time as the minimum kinetic energy, which corresponds 
to the point of maximum deformation. Because the internal energy in this model is calcu-
lated as the sum of the strain energy and the damage dissipation energy, it also achieved 
its maximum level. Although the frictional energy’s dissipation was more negligible com-
pared to the others in this model, it nonetheless had a role in the loss of impact energy. 

Notably, the maximum internal energy values for models A, B, and C were 60.53, 
60.44, and 60.36 J, respectively. The rule of the conservation of mechanical energy states 
that these numerical values of the internal energy are not physically feasible because they 
are higher than the initial gravitational potential energy and the kinetic energy at impact 

Figure 16. Time evolution of (a) internal and kinetic energy and (b) strain and damage dissipation energy.

According to these findings, the model was able to dissipate 52.48, 51.77, and 50.09 J
for samples A, B, and C, respectively, through damage. These values correspond to 87.8,
86.6, and 83.8% of the original kinetic energy, respectively. These numbers support the
deductions made from the experimental findings that an increase in density causes a loss in
the samples’ capacity to absorb energy during impact. Additionally, some energy is lost due
to frictional effects, but since this amount is insignificant, we decided not to include it in



Materials 2024, 17, 4772 19 of 22

these graphs. For samples A, B, and C, respectively, the kinetic energy reached its minimum
at 4.2, 3.9, and 3.2 ms, indicating that the impactor’s velocity was zero and the rebound
had just begun. As was previously observed, a rise in density encourages more abrupt
deceleration. The maximum strain energy and damage dissipation energy occurred, as
expected, at the same time as the minimum kinetic energy, which corresponds to the point
of maximum deformation. Because the internal energy in this model is calculated as the
sum of the strain energy and the damage dissipation energy, it also achieved its maximum
level. Although the frictional energy’s dissipation was more negligible compared to the
others in this model, it nonetheless had a role in the loss of impact energy.

Notably, the maximum internal energy values for models A, B, and C were 60.53,
60.44, and 60.36 J, respectively. The rule of the conservation of mechanical energy states
that these numerical values of the internal energy are not physically feasible because they
are higher than the initial gravitational potential energy and the kinetic energy at impact
(59.78 J). These energy levels are excited, which may contribute to the explanation of
why the numerical stress values are superior to the experimental stress results, as seen in
Figure 14.

When the impactor’s kinetic energy was at its lowest, the rebound process began, and
the impactor’s velocity rose until it lifted off of the sample. At this point, in Fernandes
et al.’s [24] study, the velocity in the FEA remained constant, which meant that the kinetic
energy stayed constant as well. However, since gravity was included in this model, we can
see in Figure 17 that the kinetic energy begins to fall until it reaches zero, at which point it
begins to increase again, simulating the rebound and subsequent beginning of the drop
before the second hit.
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Figure 17. Time evolution of the kinetic energy of the model during the first two impacts: (a) initial
impact and beginning of the ascent of the impactor, and (b) continuation of the ascent of the impactor,
the descent of the impactor, and the second impact and second ascent of the impactor as it rebounds.

Finally, the region of the sample where the energy lost due to damage is greatest is its
maximum deformation, which can be seen in Figure 18a. The damage dissipation energy
curve in Figure 16b is produced by adding this variable to each node of the model. This
process is also used to calculate the strain energy, and Figure 18b uses a similar depiction
to 16a for the strain energy scenario. The ELDMD (total energy dissipated in the element
by damage) and the ELSE (total elastic strain energy in the element) are represented in mJ.
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5. Conclusions

Agglomerated cork offers a lot of promise for usage in situations where the ability
to absorb energy is sought. Agglomerated cork was examined both statically and dy-
namically in this investigation. It should be noted that the stress–strain curve of these
impact tests can and should be split into two sub-curves; one related to the impact and
the other corresponding to the sample’s relaxation (Figure 9). These studies allowed the
authors to draw the conclusion that agglomerated cork has a significant ability to rebound
elastically, particularly at dynamic strain rates and when its permanent deformation was
minimal (less than 2%). This enables the use of agglomerated cork in equipment that can
be successfully reused and recycled after impact. This property makes this material ideal
for energy absorption applications where many impacts may occur. This study advances
our understanding of how to accurately simulate the mechanical behaviour of cork agglom-
erates under impact, and particularly the viscoelastic relaxation phenomenon, an aspect
that researchers commonly ignore.

In our quasi-static studies, it was demonstrated that the energy absorption capacity
increased proportionally with density. The type C sample, the densest, shows an increase
of 38.6% in its energy absorption capacity compared to the type A sample, which is the
least dense. However, the high rate of deformation, or the strain rate, in the dynamic
impact testing seems to indicate that the samples’ ability to absorb energy decreases with
increasing density and the influence of the significance of the Mullins effect. The type C
sample shows a decrease of 4.6% and 2.6% in its energy absorption capacity compared
to the type A and B samples, respectively. Given that the impact of agglomerated cork’s
density on its mechanical behaviour under compression and impact was well established,
this section of the work can be regarded as successful.

A numerical model for cork was further developed and optimized in this work. The
constitutive model was examined against guided drop tests and quasi-static compressive
tests. The actual behaviour of agglomerated cork during compression, as well as its
relaxation after compression, could be accurately modelled using a mix of the Hyperfoam
and Mullins effect material models. However, in the FEA, the Mullins effect was only
applied to impacts, since there were no experimental data about the unloading phase of the
quasi-static compressed tests. This can be viewed as a shortcoming of the work and ought
to be fixed in later efforts to improve the numerical model’s precision and accuracy.

Despite being nonlinear elastic, the material model accurately captured the behaviour
of agglomerated cork under dynamic compression (impacts). Additionally, the amount
of permanent deformation observed in the studies was negligible. Since agglomerated
cork compressions at dynamic strain rates can be simulated using this material model, the
authors believe it to be valid. It was also possible to accurately and ultimately replicate the
impactor’s impact, as well as its ascent and subsequent descent before the second impact,
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while taking into account the effects of gravity. This accomplishment can be viewed as an
enhancement of a previous numerical model [24].

Finally, this work made it possible to successfully assess the impact of density on
Mullins effect material parameters. It was possible to conclude that, for the numerical
model to reproduce the actual relaxation behaviour of the sample faithfully, a rise in density
must be accompanied by an increase in the parameter m. In contrast, the parameter β

must stay approximately constant. Consequently, the constitutive approach of taking
advantage of the built-in material models in Abaqus and tuning them can be deemed a real
success. This study may and should be regarded as a significant contribution to the field of
numerical mechanical modelling.
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