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Abstract: Submicron and nanosized powders have gained significant attention in recent decades
due to their broad applicability in various fields. This work focuses on ultrasonic spray pyroly-
sis, an efficient and flexible method that employs an aerosol process to synthesize titanium-based
nanoparticles by transforming titanium oxy-sulfate. Various parameters are monitored to better
optimize the process and obtain better results. Taking that into account, the influence of temperature
on the transformation of titanium oxy-sulfate was monitored between 700 and 1000 ◦C. In addition
to the temperature, the concentration of the starting solution was also changed, and the flow of
hydrogen and argon was studied. The obtained titanium-based powders had spherical morphology
with different particle sizes, from nanometer to submicron, depending on the influence of reaction
parameters. The control of the oxygen content during synthesis is significant in determining the
structure of the final powder.

Keywords: ultrasonic spray pyrolysis; titanium-based powders; nanoparticles

1. Introduction

Spray pyrolysis is a flexible technique used for producing single- and multi-layered
films, dense or porous ceramic coatings, and various material powders. Spray processing
methods can be categorized by the energy source that initiates the reaction in the starting
solution, including tubular reactors, emulsion combustion, vapor flame reactors, and
flame spray pyrolysis. Additionally, these methods can be classified by the atomization
technique used for the precursors, such as electrostatic, air-pressurized, and ultrasonic
spray pyrolysis [1–4].

Spray pyrolysis techniques can also be categorized based on the type of atomizer used.
The size of the aerosol droplets, which directly impacts the quality of the resulting film, is
largely determined by the atomization method. The three primary atomization methods
are electrostatic, air blast, and ultrasonic [5–8].

Ultrasonic atomization functions through an electromechanical device vibrating at
high frequencies. This technique is most effective for Newtonian fluids with low viscosity.
As the fluid moves across the vibrating surface, the high-frequency vibrations cause it to
break up into fine droplets [9–13].

The ultrasonic spray pyrolysis (USP) technique generates droplets using ultrasonic
waves, offering several advantages such as simplicity, cost-effectiveness, continuous op-
eration, high deposition rates, and the ability to cover large surface areas. The average
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size of the droplets produced is typically less than 20 µm at low in-flight speeds [14]. This
technique enables the synthesis of metal, oxide, and composite nanomaterials, providing
precise control over their shapes and chemical compositions by utilizing metal salts in
aqueous solutions [15,16].

USP can be used not only to produce nanoparticles from their precursors but also for
the subsequent reduction of precursors to metals in a hydrogen atmosphere. This method
is very efficient in the synthesis of fine spherical metal nanoparticles [7,17–22].

Titanium dioxide (TiO2) nanopowder has become an important material in various
fields due to its unique properties, including high refractive index, strong UV absorp-
tion, chemical stability, and photocatalytic activity. Its applications span across multiple
industries, including environmental remediation, energy, health, and consumer products.

One of the most significant uses of TiO2 nanopowder is in photocatalysis. In the
energy sector, TiO2 nanopowder is utilized in the development of dye-sensitized solar
cells (DSSCs). TiO2 nanopowder is also extensively used in the production of sunscreens
due to its effective UV-blocking capabilities. In the medical field, TiO2 nanopowder is
explored for its potential in drug delivery systems, antimicrobial coatings, and cancer
treatment. Furthermore, TiO2 nanopowder is used as a pigment in paints, coatings, and
plastics due to its high opacity and brightness. In the field of electronics, TiO2 nanoparticles
are being studied for their potential in resistive switching devices, which are the basis of
next-generation memory technologies [23–27].

Titanium dioxide (TiO2) nanopowder production involves several methods, each tai-
lored to achieve specific particle sizes, shapes, and purity levels. These methods include
sol–gel processes, hydrothermal synthesis, electrochemical deposition, and physical meth-
ods like mechanical milling. The selection of the production method is determined by the
intended application, as different processes can result in TiO2 nanoparticles with distinct
properties [28–30].

The main aim of this work is the synthesis of titanium-based powders from titanium
oxy-sulfate using the USP method, which is missing in the literature. The preparation of
titanium and titanium oxide with the formation of sulfur trioxide and decreasing oxygen
content was tested across a temperature range (700–1000 ◦C).

Ultrasonic spray pyrolysis (USP) is a highly effective and versatile technique for
synthesizing titanium dioxide (TiO2) nanoparticles. One of its key advantages is the precise
control over morphology. By generating a fine aerosol mist of the precursor solution through
ultrasonic waves, the droplet size can be adjusted by altering the ultrasonic frequency,
resulting in uniform, well-defined nanoparticles after thermal decomposition. Additionally,
USP is easily scalable, enabling large-scale production without compromising nanoparticle
quality, making it ideal for industrial applications. Furthermore, the method allows for the
synthesis of high-purity TiO2 nanoparticles.

2. Materials and Methods

Ultrasonic spray pyrolysis with hydrogen treatment, in this case, was used for the
synthesis of titanium-based powders from titanium oxy-sulfate (TiOSO4 VENATOR Hom-
bityl UN 3264, Duisburg, Germany). The innovation goal of this study is the testing of
an industrial solution of TiOSO4 for the synthesis of nanosized TiO2, which is missing
in the literature. For the experiments, industrial titanium oxy-sulfate was used at 1 M
concentration, 99.9% purity, and 1361 g/cm3 density. An ultrasonic generator (PRIZNANO,
Kragujevac, Serbia) was used for the production of aerosols. The process parameters
which were observed are temperature, concentration of the precursor, and different hydro-
gen/argon ratios at a constant frequency of 1.7 MHz. Hydrogen and argon flow rates were
controlled using a flowmeter and then mixed before entering the US generator. The process
conditions for the experiments are outlined in Table 1.
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Table 1. Design of the experiments.

Exp. No. Temperature,
◦C Time, Min Concentration,

g/L
Solution
Density, g/L

Flow Rate Ratio
H2/Ar (L/min)

1 700 180 80 1.15 1:1

2 800 180 80 1.15 1:1

3 900 180 80 1.15 1:1

4 1000 180 240 1.39 1:1

5 1000 180 120 1.2 1:1

6 1000 180 80 1.15 1:1

7 1000 180 40 1.1 1:1

8 1000 180 80 1.15 Only argon

9 1000 180 80 1.15 2:1

10 1000 180 80 1.15 3:1

All experiments were conducted at the IME, RWTH Aachen University. The methods
used for sample characterization included the following:

X-ray diffraction (XRD): Powder XRD was performed with a Bruker D8 Advance diffrac-
tometer equipped with a LynxEye detector and a copper tube with a nickel filter (Cu Kα1.2
radiation, λ = 1.54187 Å). XRD patterns were collected using Bragg–Brentano geometry.

Scanning electron microscopy (SEM): SEM analysis was carried out using the JSM
7000F by JEOL (2006 model, JEOL Ltd., Tokyo, Japan), revealing an irregular structure of
the precursor.

Energy-dispersive X-ray spectroscopy (EDX): EDX analysis was performed with an
Octane Plus-A system by Ametek-EDAX (2015 model, AMETEK Inc., Berwyn, PA, USA)
and analyzed using Genesis V 6.53 software by Ametek-EDAX.

For the analysis, HighScore software5.2 [31] with the COD database [32,33] was used.
In Figure 1, the equipment used in the experiments is shown.
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Figure 1. Scheme of USP equipment: (a) regulator for gas flow; (b) US generator; (c) furnace;
(d) bottles for sample collection; (e) gas inlet, and (f) gas outlet.

2.1. Particle Size

The formation of particles will be initially defined by the diameter of an aerosol droplet
(Dds), as indicated in Equation (1) [12,34]:

Dds = 0.34
(

8π·σ
ρ· f 2

)1
3 (1)
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where Dds is the aerosol diameter (µm), f is the ultrasound frequency (MHz), ρ is the
solution density (g/mL), and σ is the surface tension of the solution (N/m).

The particle size (Dp) is influenced by both the droplet size and the concentration
of the solution (Cs). The relationship between the concentration and other precursor
characteristics and the final particle size, assuming no precursor is lost in the process, can
be described by Equation (2) [12,34]:

Dp = Dds

(
Cs·Mmet

Mp·ρmet

)1
3 (2)

where Dp is the particle diameter (nm), Dds is the aerosol droplet diameter (nm), Mp is the
molar mass of the precursor (g/mol), ρ is the density of particles (g/cm3), and Cs is the
concentration of the precursor solution (g/L).

Using Equations (1) and (2), droplet and particle size can be determined in theory, as
shown in Figure 2.

Materials 2024, 17, x FOR PEER REVIEW 4 of 14 
 

 

where Dds is the aerosol diameter (µm), f is the ultrasound frequency (MHz), ρ is the solu-
tion density (g/mL), and σ is the surface tension of the solution (N/m). 

The particle size (Dp) is influenced by both the droplet size and the concentration of 
the solution (Cs). The relationship between the concentration and other precursor charac-
teristics and the final particle size, assuming no precursor is lost in the process, can be 
described by Equation (2) [12,34]: 

𝐷௣ = 𝐷ௗ௦ ቆ𝐶௦ ∙ 𝑀௠௘௧𝑀௣ ∙ 𝜌௠௘௧ቇଵଷ  (2)

where Dp is the particle diameter (nm), Dds is the aerosol droplet diameter (nm), Mp is the 
molar mass of the precursor (g/mol), ρ is the density of particles (g/cm3), and Cs is the 
concentration of the precursor solution (g/L). 

Using Equations (1) and (2), droplet and particle size can be determined in theory, as 
shown in Figure 2. 

 
Figure 2. Droplet and particle size of the titanium powders in theory. 

Figure 2 illustrates that as the precursor concentration increases, the diameter of the 
aerosol droplet decreases. However, the particle size increases with higher precursor con-
centrations. For a concentration of 1 mol/L of TiOSO4 (160 g/L), the expected particle sizes 
for titanium and titanium oxide are approximately 590 nm and 720 nm, respectively. Ad-
ditionally, an increase in the solution density leads to a reduction in droplet size, as indi-
cated by the black line. 

2.2. Theoretical Thermodynamic Analysis 
The hydrogen reaction with titanium oxy-sulfate is shown by the reactions in Equa-

tions (4) and (5): 

( ) ( ) ( )4 22 4TiCl g H g Ti HCl g+ = +  (3) 

( ) ( ) ( ) ( )4 2 3 2 2  0.5 TiOSO ia H g Ti SO g H O O g+ = + + +  (4) 

Figure 2. Droplet and particle size of the titanium powders in theory.

Figure 2 illustrates that as the precursor concentration increases, the diameter of the
aerosol droplet decreases. However, the particle size increases with higher precursor
concentrations. For a concentration of 1 mol/L of TiOSO4 (160 g/L), the expected particle
sizes for titanium and titanium oxide are approximately 590 nm and 720 nm, respectively.
Additionally, an increase in the solution density leads to a reduction in droplet size, as
indicated by the black line.

2.2. Theoretical Thermodynamic Analysis

The hydrogen reaction with titanium oxy-sulfate is shown by the reactions in Equations (4)
and (5):

TiCl4(g) + 2H2(g) = Ti + 4HCl(g) (3)

TiOSO4(ia) + H2(g) = Ti + SO3(g) + H2O + 0.5O2(g) (4)

2TiOSO4(ia) + 2H2(g) = TiO2 + Ti + 2SO3(g) + 2H2O (5)

TiO2 + 2H2(g) = Ti + 2H2O (6)
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Ti + O2(g) = TiO2 (7)

There are different pathways for titanium oxy-sulfate decomposition. Below 650 ◦C,
none of the reactions mentioned are likely to occur, as illustrated in Figure 3. Between
650 ◦C and 1160 ◦C, reaction (5) becomes thermodynamically feasible, allowing for the
formation of both titanium dioxide and metallic titanium. At temperatures above 1150 ◦C,
the Gibbs free energy of reaction (4) turns negative, making this reaction possible. However,
reaction (3) demonstrates that titanium chloride cannot be directly reduced to metallic
titanium under these conditions. Additionally, it is thermodynamically impossible to
reduce titanium dioxide with hydrogen, as indicated by reaction (6). On the other hand, the
oxidation of titanium to titanium oxide is the most favored reaction at room temperature
following the negative values of Gibbs energy, as shown by Equation (7) and Figure 3.
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Figure 3. Gibbs free energy changes with temperature for the reactions of titanium chloride and
titanium oxy-sulfate.

3. Results and Discussion
3.1. Influence of Temperature

The effects of temperature on different parameters such as particle size, morphology
and composition of the obtained titanium-based powders were investigated while other
parameters were kept at constant values, as shown in Table 1.

EDS results for the samples at different temperatures are shown in Figure 4.
Judging by the EDS spectra, it is clearly visible that the products obtained under these

conditions are mainly titanium dioxide by stoichiometry. The influence of temperature
shows that sulfur content decreases as temperature increases, which can be explained by
the incomplete decomposition of precursor titanium oxy-sulfate at lower temperatures. The
peak at 1.5 keV is attributed to aluminum, which is the carrier material used for the sample.

SEM analysis was used along with EDS, as stated in Section 2, and the results are
shown in Figure 5 for different temperatures.

As stated in the Introduction, using the USP method, spherical particles in the nanoscale
range are obtained. The precursor solution is TiOSO4, which is decomposed at high temper-
ature in a hydrogen atmosphere to titanium-based powders, mainly titanium dioxide.
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3.2. Influence of Concentration

As described in Table 1, the concentration of the precursor solution was changed while
other parameters remained constant (temperature 1000 ◦C, gas flow 1:1, and time 180 min).
In Figure 6, the EDS spectra are shown for precursor concentration changes.

Analysis of the EDS spectra reveals that as the precursor solution is diluted, the
titanium content decreases while the oxygen and sulfur contents increase. According to
these data, the titanium-based powder is primarily titanium dioxide. The increase in sulfur
and oxygen content with lower precursor concentrations can be attributed to the presence
of incomplete transformation of the titanium oxy-sulfate in a hydrogen atmosphere. This
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occurrence may be due to the retention time in the reactor, which is influenced by the flow
rate of the carrier gas. Similarly to the last EDS figure, the peak at 1.5 keV is attributed to
the carrier material.

Particles obtained in these experiments were also characterized using SEM analysis
(Figure 7).
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Based on the results, the morphology of the particles obtained by varying the precursor
concentration is clearly observable. Incomplete transformation of the titanium oxy-sulfate
precursor is evident in the final case (Figure 7d), as previously discussed in relation to
Figure 6, due to the presence of sulfur. Additionally, the sphericity of the resulting particles
is distinctly visible, as confirmed and noted in the analysis.

3.3. Influence of Gas Flow

Gas flow influence was also examined while all other parameters remained constant.
The first experiment in this part of the paper was performed without hydrogen in the
reaction tube. Argon, as an inert gas, was used for the transportation of droplets (2 L/min)
made in an ultrasonic spray generator. Two more experiments were carried out (Table 1)
with a ratio of 2:1 (2 L/min of hydrogen and 1 L/min argon) and a 3:1 ratio (a ratio of 1:1
was already used in previous experiments). After the first experiment (experiment 9) (only
argon), it can be concluded that the transformation of titanium oxy-sulfate is very slow
or impossible without hydrogen. In the other two experiments (10 and 11), fine spherical
nanoparticles were obtained.

The EDS spectra in Figure 8 reveal the elemental composition of oxygen (O), titanium
(Ti), and sulfur (S) for samples with different gas flow ratios during synthesis. The results
show that varying the gas flow ratio affects elemental distribution.
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Sample (a), with a 3:1 ratio, exhibits the highest oxygen and lowest titanium content,
indicating incomplete transformation due to the fastest gas flow and shortest residence
time. Sulfur content is slightly higher than in (c).

Sample (b), with a 2:1 ratio, shows slightly higher oxygen and lower titanium com-
pared to (c), reflecting reduced transformation efficiency with a shorter residence time.
Sulfur content remains low.

Sample (c), with a 1:1 hydrogen-to-argon ratio, has higher titanium and lower oxygen
content, indicating a more complete transformation of the titanium oxy-sulfate precursor
due to longer residence time. Sulfur content is minimal, suggesting effective transformation
and sulfur removal even at this lower flow rate.
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In summary, lower gas flow ratios, providing longer residence times, yield higher
titanium content, lower oxygen content, and minimal sulfur impurities, demonstrating
their effectiveness in this synthesis method.

The SEM images (Figure 9) clearly confirm the formation of very fine titanium dioxide
particles across all gas flow ratios. In image (a), corresponding to the highest gas flow ratio
of 3:1, the particles are well formed, but with slight variation in morphology. As the gas
flow ratio is reduced to 2:1, shown in image (b), the particles remain small and display
greater uniformity. Finally, image (c), with the lowest gas flow ratio of 1:1, demonstrates the
most consistent morphology, with particles appearing fine and well defined. These results
confirm that regardless of the gas flow ratio, the synthesis process consistently produces
very fine particles.

Materials 2024, 17, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 9. SEM analysis of samples for different gas flow ratios: (a) 3:1, (b) 2:1, and (c) 1:1. 

The results of the XRD analysis are shown in Figure 10. 

Figure 9. SEM analysis of samples for different gas flow ratios: (a) 3:1, (b) 2:1, and (c) 1:1.

The results of the XRD analysis are shown in Figure 10.
The XRD results for particles obtained at 1000 ◦C, with a precursor concentration of

80 g/L and varying gas flow ratios, indicate that the dissolution of titanium oxy-sulfate
is complete, resulting in the formation of titanium-based powders. Figure 10a,b shows
similar results, forming both anatase and rutile. In Figure 10c, the titanium dioxide phase in
the form of anatase is present, with clear interferences, suggesting that part of the product
may be in an amorphous form and showing that 700 ◦C is insufficient for achieving a
high-quality result.
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3.4. Oxygen Concentration Analysis

In all experiments, the concentration of oxygen in the product was also measured
using EDX quantitative analysis. The results of the experiments are shown in Figure 11.

The oxygen content in the samples obtained in this study aligns with that found
in synthetic titanium dioxide, indicating that the primary product of the USP method
is predominantly titanium dioxide. This finding is further supported by EDS spectrum
analysis. The primary aim of this work was to assess the thermochemical prediction of
forming titanium alongside titanium oxide (Equation (5)). Although Equation (5) suggests
the formation of titanium, titanium’s strong affinity for oxygen leads to the formation of
titanium oxide. Consequently, increasing the reaction temperature to 1450 ◦C is expected
to favor titanium formation, which will be explored in future experiments. The presence of
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excess oxygen (higher than the stoichiometry value) may be due to surface oxidation of
aluminum, which was used as a carrier for the sample.
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Figure 11. Oxygen concentration in synthetic titanium dioxide (sample 1), metal titanium (sample 2),
and samples from experiments (samples 3–12).

4. Conclusions

In this work, the ultrasonic spray pyrolysis (USP) of titanium oxy-sulfate was suc-
cessfully employed to synthesize titanium dioxide nanopowder. The key novelty lies in
the use of titanium oxy-sulfate as a new precursor, showing its potential for producing
high-purity titanium dioxide. Hydrogen flow during the process is essential, as the reaction
is slow or incomplete without it. The study further revealed that low temperatures are
insufficient to fully decompose the precursor, emphasizing the importance of adequate
thermal conditions for successful synthesis.

The concentration of the precursor does not significantly impact the morphology of
the final product, confirming that variations in concentration do not affect the formation of
nanoscale titanium dioxide particles. Adjustments to the gas flow ratio were found to have
an effect on particle morphology because it changes the residence time. These findings
support the robustness of the USP method for producing consistent nanoscale titanium
dioxide under varying conditions.

USP offers numerous advantages, including the ability to synthesize nanoparticles with
high purity and homogeneity while minimizing contamination risks by avoiding mechanical
processes like grinding. Additionally, the process is scalable and cost-effective, making it a
viable method for large-scale industrial production of titanium dioxide nanopowder.

However, challenges such as energy consumption and handling the high surface area
of the nanoparticles must be addressed. Future research could explore the possibility of
producing metallic titanium under mild conditions, offering a more sustainable alternative
to traditional smelting processes, as well as investigate the dependence of particle size on
these parameters.

Titanium dioxide nanopowders produced via USP have a wide range of potential
applications in photocatalysis, solar cells, sensors, biomedical devices, energy storage,
catalysis, and coatings, owing to their high surface area and controlled crystal structures.
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