Comparative First-Principles Study of the Y2Ti2O7/Matrix Interface in ODS Alloys
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussions
3.1. Bulk Properties
3.2. Interface Structural Properties
3.3. Interface Adhesion Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Odette, G.; Alinger, M.; Wirth, B. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 2008, 38, 471–503. [Google Scholar] [CrossRef]
- Capdevila, C.; Serrano, M.; Campos, M. High Strength Oxide Dispersion Strengthened Steels: Fundamentals and Applications; SAGE Publications Sage UK: London, UK, 2014; pp. 1655–1657. [Google Scholar]
- Yamashita, S.; Watanabe, S.; Ohnuki, S.; Takahashi, H.; Akasaka, N.; Ukai, S. Effect of mechanical alloying parameters on irradiation damage in oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 2000, 283, 647–651. [Google Scholar] [CrossRef]
- Spartacus, G.; Malaplate, J.; De Geuser, F.; Mouton, I.; Sornin, D.; Perez, M.; Guillou, R.; Arnal, B.; Rouesne, E.; Deschamps, A. Chemical and structural evolution of nano-oxides from mechanical alloying to consolidated ferritic oxide dispersion strengthened steel. Acta Mater. 2022, 233, 117992. [Google Scholar] [CrossRef]
- Bandriyana, B.; Sugeng, B.; Salam, R.; Hairani, D.; Sujatno, A.; Shabrina, N.; Silalahi, M. Synthesis and microstructure evaluation of ODS steel 316L with zirconia dispersion. J. Phys. Conf. Ser. 2021, 1912, 012002. [Google Scholar] [CrossRef]
- Shibata, H.; Ukai, S.; Oono, N.H.; Sakamoto, K.; Hirai, M. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion. J. Nucl. Mater. Mater. Asp. Fission Fusion. 2018, 502, 228–235. [Google Scholar] [CrossRef]
- Yang, T.-X.; Li, Z.-X.; Zhou, C.-J.; Xu, Y.-C.; Dou, P. Effects of Zr and/or Ti addition on the morphology, crystal and metal/oxide interface structures of nanoparticles in FeCrAl-ODS steels. J. Nucl. Mater. 2023, 585, 154613. [Google Scholar] [CrossRef]
- Ma, B.; Hishinuma, Y.; Noto, H.; Shimada, Y.; Muroga, T. Development of Y2O3 dispersion strengthened Cu alloy using Cu6Y and Cu2O addition through the MA-HIP process. Fusion. Eng. Des. 2020, 161, 112045. [Google Scholar] [CrossRef]
- Hoffmann, J.; Rieth, M.; Lindau, R.; Klimenkov, M.; Möslang, A.; Sandim, H.R.Z. Investigation on different oxides as candidates for nano-sized ODS particles in reduced-activation ferritic (RAF) steels. J. Nucl. Mater. 2013, 442, 444–448. [Google Scholar] [CrossRef]
- Wu, Y.; Haney, E.; Cunningham, N.; Odette, G. Transmission electron microscopy characterization of the nanofeatures in nanostructured ferritic alloy MA957. Acta Mater. 2012, 60, 3456–3468. [Google Scholar] [CrossRef]
- Sakasegawa, H.; Chaffron, L.; Legendre, F.; Boulanger, L.; Cozzika, T.; Brocq, M.; de Carlan, Y. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy. J. Nucl. Mater. 2009, 384, 115–118. [Google Scholar] [CrossRef]
- Klimiankou, M.; Lindau, R.; Möslang, A. Energy-filtered TEM imaging and EELS study of ODS particles and Argon-filled cavities in ferritic–martensitic steels. Micron 2005, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Kondo, T. Research and development on heat-resistant alloys for nuclear process heating in Japan. Nucl. Technol. 1984, 66, 75–87. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Z.; Sun, H.; Hu, H.; Li, S. Microstructural observation and tensile properties of ODS-304 austenitic steel. Mater. Sci. Eng. A 2013, 559, 287–292. [Google Scholar] [CrossRef]
- Jiang, Y.; Smith, J.R.; Odette, G.R. Prediction of structural, electronic and elastic properties of Y2Ti2O7 and Y2TiO5. Acta Mater. 2010, 58, 1536–1543. [Google Scholar] [CrossRef]
- Allen, T.R.; Busby, J.T.; Klueh, R.L.; Maloy, S.A.; Toloczko, M.B. Cladding and duct materials for advanced nuclear recycle reactors. Jom 2008, 60, 15–23. [Google Scholar] [CrossRef]
- Hsiung, L.L.; Fluss, M.J.; Tumey, S.J.; Choi, B.W.; Serruys, Y.; Willaime, F.; Kimura, A. Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance. Phys. Rev. B 2010, 82, 184103. [Google Scholar] [CrossRef]
- Jin, Y.N.; Jiang, Y.; Yang, L.T.; Lan, G.Q.; Odette, G.R.; Yamamoto, T.; Shang, J.C.; Dang, Y. First principles assessment of helium trapping in Y2TiO5 in nano-featured ferritic alloys. J. Appl. Phys. 2014, 116, 143501. [Google Scholar] [CrossRef]
- Yang, L.T.; Jiang, Y.; Wu, Y.; Odette, G.R.; Zhou, Z.J.; Lu, Z. The ferrite/oxide interface and helium management in nanostructured ferritic alloys from the first principles. Acta Mater. 2016, 103, 474–482. [Google Scholar] [CrossRef]
- Hoelzer, D.; Odette, G. Regular and NFA Ferritic Steel as Structural Materials for Power Plant HHFCs. In International HHFC Workshop on Readiness to Proceed from Near Term Fusion Systems to Power Plants; UCSD: La Jolla, CA, USA, 2008. [Google Scholar]
- Yvon, P. Structural Materials for Generation IV Nuclear Reactors; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Ren, W.; Santella, M.; Battiste, R.; Terry, T.; Denis, C. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2006. [Google Scholar] [CrossRef]
- Nganbe, M.; Heilmaier, M. Creep Behavior and Damage of Ni-Base Superalloys PM 1000 and PM 3030. Metall. Mater. Trans. A 2009, 40, 2971–2979. [Google Scholar] [CrossRef]
- Tawancy, H.M.; Abbas, N.M.; Al-Mana, A.I.; Rhys-Jones, T.N. Thermal stability of advanced Ni-base superalloys. J. Mater. Sci. 1994, 29, 2445–2458. [Google Scholar] [CrossRef]
- Ren, W.; Swindeman, R.; Santella, M. Developing a nuclear grade of Alloy 617 for Gen IV nuclear energy systems. In Proceedings of the International Congress on Advances in Nuclear Power Plants ICAPP, San Diego, CA, USA, 13–17 June 2010. [Google Scholar]
- Zinkle, S.J.; Was, G. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Man, K. Dispersoid Precipitation and Creep Behavior of Nickel-Based Oxide Dispersion Strengthened Alloys. Ph.D. Thesis, Seoul National University Graduate School, Seoul, Republic of Korea, 2018. [Google Scholar]
- Schaffer, G.; Loretto, M.; Smallman, R.; Brooks, J. The stability of the oxide dispersion in INCONEL alloy MA6000. Acta Metall. 1989, 37, 2551–2558. [Google Scholar] [CrossRef]
- Tang, Q.; Ukai, S.; Oono, N.; Hayashi, S.; Leng, B.; Sugino, Y.; Han, W.; Okuda, T. Oxide particle refinement in 4.5 mass% Al Ni-based ODS superalloys. Mater. Trans. 2012, 53, 645–651. [Google Scholar] [CrossRef]
- Jia, F.; Wang, Y.; Jiang, Y. First-principles study of helium behaviors in oxide dispersion strengthened nickel alloys. Nucl. Mater. Energy 2022, 33, 101313. [Google Scholar] [CrossRef]
- Mao, X.; Chun, Y.-B.; Han, C.-H.; Jang, J. Precipitation behavior of oxide dispersion strengthened Alloy 617. J. Mater. Sci. 2017, 52, 13626–13635. [Google Scholar] [CrossRef]
- Park, C.W.; Byun, J.M.; Choi, W.J.; Lee, S.Y.; Do Kim, Y. Improvement of high temperature mechanical properties of Ni-based oxide dispersion strengthened alloys by preferential formation of Y-Ti-O complex oxide. Mater. Sci. Eng. A 2019, 740, 363–367. [Google Scholar] [CrossRef]
- Ribis, J.; De Carlan, Y. Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 2012, 60, 238–252. [Google Scholar] [CrossRef]
- Ciston, J.; Wu, Y.; Odette, G.; Hosemann, P. The structure of nanoscale precipitates and precipitate interfaces in an oxide dispersion strengthened steel. Microsc. Microanal. 2012, 18, 760–761. [Google Scholar] [CrossRef]
- Dawson, K.; Tatlock, G.J. Characterisation of nanosized oxides in ODM401 oxide dispersion strengthened steel. J. Nucl. Mater. 2014, 444, 252–260. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Y.; Robert Odette, G.; Yamamoto, T.; Liu, Z.; Liu, Y. Trapping helium in Y2Ti2O7 compared to in matrix iron: A first principles study. J. Appl. Phys. 2014, 115, 143508. [Google Scholar] [CrossRef]
- Tirumala, R.T.A.; Gyawali, S.; Wheeler, A.; Ramakrishnan, S.B.; Sooriyagoda, R.; Mohammadparast, F.; Khatri, N.; Tan, S.; Kalkan, A.K.; Bristow, A.D.; et al. Structure–Property–Performance Relationships of Cuprous Oxide Nanostructures for Dielectric Mie Resonance-Enhanced Photocatalysis. ACS Catal. 2022, 12, 7975–7985. [Google Scholar] [CrossRef]
- Gyawali, S.; Tirumala, R.T.A.; Loh, H.; Andiappan, M.; Bristow, A.D. Photocarrier Recombination Dynamics in Highly Scattering Cu2O Nanocatalyst Clusters. J. Phys. Chem. C 2024, 128, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, S.; Tirumala, R.T.A.; Andiappan, M.; Bristow, A.D. Size- and Shape-Dependent Charge-Carrier Dynamics in Sub-micron Cuprous Oxide Nanoparticles. In Proceedings of the Frontiers in Optics + Laser Science 2022 (FIO, LS), Rochester, NY, USA, 17 October 2022; p. JTu4A.86. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 556–569. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. B 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM—J. Appl. Math. Mech./Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Pugh, S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Pettifor, D.G.; Aoki, M.; Murrell, J.N.; Cottrell, A.; Stoneham, A.M.; Haydock, R.; Inglesfield, J.E.; Pendry, J.B. Bonding and structure of intermetallics: A new bond order potential. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1991, 334, 439–449. [Google Scholar] [CrossRef]
- Pettifor, D.G. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 1992, 8, 345–349. [Google Scholar] [CrossRef]
- Subramanian, M.; Aravamudan, G.; Rao, G.S. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- He, L.; Shirahata, J.; Nakayama, T.; Suzuki, T.; Suematsu, H.; Ihara, I.; Bao, Y.; Komatsu, T.; Niihara, K. Mechanical properties of Y2Ti2O7. Scr. Mater. 2011, 64, 548–551. [Google Scholar] [CrossRef]
- Shang, S.L.; Saengdeejing, A.; Mei, Z.G.; Kim, D.E.; Zhang, H.; Ganeshan, S.; Wang, Y.; Liu, Z.K. First-principles calculations of pure elements: Equations of state and elastic stiffness constants. Comput. Mater. Sci. 2010, 48, 813–826. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. The Structure of Crystals. Nature 1932, 130, 945–946. [Google Scholar] [CrossRef]
- Salama, K.; Alers, G. Third-order elastic moduli of pure nickel and some dilute copper-nickel alloys. IEEE Trans. Sonics Ultrason. 1969, 1, 28. [Google Scholar]
- Rayne, J.A.; Chandrasekhar, B.S. Elastic Constants of Iron from 4.2 to 300 °K. Phys. Rev. 1961, 122, 1714–1716. [Google Scholar] [CrossRef]
- Ingel, R.P.; Lewis, D., III. Elastic anisotropy in zirconia single crystals. J. Am. Ceram. Soc. 1988, 71, 265–271. [Google Scholar] [CrossRef]
Material | GGA- PW91 | GGA- PBE | LDA | Other Calc. | Expt. | |
---|---|---|---|---|---|---|
pyrochlore-Y2Ti2O7 | a/Å | 10.18 | 10.19 | 10.00 | 10.17, 10.11 [15] | 10.09 [53] |
B0/GPa | 183 | 184 | 214 | 183, 193 [15] | ||
c11 | 334 | 331 | 368 | 325 [15] | ||
c12 | 119 | 117 | 140 | 111 [15] | ||
c44 | 95 | 93 | 110 | 76 [15] | ||
B/GPa | 191 | 188 | 216 | 182 [15] | 170, 190, 192 [54] | |
G/GPa | 100 | 98 | 111 | 87 [15] | 101, 103, 104 [54] | |
E/GPa | 255 | 251 | 285 | 226 [15] | 253, 62, 265 [54] | |
B/G | 1.91 | 1.92 | 1.94 | 2.09 [15] | 0.25, 0.27 [54] | |
v | 0.28 | 0.28 | 0.28 | 0.29 [15] | 1.70~1.90 [54] | |
Z | 0.88 | 0.87 | 0.96 | 0.71 [15] | ||
Fcc-Ni | a/Å | 3.52 | 3.52 | 3.43 | 3.52, 3.53 [55] | 3.52 [56] |
B0/GPa | 197 | 198 | 242 | 189 [55] | ||
c11 | 271 | 279 | 301 | 276 [55] | 252 [57] | |
c12 | 149 | 155 | 271 | 160 [55] | 154 [57] | |
c44 | 127 | 130 | 143 | 126 [55] | 122 [57] | |
B/GPa | 190 | 197 | 214 | 199 [55] | 187 [57] | |
G/GPa | 95 | 97 | 105 | 92 [55] | 85 [57] | |
E/GPa | 243 | 249 | 270 | 240 [55] | 220 [57] | |
B/G | 2.00 | 2.03 | 2.04 | 2.15 [55] | 2.21 [57] | |
v | 0.29 | 0.29 | 0.29 | 0.30 [55] | 0.30 [57] | |
Z | 2.08 | 2.10 | 2.18 | 2.17 [55] | ||
bcc-Fe | a/Å | 2.84 | 2.84 | 2.75 | 2.83 [15] | 2.87 [56] |
B0/GPa | 175 | 177 | 256 | 175 [15] | ||
c11 | 243 | 241 | 257.26 | 236 [15] | 243 [58] | |
c12 | 135 | 134 | 153.07 | 132 [15] | 138 [58] | |
c44 | 118 | 118 | 132.29 | 105 [15] | 122 [58] | |
B/GPa | 173 | 173 | 189 | 166 [15] | 173 [58] | |
G/GPa | 86 | 87 | 93 | 84 [15] | 94 [58] | |
E/GPa | 221 | 225 | 240 | 205 [15] | 238 [58] | |
B/G | 1.98 | 1.97 | 2.03 | 2.1 [15] | 0.26 [58] | |
v | 0.28 | 0.28 | 0.29 | 0.29 [15] | 1.84 [58] | |
Z | 2.19 | 2.20 | 2.54 | 2.02 |
Ni(001)/Y2Ti2O7 | Fe(100)/Y2Ti2O7 (100) |
---|---|
UNi = +0.27% VNi = +1.27% | UFe = +3.35% VFe = +3.35% |
U227 = −0.04% V227 = −2.59% | U227 = −7.43% V227 = −7.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Long, D.; Jiang, Y.; Sun, Y. Comparative First-Principles Study of the Y2Ti2O7/Matrix Interface in ODS Alloys. Materials 2024, 17, 4822. https://doi.org/10.3390/ma17194822
Wang Y, Long D, Jiang Y, Sun Y. Comparative First-Principles Study of the Y2Ti2O7/Matrix Interface in ODS Alloys. Materials. 2024; 17(19):4822. https://doi.org/10.3390/ma17194822
Chicago/Turabian StyleWang, Yiren, Dijun Long, Yong Jiang, and Yongduo Sun. 2024. "Comparative First-Principles Study of the Y2Ti2O7/Matrix Interface in ODS Alloys" Materials 17, no. 19: 4822. https://doi.org/10.3390/ma17194822
APA StyleWang, Y., Long, D., Jiang, Y., & Sun, Y. (2024). Comparative First-Principles Study of the Y2Ti2O7/Matrix Interface in ODS Alloys. Materials, 17(19), 4822. https://doi.org/10.3390/ma17194822