Direct Identification of the Continuous Relaxation Time and Frequency Spectra of Viscoelastic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Relaxation Spectra
2.2. Models
2.3. Properties of the Basis Functions
3. Results
3.1. Spectrum Approximation
3.2. Identification Problem
3.3. Regularization
3.4. Algebraic Background
3.5. Analysis
3.5.1. Model Smoothness
3.5.2. Noise Robustness and Convergence
3.5.3. Error of the Relaxation Modulus Model
3.6. Identification Algorithm
- Choose the time-scaling factor and the number of model components comparing, for different values of , a few functions from the sequence given by (12), and creating relaxation modulus model (11) with the experiment results ;
- Perform the experiment and record the measurements of the relaxation modulus at times , ;
- Compute the matrix (25), and next, determine the SVD (35) with the singular values of ;
- Select the regularization parameter such that for assumed and the spectral condition number is such that
- For chosen , compute the regularized solution according to (39);
- Determine the modified spectrum of relaxation frequencies according to (41);
- Determined the spectra of relaxation time and frequency according to (43) and (42), respectively, as the linear combinations of the respective basis functions.
3.7. Simulational Studies
3.8. Identification of Uni-Mode Gauss-like Spectrum
3.9. Identification of Double-Mode Gauss-like Spectrum
3.10. Identification of KWW Relaxation Spectrum
3.11. Applicability of the Approach for Identification of Relaxation Spectra of Different Types
3.12. Direct Identification of the Relaxation Spectra of Viscoelastic Solid Materials
- Case 1. If the duration of the relaxation test can be extended so as to experimentally record a time-constant relaxation modulus (in practice, constant stress), then is experimentally evaluated and the proposed identification algorithm can be simply applied by replacing the measurements with their increments (82) in relation to known .
- Case 2. For identification purposes, only time-varying relaxation modulus measurements are available, i.e., the steady-state stress was not recorded during the experiment. In such a situation, non-negative is an additional model parameter that should be extrapolated beyond the experiment time horizon limited by the upper bound . The linear-quadratic problem (32) of optimal identification needs to be reformulated, re-regularized and solved, which creates a new research problem.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Lemma 1
Appendix A.2. Proof of Proposition 1
Appendix A.3. Proof of Proposition 3
Appendix A.4. Proof of Proposition 4
Appendix A.5. Norms of the Spectra (65), (68), and (69)
Appendix A.6. Norms of the Double-Mode Gauss Spectra (70), (71), and
References
- Macey, H.H. On the Application of Laplace Pairs to the Analysis of Relaxation Curves. J. Sci. Instrum. 1948, 25, 251–253. [Google Scholar] [CrossRef]
- Sips, R. Mechanical behavior of viscoelastic substances. J. Polym. Sci. 1950, 5, 69–89. [Google Scholar] [CrossRef]
- Honerkamp, J.; Weese, J. Determination of the relaxation spectrum by a regularization method. Macromolecules 1989, 22, 4372–4377. [Google Scholar] [CrossRef]
- Baumgaertel, M.; Winter, H.H. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol. Acta 1989, 28, 511–519. [Google Scholar] [CrossRef]
- Stadler, F.J.; Bailly, C. A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol. Acta 2009, 48, 33–49. [Google Scholar] [CrossRef]
- Anderssen, R.S.; Davies, A.R.; de Hoog, F.R.; Loy, R.J. Derivative based algorithms for continuous relaxation spectrum recovery. J. Non-Newton. Fluid Mech. 2015, 222, 132–140. [Google Scholar] [CrossRef]
- Babaei, B.; Davarian, A.; Pryse, K.M.; Elson, E.L.; Genin, G.M. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. J. Mech. Behav. Biomed. Mater. 2016, 55, 32–41. [Google Scholar] [CrossRef]
- Lee, S.H.; Bae, J.-E.; Cho, K.S. Determination of continuous relaxation spectrum based on the Fuoss-Kirkwood relation and logarithmic orthogonal power-series approximation. Korea-Aust. Rheol. J. 2017, 29, 115–127. [Google Scholar] [CrossRef]
- Cho, G.; Choi, J.; Lee, J.; Cho, K.S. Application of Post–Widder inversion formula to the calculation of relaxation spectrum from relaxation modulus. Korea-Aust. Rheol. J. 2024, 36, 79–88. [Google Scholar] [CrossRef]
- Stankiewicz, A. Robust Recovery of Optimally Smoothed Polymer Relaxation Spectrum from Stress Relaxation Test Measurements. Polymers 2024, 16, 2300. [Google Scholar] [CrossRef]
- Honerkamp, J.; Weese, J. A nonlinear regularization method for the calculation of relaxation spectra. Rheol. Acta 1993, 32, 65–73. [Google Scholar] [CrossRef]
- Syed Mustapha, S.M.F.D.; Phillips, T.N. A dynamic nonlinear regression method for the determination of the discrete relaxation spectrum. J. Phys. D Appl. Phys. 2000, 33, 1219. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Vasilyev, G.B.; Andrianov, A.V. On continuous relaxation spectrum. Method of calculation. Polym. Sci. Ser. A 2010, 52, 1137–1141. [Google Scholar] [CrossRef]
- Davies, A.R.; Goulding, N.J. Wavelet regularization and the continuous relaxation spectrum. J. Non-Newton. Fluid Mech. 2012, 189–190, 19–30. [Google Scholar] [CrossRef]
- Baumgaertel, M.; Schausberger, A.; Winter, H.H. The relaxation of polymers with linear flexible chains of uniform length. Rheol. Acta 1990, 29, 400–408. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, B.; Chen, J. A unified procedure for rapidly determining asphalt concrete discrete relaxation and retardation spectra. Constr. Build. Mater. 2015, 93, 35–48. [Google Scholar] [CrossRef]
- Luo, L.; Xi, R.; Ma, Q.; Tu, C.; Ibrahim Shah, Y. An improved method to establish continuous relaxation spectrum of asphalt materials. Constr. Build. Mater. 2022, 354, 129182. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Li, C.; Xing, Y. The Discrete and Continuous Retardation and Relaxation Spectrum Method for Viscoelastic Characterization of Warm Mix Crumb Rubber-Modified Asphalt Mixtures. Materials 2020, 13, 3723. [Google Scholar] [CrossRef]
- Malkin, A.Y. Continuous relaxation spectrum–its advantages and methods of calculation. Int. J. Appl. Mech. Eng. 2006, 11, 235–243. Available online: http://www.ijame.uz.zgora.pl/ijame_files/archives/v11PDF/n2/235-243_Article_02.pdf (accessed on 25 August 2024).
- Friedrich, C.; Loy, R.J.; Anderssen, R.S. Relaxation time spectrum molecular weight distribution relationships. Rheol. Acta 2009, 48, 151–162. [Google Scholar] [CrossRef]
- Alfrey, T.; Doty, P. The Methods of Specifying the Properties of Viscoelastic Materials. J. Appl. Phys. 1945, 16, 700–713. [Google Scholar] [CrossRef]
- ter Haar, D. An easy approximate method of determining the relaxation spectrum of a viscoelastic materials. J. Polym. Sci. 1951, 6, 247–250. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Yunping, X. Continuous Retardation Spectrum for Solidification Theory of Concrete Creep. J. Eng. Mech. 1995, 121, 281–288. [Google Scholar] [CrossRef]
- Kurenuma, Y.; Nakano, T. Analysis of stress relaxation on the basis of isolated relaxation spectrum for wet wood. J. Mater. Sci. 2012, 47, 4673–4679. [Google Scholar] [CrossRef]
- Kontogiorgos, V. Calculation of Relaxation Spectra from Stress Relaxation Measurements. In Biopolymers; Elnashar, M., Ed.; Sciyo: London, UK, 2010. [Google Scholar] [CrossRef]
- Stankiewicz, A. A Class of Algorithms for Recovery of Continuous Relaxation Spectrum from Stress Relaxation Test Data Using Orthonormal Functions. Polymers 2023, 15, 958. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, A. Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-ScaleFactor. Materials 2023, 16, 3565. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Bojanowska, M.; Drozd, P. On Recovery of a Non-Negative Relaxation Spectrum Model from the Stress Relaxation Test Data. Polymers 2023, 15, 3464. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Ye, W.; Tan, Y.; Zhang, D. Inter-conversion of the generalized Kelvin and generalized Maxwell model parameters via a continuous spectrum method. Constr. Build. Mater. 2022, 351, 128963. [Google Scholar] [CrossRef]
- Bachman, G.; Narici, L. Functional Analysis; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Christensen, R.M. Theory of Viscoelasticity: An Introduction, 2nd ed.; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Malkin, A.I.A.; Malkin, A.Y.; Isayev, A.I. Rheology: Concepts, Methods and Applications; ChemTec: Deerfield Beach, FL, USA, 2006; Available online: https://books.google.pl/books?id=8rGafjhgz-UC (accessed on 15 June 2024).
- Pogreb, R.; Loew, R.; Bormashenko, E.; Whyman, G.; Multanen, V.; Shulzinger, E.; Abramovich, A.; Rozban, A.; Shulzinger, A.; Zussman, E.; et al. Relaxation spectra of polymers and phenomena of electrical and hydrophobic recovery: Interplay between bulk and surface properties of polymers. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 198–205. [Google Scholar] [CrossRef]
- Malkin, A.Y. The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers. Polym. Sci. Ser. A 2006, 48, 39–45. [Google Scholar] [CrossRef]
- Povolo, F.; Hermida, É.B. Influence of Intensity of Relaxation on Interconversion between Normalized Distribution Functions. Polym. J. 1992, 24, 1–13. [Google Scholar] [CrossRef]
- Stankiewicz, A. On the existence and uniqueness of the relaxation spectrum of viscoelastic materials. Part II: Other existence conditions. Teka Comm. Mot. Energetics Agric. 2010, 10, 388–395. [Google Scholar]
- Rao, M.A. Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications; Springer: New York, NY, USA, 2013; Available online: https://books.google.pl/books?id=9-23BAAAQBAJ (accessed on 25 August 2024).
- Golub, G.H.; Van Loan, C.F. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1998. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Maćkiewicz, A. Linear Algebra Algorithms. Direct Methods; Poznań University of Technology Publishing House: Poznań, Poland, 2002. (In Polish) [Google Scholar]
- Davies, A.R.; Anderssen, R.S.; de Hoog, F.R.; Goulding, N.J. Derivative spectroscopy and the continuous relaxation spectrum. J. Non-Newton. Fluid Mech. 2016, 233, 107–118. [Google Scholar] [CrossRef]
- Muzeau, E.; Perez, J.; Johari, G.P. Mechanical spectrometry of the beta-relaxation in poly(methyl methacrylate). Macromolecules 1991, 24, 4713–4723. [Google Scholar] [CrossRef]
- Pérez-Calixto, D.; Amat-Shapiro, S.; Zamarrón-Hernández, D.; Vázquez-Victorio, G.; Puech, P.-H.; Hautefeuille, M. Determination by Relaxation Tests of the Mechanical Properties of Soft Polyacrylamide Gels Made for Mechanobiology Studies. Polymers 2021, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Kwakye-Nimo, S.; Inn, Y.; Yu, Y.; Wood-Adams, P.M. Linear viscoelastic behavior of bimodal polyethylene. Rheol. Acta 2022, 61, 373–386. [Google Scholar] [CrossRef]
- Cirillo, G.; Spizzirri, U.G.; Iemma, F. Functional Polymers in Food Science: From Technology to Biology, Volume 1: Food Packaging; Wiley: New York, NY, USA, 2015; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119108580 (accessed on 20 August 2024).
- Lorenzo, G.; Checmarev, G.; Zaritzky, N.; Califano, A. Linear viscoelastic assessment of cold gel-like emulsions stabilized with bovine gelatin. LWT—Food Sci. Technol. 2011, 44, 457–464. [Google Scholar] [CrossRef]
- Carrillo-Navas, H.; Hernández-Jaimes, C.; Utrilla-Coello, R.G.; Meraz, M.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Viscoelastic relaxation spectra of some native starch gels. Food Hydrocoll. 2014, 37, 25–33. [Google Scholar] [CrossRef]
- Bardet, S.; Gril, J. Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements. C. R. Mécanique 2002, 330, 549–556. [Google Scholar] [CrossRef]
- Ravindra, V.G.; Sasikumar, K.V. Synthesis and characterization of xanthan gum stabilized polyvinyl acetate-based wood adhesive. Polym. Bull. 2023, 81, 7423–7440. [Google Scholar]
- de Gennes, P.-G. Relaxation Anomalies in Linear Polymer Melts. Macromolecules 2002, 35, 3785–3786. [Google Scholar] [CrossRef]
- Roksana Winkler, R.; Unni, A.B.; Tu, W.; Chat, K.; Adrjanowicz, K. On the Segmental Dynamics and the Glass Transition Behavior of Poly(2-vinylpyridine) in One- and Two-Dimensional Nanometric Confinement. J. Phys. Chem. B 2021, 125, 5991–6003. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Nakayama, Y.; Yoshikawa, M.; Enyo, A. Stress relaxation function of bone and bone collagen. J. Biomech. 1993, 26, 1369–1376. [Google Scholar] [CrossRef]
- Giz, A.S.; Aydelik-Ayazoglu, S.; Catalgil-Giz, H.; Bayraktar, H.; Alaca, B.E. Stress relaxation and humidity dependence in sodium alginate-glycerol films. J. Mech. Behav. Biomed. Mater. 2019, 100, 103374. [Google Scholar] [CrossRef]
- Wu, J.; Jia, Q. The heterogeneous energy landscape expression of KWW relaxation. Sci. Rep. 2016, 6, 20506. [Google Scholar] [CrossRef]
- Anderssen, R.S.; Saiful, A.; Husain, R.; Loy, J. The Kohlrausch function: Properties and applications. In Proceedings of the 11th Computational Techniques and Applications Conference CTAC-2003; Crawford, J., Roberts, A.J., Eds.; ANZIAM Journal: Callaghan, NSW, Australia, 2004; Volume 45, pp. C800–C816. [Google Scholar] [CrossRef]
- Qiao, J.C.; Pelletier, J.M. Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC). Intermetallics 2011, 19, 9–18. [Google Scholar] [CrossRef]
- Haruyama, O.; Sakagami, H.; Nishiyama, N.; Inoue, A. The free volume kinetics during structural relaxation in bulk Pd-P based metallic glasses. Mater. Sci. Eng. A 2007, 449–451, 497–500. [Google Scholar] [CrossRef]
- Taghvaei, A.H.; Shirazifard, N.G.; Ramasamy, P.; Bednarčik, J.; Eckert, J. Thermal behavior, structural relaxation and magnetic study of a new Hf-microalloyed Co-based glassy alloy with high thermal stability. J. Alloys Compd. 2018, 748, 553–560. [Google Scholar] [CrossRef]
- Stankiewicz, A. On Applicability of the Relaxation Spectrum of Fractional Maxwell Model to Description of Unimodal Relaxation Spectra of Polymers. Polymers 2023, 15, 3552. [Google Scholar] [CrossRef]
- Jeffrey, A.; Zwillinger, D.; Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Plazek, D.J.; Ngai, K.L. Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules 1991, 24, 1222–1224. [Google Scholar] [CrossRef]
- Böhmer, R.; Ngai, K.L.; Angell, C.A.; Plazek, D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 1993, 99, 4201–4209. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Wan, X.; Zhang, X.; Li, G.; Liu, G. Modeling the viscoelastic behavior in the frequency domain of crosslinked polystyrene with different degrees of crosslinking from the perspective of relaxation. Mech. Time-Depend Mater. 2023, 27, 743–763. [Google Scholar] [CrossRef]
- Laukkanen, O.V.; Winter, H.H.; Soenen, H.; Seppäla, J. An empirical constitutive model for complex glass-forming liquids using bitumen as a model material. Rheol. Acta 2018, 57, 57–70. [Google Scholar] [CrossRef]
- Baumgaertel, M.; Winter, H.H. Interrelation between continuous and discrete relaxation time spectra. J. Non-Newton. Fluid Mech. 1992, 44, 15–36. [Google Scholar] [CrossRef]
- Choi, J.; Cho, K.S.; Kwon, M.K. Self-Similarity and Power-Law Spectra of Polymer Melts and Solutions. Polymers 2022, 14, 3924. [Google Scholar] [CrossRef]
- Bonfanti, A.; Kaplan, J.L.; Charras, G.; Kabla, A. Fractional viscoelastic models for power-law materials. Soft Matter 2020, 16, 6002–6020. [Google Scholar] [CrossRef]
- Saphiannikova, M.; Toshchevikov, V.; Gazuz, I.; Petry, F.; Westermann, S.; Heinrich, G. Multiscale Approach to Dynamic-Mechanical Analysis of Unfilled Rubbers. Macromolecules 2014, 47, 4813–4823. [Google Scholar] [CrossRef]
- Winter, H.H.; Chambon, F. Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point. J. Rheol. 1986, 30, 367–382. [Google Scholar] [CrossRef]
- Lee, C.-H. Upper and lower matrix bounds of the solution for the discrete Lyapunov equation. IEEE Trans. Autom. Control 1996, 41, 1338–1341. [Google Scholar] [CrossRef]
= 2 | = 3 | = 4 | = 5 | = 8 | = 10 | = 15 | = 20 | = 100 | = 1000 | = 10,000 | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 38.474 | 1.35 × 103 | 4.59 × 104 | 1.54 × 106 | 5.64 × 1010 | 6.23 × 1013 | 2.61 × 1017 | 6.45 × 1018 | 1.20 × 1019 | 9.59 × 1020 | 1.0 × 1022 |
10 | 1.071 | 1.087 | 1.098 | 1.106 | 1.122 | 1.129 | 1.14129 | 1.1496 | 1.18809 | 1.225 | 1.248 |
1 | 1.699 | 1.874 | 1.977 | 2.056 | 2.215 | 2.288 | 2.412 | 2.495 | 2.880 | 3.247 | 3.479 |
0.1 | 6.983 | 9.688 | 10.773 | 11.559 | 13.154 | 13.877 | 15.123 | 15.953 | 19.800 | 23.469 | 25.798 |
0.01 | 25.552 | 83.135 | 98.55 | 106.59 | 122.542 | 129.766 | 142.232 | 150.535 | 189.001 | 225.687 | 248.977 |
1 × 10−3 | 36.600 | 532.056 | 958.14 | 1.06 × 103 | 1.22 × 103 | 1.29 × 103 | 1.41 × 103 | 1.49 × 103 | 1.88 × 103 | 2.25 × 103 | 2.48 × 103 |
1 × 10−4 | 38.278 | 1.17 × 103 | 8.06 × 103 | 1.05 × 104 | 1.22 × 104 | 1.29 × 104 | 1.41 × 104 | 1.49 × 104 | 1.88 × 104 | 2.25 × 104 | 2.48 × 104 |
1 × 10−5 | 38.454 | 1.33× 103 | 3.12 × 104 | 9.88 × 104 | 1.22 × 105 | 1.29 × 105 | 1.41 × 105 | 1.49 × 105 | 1.88 × 105 | 2.25 × 105 | 2.48 × 105 |
10 | 50 | 100 | 500 | 1000 | 5000 | 10,000 | |
---|---|---|---|---|---|---|---|
1.1348 | 1.3153 | 1.3711 | 1.4677 | 1.4989 | 1.5556 | 1.5747 | |
1.437 × 10−7 | 1.919 × 10−10 | 3.955 × 10−10 | 1.923 × 10−10 | 4.838 × 10−11 | 2.323 × 10−11 | 1.573 × 10−11 | |
0.3737 | 0.3737 | 0.3737 | 0.3737 | 0.3737 | 0.3737 | 0.3737 | |
6.829 × 10−8 | 1.151 × 10−11 | 1.847 × 10−12 | 1.017 × 10−13 | 2.455 × 10−14 | 2.769 × 10−15 | 6.473 × 10−15 |
20 | 4.90 | 3.1 × 10−6 | 8.194688 | 1.000985 | 3.681218 × 10−5 | 8.752841 × 103 | 3.548595 | 0.0500 |
50 | 3.75 | 9.0 × 10−6 | 8.167268 | 0.847115 | 3.486716 × 10−5 | 4.639282 × 103 | 2.461727 | 0.0347 |
100 | 3.98 | 7.8 × 10−6 | 8.193556 | 0.861458 | 3.272773 × 10−5 | 7.334379 × 103 | 2.439776 | 0.0344 |
150 | 3.75 | 5.5 × 10−6 | 8.248417 | 0.865259 | 3.310334 × 10−5 | 1.281206 × 104 | 2.625005 | 0.0370 |
200 | 4.08 | 9.5 × 10−6 | 8.173553 | 0.869989 | 3.299329 × 10−5 | 8.550751 × 103 | 2.875342 | 0.0405 |
50 | 22.5 | 8 × 10−7 | 17.008811 | 0.377417 | 8.91256 × 10−6 | 2.63874 × 104 | 83.212916 | 0.224394 |
100 | 16.3 | 1.2 × 10−6 | 16.749729 | 0.415414 | 8.20297 × 10−6 | 2.38674 × 104 | 89.54064 | 0.241457 |
150 | 9.35 | 2.1 × 10−6 | 16.145506 | 0.440330 | 8.33036 × 10−6 | 1.68329 × 104 | 90.59845 | 0.244309 |
200 | 6.5 | 3.1 × 10−6 | 16.447062 | 0.404095 | 8.38748 × 10−6 | 1.321209 × 104 | 85.71129 | 0.2311311 |
300 | 5.2 | 4 × 10−6 | 16.650568 | 0.401779 | 8.04576 × 10−6 | 1.228249 × 104 | 87.92225 | 0.237093 |
25 | 0.8 | 2 × 10−5 | 0.454723 | 0.267896 | 9.46218 × 10−8 | 76.901664 | 1.83447 × 10−3 | 8.77098 × 10−3 |
50 | 0.65 | 7 × 10−5 | 0.456956 | 0.284479 | 8.70335 × 10−8 | 29.800961 | 9.82909 × 10−4 | 4.69948 × 10−3 |
75 | 0.6 | 7.5 × 10−5 | 0.4571396 | 0.289756 | 8.52022 × 10−8 | 33.705039 | 8.50259 × 10−4 | 4.06526 × 10−3 |
100 | 0.65 | 8.5 × 10−5 | 0.456765 | 0.284243 | 8.18454 × 10−8 | 33.6572199 | 8.26024 × 10−4 | 3.94938 × 10−3 |
150 | 0.6 | 1 × 10−4 | 0.457356 | 0.289670 | 8.28962 × 10−8 | 35.262493 | 8.41199 × 10−4 | 4.02194 × 10−3 |
200 | 0.6 | 1.5 × 10−4 | 0.456657 | 0.289207 | 8.25479 × 10−8 | 27.087999 | 7.34565 × 10−4 | 3.51210 × 10−3 |
300 | 0.55 | 1.6 × 10−4 | 0.456875 | 0.294931 | 7.97708 × 10−8 | 30.574734 | 7.12159 × 10−4 | 3.40497 × 10−3 |
400 | 0.55 | 1.6 × 10−4 | 0.456791 | 0.294901 | 8.10268 × 10−8 | 35.581507 | 7.12571 × 10−4 | 3.40694 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankiewicz, A. Direct Identification of the Continuous Relaxation Time and Frequency Spectra of Viscoelastic Materials. Materials 2024, 17, 4870. https://doi.org/10.3390/ma17194870
Stankiewicz A. Direct Identification of the Continuous Relaxation Time and Frequency Spectra of Viscoelastic Materials. Materials. 2024; 17(19):4870. https://doi.org/10.3390/ma17194870
Chicago/Turabian StyleStankiewicz, Anna. 2024. "Direct Identification of the Continuous Relaxation Time and Frequency Spectra of Viscoelastic Materials" Materials 17, no. 19: 4870. https://doi.org/10.3390/ma17194870
APA StyleStankiewicz, A. (2024). Direct Identification of the Continuous Relaxation Time and Frequency Spectra of Viscoelastic Materials. Materials, 17(19), 4870. https://doi.org/10.3390/ma17194870