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Abstract: The growing importance of electromagnetic interference (EMI) shielding composites in civil
engineering has garnered increasing attention. Conductive cement-based composites, incorporating
various conductive fillers, such as carbon nanotubes (CNTs), carbon fibers (CFs), and graphene
nanoplatelets (GNPs), provide effective solutions due to their high electrical conductivity. While
previous studies have primarily focused on improving the overall shielding effectiveness, this research
emphasizes balancing the reflection and absorption properties. The experimental results demonstrate
an EMI shielding performance exceeding 50 dB, revealing that filler size (nano, micro, or macro) and
shape (platelet or fiber) significantly influence both reflection and absorption characteristics. Based
on a comprehensive evaluation of the shielding properties, this study highlights the need to consider
factors such as reflection versus absorption losses and filler shape or type when optimizing filler
content to develop effective cement-based EMI shielding composites.

Keywords: electromagnetic wave interference; carbon nanotube; carbon fiber; graphene nanoplate;
absorption; reflection

1. Introduction

The rapid advancements in electronic and telecommunication technologies underscore
the significance of electromagnetic wave interference (EMI) shielding composites due to
the potential health hazards posed by EM waves and their interference with electronic
devices [1-4]. In civil engineering, various infrastructure and construction equipment are
vulnerable to EM waves, necessitating the widespread adoption of cement-based EMI
shielding composites for protection [5-7]. Initially, metallic materials were utilized in the
development of these composites; however, their use posed challenges related to corrosion
and increased composite weight, limiting their applicability in civil infrastructure [8-10]. In
recent years, researchers have turned to carbon-based conductive fillers, such as carbon nan-
otubes (CNTs), carbon fibers (CFs), carbon black (CB), and graphene nanoplatelets (GNPs),
to fabricate conductive cement for EMI shielding applications [11,12]. Incorporating such
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fillers ensures favorable electrical conductivity, enabling the development of cement-based
EMI shielding composites with excellent EMI shielding performance. Nam et al. [13] re-
ported that the addition of 1 wt% CNTs to 2.36 mm thick cement composites resulted in a
29 dB EMI shielding performance within the X-band frequency range. Yoon et al. developed
conductive cement incorporating 0.2 wt% CNTs and 0.5% CFs, achieving a total shielding
effectiveness of 18 dB at 10 GHz input frequency [14]. Additionally, Park et al. [15] demon-
strated that a 0.2 vol% of CFs in concrete with a thickness of 10 cm exhibited 40 dB of total
shielding effectiveness across a frequency range of 600 to 2000 MHz. Many researchers
have explored the synergistic effects of combining different types of conductive fillers
with varying sizes and shapes to enhance the electrical conductivity of composites. This
synergistic interaction can reduce the required amount of conductive filler while simultane-
ously improving both electrical conductivity and functional properties [14]. For example,
previous studies have demonstrated that the combination of CNTs and CFs can create hier-
archical conductive networks within composites, leading to improvements in both electrical
conductivity and mechanical properties [16,17]. However, fewer studies have investigated
the synergistic effects of these fillers on enhancing the EMI shielding performance of cement
composites, particularly in relation to reflection and absorption properties.

It is noteworthy that the total shielding effectiveness of EMI shielding composites com-
prises both reflection and absorption properties. However, previous research efforts in
developing cement-based EMI shielding composites have primarily been aimed at enhancing
total shielding effectiveness without thoroughly investigating the balance between reflection
and absorption properties. Even though increasing the total shielding effectiveness is desir-
able, an increase in the reflection property may inadvertently direct EM waves toward other
electronic devices or pose health risks to individuals [18]. Therefore, while significant strides
have been made in improving the total shielding effectiveness, few studies have focused on
examining the ratio of the shielding properties. In this regard, this study addresses this gap
by systematically examining the reflection and absorption properties of cement-based EMI
shielding composites incorporating CN'Ts, CFs, and/or GNPs.

2. Experimental Procedure

In this study, ordinary Portland cement (OPC) served as the binder material, while
sand with particle sizes ranging from 0.17 to 0.7 mm was employed as the aggregate.
Silica fume (Elkem Inc., EMS-970, Cliffwood, NJ, USA) was incorporated to enhance the
dispersion of nanoparticles within the cement matrix. A water-to-cement ratio of 0.45 was
maintained, and a polycarboxylate-based superplasticizer (Dongnam Co., Ltd., FLOWMIX
3000 U, Gyeonggi-do, Republic of Korea) was utilized to achieve the desired flowability for
sample fabrication. Three distinct types of conductive fillers, namely, CNTs, CFs, and GNPs,
were employed, with detailed specifications available in previous works by the authors.
The specific mix proportions employed in this study are summarized in Table 1. As reported
in the relevant literature, the incorporation of micron-sized CFs reduce the workability
during the fabrication process. Additionally, a large amount of GNPs is necessary to
achieve desirable electrical conductivity. Therefore, in this study, the CNT content was
fixed at 0.5 wt% for samples containing two types of conductive fillers, while CFs or GNPs
were subsequently added to these samples. The sample fabrication procedures followed
methodologies outlined in prior investigations.

Prior to determining the levels of incorporated conductive fillers, the electrical conductivity
of the composites solely containing CNTs, CFs, or GNPs was evaluated. The selection of each
conductive filler content commenced from the percolation threshold region, characterized by
a significant decrease in electrical resistivity. The AC conductivity of the produced samples
within the X-band frequency range was measured using a PNA network analyzer (N5225B,
Keysight, Santa Rosa, CA, USA). Here, the free space EMI shielding measurements were
conducted following the standards outlined in the previous study [19].
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Table 1. Mix proportions of the samples (wt%).

Sample Code orcC* Sand SF CNT CF GNP Water SP
C5 0.5 1
C10 1.0 0 0 2
C20 2.0 3
C5F1 0.1 1

C5F2 100 150 10 0.2 0 45 15
C5F3 05 0.3 2
C5G2.5 ’ 2.5 1
C5G3 0 3.0 1
C5F4 4.0 1

* OPC: ordinary Portland cement; SF: silica fume; CNTs: carbon nanotubes; CFs: carbon fibers; GNPs: graphene
nanoplatelets; SP: superplasticizer.

The EMI shielding performance, represented by four distinct S-parameters (511,
521, 512, and 522), was assessed according to the configuration depicted in Figure 1.
Antenna 1 transmitted electromagnetic waves to antenna 2, enabling the observation of
reflection and absorption losses on the sample’s surface and within its interior, respectively.
A sample size of 150 x 150 x 50 mm was chosen to optimize the total shielding effectiveness
while facilitating focused examination of reflection and absorption losses. The sample
was positioned in the center, between the two antennas. Subsequently, the measured
S-parameters were converted into reflection, absorption, average power coefficients, and
total shielding effectiveness using the following equations:

Reflection(dB) = —10log (1 — R), R = [Sy;|? 1)
Absorption(dB) = —10log [T/(1 —R)], T =[Sy )
Average power coefficients(A) =1 —-R—-T 3)

Total EMI shielding effectiveness(dB) = Reflection + Absorption 4)

L Sample size :
150*150*50 mm 2 :
! < Transmittance

(T)

Figure 1. Experimental setup for the EMI shielding measurements.
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3. Results and Discussion

Determining the appropriate content of each conductive filler for the EMI shielding
composites necessitated an investigation into their percolation thresholds. As noted in
previous studies, the percolation threshold represents the point at which the electrical resis-
tivity significantly decreases with increasing amounts of conductive fillers. This method
was applied in the current study to assess the percolation thresholds of the composites.
Figure 2a illustrates the electrical resistivities of the samples containing solely CNTs, CFs,
or GNPs. From the results in Figure 2a, it is evident that the percolation thresholds for
CNTs, CFs, and GNPs occur at 0.5 wt%, 0.1 wt%, and 2.5 wt%, respectively. Additionally,
previous studies have highlighted the synergistic effects of combining conductive fillers
of different sizes, leading to enhanced electrical conductivity and improved functional
properties. Consequently, in samples incorporating two different conductive fillers, the
content of CNTs was fixed at 0.5 wt%. Figure 2b depicts the AC conductivities of the
samples within the X-band frequency range. The permittivity of each sample at different
frequencies was measured using a PNA network analyzer and subsequently converted to
AC conductivity using Equation (5), as follows:

oac=2-1m-f-gp ¢ (5)

where f, €, and €” represent frequency, permittivity of free space, and the imaginary
part of permittivity, respectively. In Figure 2b, the synergistic effects resulting from the
combination of CNTs with CFs or GNPs are evident. Incorporating 0.1 wt% CFs or 2.5 wt%
GNPs alongside 0.5 wt% CNTs yielded a higher AC conductivity than that achieved with
1 wt% CNTs alone. The high level of CNT incorporation in the cement matrix necessitates a
high water-to-cement ratio, leading to poor flowability. Thus, incorporating two different
fillers can mitigate this issue while simultaneously enhancing the electrical conductivity.

Figure 3 illustrates the EMI shielding performance, encompassing the reflection and
absorption losses. Notably, the sample thickness used in this study (i.e., 50 mm) was
sufficient to block approximately 99.999% of the EM wave, emphasizing the investigation’s
focus on the ratio of reflection and absorption losses when the majority of the EM wave is
intercepted by the samples. In Figure 3a, it can be observed that the reflection loss increases
with the incorporation of conductive fillers, irrespective of their types. This trend suggests
a proportional relationship between reflection loss and electrical conductivity, consistent
with the results in Figure 2. Conversely, the absorption losses, as shown in Figure 3b, did
not exhibit significant variations with changes in the electrical conductivity.

In addition, the average power coefficients and shielding effectiveness are shown in
Figure 4. Notably, the average power coefficients demonstrated distinct trends depending
on the conductive filler types. For fiber-type fillers like CNTs and CFs, the average power
coefficients of reflection increased while those of absorption decreased with increasing filler
content. Moreover, beyond a certain point, the average power coefficient of absorption
surpassed that of reflection. Conversely, regardless of the incorporated GNP contents, the
average power coefficient of reflection exceeded that of absorption. This phenomenon
can be attributed to the plate-type morphology of the GNPs, which effectively intercepted
EM waves at the surface of the samples, thereby increasing the reflection loss. Similar
observations were reported in the previous studies, indicating that plate-type carbon
nanomaterials such as GNPs and graphene enhance EM reflection properties on the surface
of EMI shielding composites [20,21]. Thus, it is evident that the type of conductive filler
significantly influences EM reflection and absorption properties, even when the total
shielding effectiveness remains consistent. Consequently, it is advisable to select the
optimal filler contents considering the importance of reflection or absorption losses, as well
as the shape or type of the conductive fillers.
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Figure 2. Electrical characteristics: (a) electrical resistivities of the samples incorporating solely CNTs,
CFs, or GNPs; (b) AC conductivity of the samples in the X-band of the frequency range.



Materials 2024, 17,4913

6 of 10

(a) 4

35

3 F

N
o

Reflection (dB)

o
o N

o

4.5

N

=
(4

| —c5 —c10 —c20

9 10 11 12
Frequency (Hz)

Reflection (dB)

0.5

25 |

15 f

35

| —C5F1 —C5F2 —C5F3

o

9 10 1 12
Frequency (Hz)

N w »
a w0~ O

Reflection (dB)

=
o N

e

e e s

—C5G2.5 — C5G3 —C5G4

9 10 11 12
Frequency (Hz)

(b)=

50

45

Absorption (dB)

1

40

35

55

50

Absorption (dB)

D

40 |

35

55

50

Absorption (dB)

?

40

35

| —c5 —c10 —C20

9 10 11 12
Frequency (Hz)

45 |

| —C5F1 — C5F2 —C5F3

9 10 1 12
Frequency (Hz)

45

—C5G2.5 —C5G3 —C5G4

9 10 1 12
Frequency (Hz)
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Figure 4. (a) Average power coefficients and (b) total shielding effectiveness obtained from the EMI
shielding experiments.

4. Limitations and Outlook

This study focused on experimentally investigating the influence of different types,
sizes, and shapes of conductive fillers on the EMI shielding performance of cement-based
composites. In particular, the research evaluated the balance between the reflection and
absorption properties to optimize the shielding effectiveness. Based on the experimental
results, incorporating two different types of conductive fillers (e.g., CNTs, CFs, or GNPs)
was shown to enhance the EMI shielding performance using smaller amounts of the fillers.
However, several limitations remain to be addressed in order to increase the applicability of
these composites in industrial settings. First, a more comprehensive study, including both
the mechanical properties and EMI shielding performance, should be conducted. Many
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existing studies, including the present study, have focused solely on functional properties
without taking into account the mechanical integrity of the composites [7,22,23]. In practical
applications, particularly in civil engineering, it is essential to define specific performance
targets, ensuring that both the mechanical strength and EMI shielding properties align with
the intended use. For instance, while a high level of shielding may be achieved, the mechan-
ical strength must be sufficient to withstand structural loads, especially for applications
in infrastructure. Second, the durability and functional stability of the proposed com-
posites under real-world conditions remain unexamined. In many practical applications,
the composites may be exposed to harsh environmental conditions such as water ingress,
freeze—thaw cycles, or elevated temperatures. These conditions could significantly affect
both the mechanical properties and the EMI shielding performance over time [5]. For exam-
ple, water exposure may affect electrical conductivity by disturbing the conductive network
within the cement matrix, while freeze-thaw cycles might lead to crack formation, further
compromising both the mechanical and shielding performances. Therefore, long-term stud-
ies assessing the stability of these composites under such weathering conditions are crucial.
Third, given that these composites are envisioned for use in large-scale civil structures, they
should be designed for precast systems. This requires developing methods to achieve high
early strengths, ensuring that the composites can be rapidly installed and used prior to com-
pleting the standard 28 days of curing typically required for normal concrete. Innovations
in fabrication methods tailored to precast systems would also facilitate the use of these
composites in industrial settings. Lastly, the high cost of conductive fillers and specialty
binders used to fabricate EMI shielding composites presents a significant barrier to their
widespread adoption. Current materials, like CNTs, CFs, and GNPs, are expensive, limiting
the feasibility of their use in large-scale civil infrastructure. Therefore, research should
explore the incorporation of recycled conductive fillers and supplementary cementitious
materials (SCMs) as lower-cost alternatives [24-26]. Utilizing recycled materials would not
only reduce costs but also contribute to sustainability efforts in the construction industry.
In summary, while this study demonstrates that combining different types of conductive
fillers can enhance the EMI shielding performance of cement-based composites, there is
still a need for further research. Investigations into the mechanical properties, durability
under environmental stressors, early-strength development for precast applications, and
cost-effective alternatives to traditional fillers are necessary to fully unlock the potential of
these composites for industrial use. By addressing these challenges, the next generation
of cement-based EMI shielding composites could play a vital role in the development of
smart and resilient infrastructure.

5. Concluding Remarks

This study investigates the impact of different conductive filler types on the ratio
of the reflection and absorption properties in cement-based EMI shielding composites.
Three distinct fillers, namely, CNTs, CFs, and GNPs, were utilized in the fabrication of these
composites. Experimental findings reveal that regardless of the filler type and content, the
fabricated samples with a thickness of 50 mm achieved a shielding effectiveness exceeding
50 dB (i.e., 99.999%). However, the type of filler significantly influences the balance between
the reflection and absorption losses. Consequently, it is crucial to carefully consider factors
such as the significance of reflection or absorption losses, as well as the shapes or types of
conductive fillers when selecting the optimal filler contents to fabricate effective cement-
based EMI shielding composites.
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