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Abstract: Effective wound treatment has become one of the most important challenges for healthcare
as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies
significantly evolved in order to provide a holistic approach based on various designs of functional
wound dressings. Among them, hydrogels have been widely used for wound treatment due to
their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the
control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound
or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora
of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides),
thus enhancing the performance of resulting composite hydrogels in wound healing applications. In
this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings
have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant,
and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and
restoration of the tissue) resulting from their use.

Keywords: hydrogels; wound dressings; wound healing; controlled release; stimuli-responsive; drug
delivery strategies

1. Introduction

The major failure that medicine faces in terms of wound dressings is that despite their
undeniable advances, they are still not as efficient as they are expected to be. Complications
associated with the healing of wounds that are not cured with the currently used wound
dressings still cause many global health risks as well as economic concerns. Wound-related
complications affect over six million people annually in the United States, incurring a cost
of USD 25 billion [1]. Chronic wounds are predominantly observed in the elderly, affecting
approximately 3% of the U.S. population aged 65 and above. The aging demographic trend
suggests that by 2060, over 77 million elderly individuals in the United States may deal
with persistent open wounds. The advanced wound care market worldwide is expected
to achieve a value of USD 18.7 billion by the year 2027, demonstrating a Compound
Annual Growth Rate (CAGR) of 6.6% from 2020 to 2027 [2]. Global estimates indicate
that approximately 463 million adults are currently living with diabetes, and this figure is
anticipated to surge to USD 700 million by the year 2045 [2–4]. This is particularly relevant,
as diabetes patients are at an increased risk of developing diabetes-related wounds. The
global market for diabetic foot ulcers anticipates a favorable CAGR of 6.8% from 2019 to
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2026, with a potential valuation of USD 11 billion by the end of 2026 [2]. Moreover, the
global market for venous ulcers (VU) treatment is anticipated to reach USD 4.8 billion
by 2026, with an annual growth rate of 6.4% from 2019 to 2026 [2,5]. Based on the data
presented above, it is evident that there is an urgent need for the development of novel and
effective wound dressing materials that meet the specific requirements in the treatment of
different types of wounds.

Currently used commercial wound dressings show many limitations such as a lack of
specific responsive properties to the changes in the environment. They are also usually ap-
plied in a one-for-all wounds manner [6]. Due to the high demand for effective wound care
methods in the field of medicine, there is a growing pressure to create advanced materials
tailored to accelerate the healing process in various clinical contexts [7,8]. Ideally, dressing
materials are meant to protect the wound against external factors, support the epithelial
renewal process, prevent bacterial infections and further damage of skin integrity, as well
as to ensure adequate moisture of the wound environment [9]. Properties of available
dressing materials, both the newest and the conventionally used ones, are limited by their
rapid degradation, poor adhesion, inefficient exudate absorption, lack of therapeutic release
properties, and inability to prevent protein adhesion to the wound dressing surface [10–12].

In the case of uncomplicated wounds, the healing process occurs in the form of a
sequence of interrelated phases. These phases include hemostasis, inflammation, prolifera-
tion, and remodeling, often occurring concurrently and overlapping [13]. Depending on
the consequences and pathogenesis, the wound can be qualified as acute or chronic. The
primary distinction between them lies in the biochemical microenvironment and concen-
tration of specific components within the wound site, which is schematically presented in
Figure 1. Acute wounds result from trauma or surgical procedures and undergo a healing
process over a specific period of time, usually within a few weeks [14,15]. They are often
associated with common injuries such as cuts, lacerations, abrasions, burns, and surgical or
accidental incisions [16,17]. Chronic wounds such as diabetic foot ulcers, venous leg ulcers,
ischemic ulcers, pressure ulcers, and many more, are frequently associated with long-term
health disorders. One of the most prevalent reasons for chronic wound occurrence is the
improper treatment or infection of acute wounds [18,19]. The chronic wound healing
process is delayed due to various factors. Those factors include aging, the stage of diabetic
disease, medication compliance, associated peripheral neuropathy, immunocompromised
status, as well as arterial and venous insufficiency [1]. In the case of chronic wounds, the
inflammatory phase is prolonged [20,21]. Increased levels of inflammatory mediators can
impair the functioning of growth factors and the extracellular matrix, both of which are
crucial for the healing process [22,23]. They complicate the healing process and extend it
up to three months. Additionally, chronic wounds often undergo bacterial infection, which
can extend the inflammatory response [20,21]. It should also be noted that acute wounds,
usually undergoing the above-mentioned healing stages within defined timeframes, can
also be infected, which negatively affects the prognosis of their treatment [16,17].

The intact skin acts as a physical barrier, preventing bacteria and other pathogens
from invading internal tissues. However, when the skin is cut, scraped, or otherwise
damaged, it loses its protective integrity. The damage to the skin’s protective barrier
offers an opportunity for microbial invasion [24,25]. Wound infections, similar to the
earlier mentioned inflammations, decrease the activity of growth factors. In addition,
fibrin/fibrinogen is a target of bacterial proteins due to its role in defense against bacterial
infection [20,21,26]. Bacterial infections not only have the potential to significantly slow
down the wound healing process, but also pose a substantial risk of inflicting severe
damage to tissues and cells. In extreme cases, they can even be life threatening.
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Figure 1. Differences between acute and chronic wounds, created with BioRender.com (accessed on
4 December 2023).

Interactions between the wound environment and bacteria include the contamination,
colonization, local infection, and finally spreading of the infection and the emergence
of a chronic wound condition [1]. As mentioned above, chronic wounds are frequently
associated with bacterial infections, which can slow down the process of angiogenesis, due
to the release of tissue-destroying (lytic) enzymes, exotoxins, and endotoxins; all of which
potentially lead to the deterioration of wound healing [27,28]. Overall, bacterial infection
can result in an imbalance of regulatory molecules that are crucial for the healing process,
leading to impairment and a retention in tissue repair at one of the mentioned-before
healing stages [29].

Historically, the primary approach to preventing and treating wound infections has
involved the use of antibiotics. Conventional antibiotics (tetracyclines, aminoglycosides,
quinolones, and cephalosporins) have traditionally been noted as successful in killing
bacteria by disrupting their cell walls and interfering with essential processes such as
protein and nucleic acid synthesis [30]. However, over the last few decades it has been
shown that overuse or inappropriate utilization of these substances lead to consequences
such as the emergence of multidrug-resistant strains with a propensity for bacterial biofilm
formation [31,32]. The last is an important phenomenon because drugs usually cannot
penetrate the bacterial biofilm structures [30]. Because of this, traditionally used pharma-
ceuticals and antibiotics have demonstrated reduced efficacy when compared to initial
expectations [7,29,33]. Therefore, researchers and healthcare practitioners actively work
on pioneering therapeutic strategies to prevent and manage infections in both acute and
chronic wounds [1,2].

Numerous types of wound dressings have been developed to facilitate wound healing,
including gauzes, transparent films, foam dressings, hydrogels, hydrocolloids, and hydro-
conductive dressings [34]. They are schematically presented in Figure 2. An ideal wound
dressing should: (i) be characterized by a high biocompatibility and lack of toxicity, (ii) have
adequate durability/mechanical properties, (iii) promote cell adhesion and differentiation,
(iv) provide constant moisturization, (v) adhere well to the wound tissue but at the same
time should be easy and painless to remove, (vi) ensure optimal gas exchange between the
wound and the surroundings, and (vii) exhibit remarkable antimicrobial action [35].
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Gauzes are the oldest and most economical, readily available, and highly absorbent
traditional wound dressings. They can easily conform to the shape of the wound and they
are widely used for dressing both infected and non-infected wounds with a significant
amount of exudate. However, gauze dressings are not ideal for wounds, as upon removal,
they may cause trauma, mechanical injury of the healing wound, and consequently, pa-
tient discomfort [34,36]. Transparent film dressings represent a refined progression from
traditional gauzes, offering the capacity to maintain a moist wound environment, facilitate
gas exchange, and protect against external bacterial contamination. Their easy adaptability
and pain-free removal set them apart. Nonetheless, their lack of swelling capability makes
them unsuitable for highly exudative or infected wounds, where the coexistence of exudate
and infection can potentially exacerbate bacterial proliferation [34,36,37]. Foam dressings
are recommended for managing wounds with high levels of exudate. This is associated
with their outstanding ability to absorb substantial fluid volumes while providing thermal
insulation and facilitating gas exchange. Due to its impressive absorbent capability, this
type of dressing can be changed every seven days in non-infected wounds, while daily
changes are recommended in the presence of infections [38,39]. Hydrocolloids are gel-
forming systems made of an elastic matrix with hydrophilic polymers and they absorb
fluids. They efficiently seal the wound bed without needing additional dressings. Hydro-
colloids speed up healing by enhancing autolysis and debridement. However, they are not
suitable for infected wounds due to their occlusive nature and can cause trauma during
removal [34,36,40]. A hydroconductive dressing features a specific multilayer structure
that allows for the absorption of wound exudate, removal of debris from the wound bed,
and subsequent transport of these by-products into its core [34,36,41].

Among the wound dressings, hydrogels have emerged as the most promising can-
didates for wound dressings [42]. This is primarily due to their excellent hydrophilicity,
biocompatibility, and three-dimensional porous structure that resembles the extracellular
matrix (ECM) [43]. Compared to traditional dressings, hydrogels often exhibit better thera-
peutic effects on wounds that are prone to bacterial infections [44]. As a result, hydrogels
have garnered significant attention among researchers for their tremendous promise in
wound healing and formulation of wound dressings. This is related to a number of very
desirable and often unique properties exhibited by hydrogel-based systems [45]. Firstly,
the three-dimensional architecture of the hydrogel constructs favors the formation of an
environment that fosters proper regeneration, acting as a framework for regeneration and
healing processes. Additionally, their mechanical strength matches the native tissue to
provide a highly bio-mimicked environment for better cell attachment, spreading, and
proliferation. Moreover, the morphology of hydrogels mimics the morphology of the
extracellular matrix and macromolecules, while hydrogel porosity provides effective cell
infiltration and enhances transport of the various species needed for wound healing. It is
also noteworthy that they are characterized by the capability for effective water retention
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that provides a humid environment to display normal cell behavior (e.g., proliferation).
Additionally, hydrogels can excessively absorb wound exudates, limiting the microbial
growth near the wound. In this area stimuli-responsive composite hydrogels containing
antibacterial agents attracted significant attention.

There is already a wide range of commercially available hydrogel-based dressings on
the market, which are summarized in several papers [46–48]. However, there is still a lot
of work and research going on to produce better and more effective hydrogel dressings
(particularly stimuli-responsive hydrogels) and address the challenges associated with
them, which are discussed in the next section.

2. Challenges Related to Hydrogel-Based Wound Dressings

Due to the combination of high water content, softness, flexibility, biocompatibility,
and bioactivity, hydrogels have gained massive popularity in the wound dressings field.
Their structure and properties make them dedicated formulations to overcome many
complications related to the natural characteristics of chronic wounds [49]. These include
the appearance of excessive exudates, massive bleeding, and persistent bacterial infections.

The hydrogel formulation, due to its high liquid absorption capacity, can usually
absorb the excessive wound exudates. In the normal wound healing process, the exudate
levels typically decrease over time. However, in the case of chronic wounds, such as various
types of ulcers, exudate production is often excessive due to the ongoing inflammatory
process [50,51]. Hydrogels’ capacity to efficiently absorb exudate plays a vital role in
managing chronic, bacterial infected wounds [52,53]. As a desired side effect, hydrated
wound dressings help to control the temperature of the wound-affected area, accelerating
the healing process [54–59].

Unregulated and massive bleeding resulting from trauma can give rise to a range of
issues, including hypothermia, lowered blood pressure, susceptibility to bacterial infec-
tion, and even the onset of shock [60]. Hydrogels are a suitable platform for producing
bleeding-controlling materials due to their exceptional liquid absorbing properties, which
enable them to eliminate the excess of blood from the wound. Moreover, some hydro-
gels may be supplemented with substances promoting blood clot formation, including
tannic acid [61–63], zeolite and kaolin [64–66], or polydopamine [67,68]. Such materials
can actively and rapidly stop bleeding in wounds, promote clot formation, and minimize
blood loss. This facilitates wound healing processes and reduces the risk of complications
associated with uncontrolled bleeding [62,69–71].

Moreover, hydrogel wound dressings represent a promising platform for modifications
using antimicrobials [68,72,73]. Antimicrobial-loaded hydrogels act as biological shields
that hinder harmful elements such as bacteria from infiltrating the wound. They also show
the ability to release therapeutic agents that aid the wound healing process in response to
varying environmental conditions [45]. This is important in light of the information we
provided in the previous chapter of this work.

Regardless of the factors resulting from the wounds themselves, hydrogels must also
meet other conditions, such as good mechanical properties, which include both resistance
to compression and resistance to stretching [74,75]. These properties allow the hydrogels
to withstand heavy loads and strains during their application in critical places of the
body, such as the joints or neck. First-generation hydrogels, when damaged (e.g., due
mechanical compression), could easily lose their initial mechanical properties and their
network structure could be affected, resulting in a reduction in their lifetime [76,77]. This
appears because destroyed hydrogels cannot self-heal and reform the broken bonds. Self-
healing hydrogels are a potential solution to this problem because they have a built-in ability
to autonomously repair their original properties and structure in response to damage [78].
It should be always remembered that natural hydrogels are more susceptible to enzymatic
degradation than their synthetic counterparts (e.g., polyethylene glycol, polyvinyl alcohol,
poly(N-isopropyl acrylamide)), which exhibit slower degradation rates. Therefore, natural
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hydrogels are usually coupled with various crosslinkers, bioactive compounds, antibiotics,
or metal ions to achieve the enhanced performance [79].

The above-mentioned problems occurring during wound treatment (excessive exu-
dates, blood flow, infections, the need for the dressing to adapt to the wound) can be solved
by new generation hydrogels that react to stimuli occurring in the environment. Such
hydrogels can respond to problems that arise during wound healing in response to internal
(pH, wound temperature, the presence of free radicals) or external (near infrared (NIR))
stimuli [80,81]. This response may be the release of active factors (e.g., antibacterial sub-
stances), a change in absorption capacity or a change in structure, transparency, gel volume,
mechanical characteristics, or surface properties [82,83]. Such incredibly versatile structures
are referred to as “stimuli-responsive”, “intelligent”, or “smart” hydrogels [84,85]. This
responsiveness allows for the controlled release of active substances, making them highly
effective in wound management [33,86,87]. The development of such intelligent carriers
that can adapt to internal conditions and prevent a bacterial infection is the big challenge
in wound regenerative medicine. The advantages of stimuli-responsive hydrogels are
graphically summarized in Figure 3.
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When discussing materials responsive to stimuli, it is also worth mentioning shape
memory polymers (SMPs). SMPs are a promising tool for designing new generation
biomaterials for medical applications due to their unique capability of memorizing their
initial shape and reverting to it from a deformed state when exposed to one or more suitable
external stimuli, such as heat, light, pH, electricity, a magnetic field, and moisture [88].
In recent years, there has been a growing interest in these polymers in scientific research
connected to biomedical applications [89–91]. For example, Panda et al. incorporated
p-coumaric-acid-modified water-soluble chitosan (M-Cs) into the poly(vinyl alcohol) (PVA)
polymer matrix. Compared to the PVA control variant, the addition of M-Cs resulted
in improved water-induced shape memory behavior of the material, achieving a shape
recovery ratio close to 100% [88].
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3. Various Stimuli Triggering the Hydrogels’ Response

Numerous stimuli-responsive hydrogels possess antibacterial, anti-inflammatory, or
antioxidative properties [92,93]. Some even demonstrate dual properties, combining two of
the abovementioned characteristics simultaneously [61,94–97], thus making them favorite
candidates for the development of self-regulated drug delivery systems [98]. Currently,
stimuli-responsive composite hydrogels containing antibacterial agents attracted the high-
est attention in scientific society and constitute a significant number of ongoing studies [99].
Therefore, in this review we focused on the stimuli-responsive hydrogels containing a wide
range of antibacterial additives as an alternative to often unreliable antibiotics, in particu-
lar polyphenols, antibacterial polypeptides, and silver nanoparticles. Stimuli-responsive
hydrogels can be categorized as [100]:

• non-contact stimuli-responsive hydrogels (e.g., light-responsive, thermo-responsive,
magnetic/electric field-responsive),

• contact stimuli-responsive hydrogels (e.g., pH-responsive, ion-responsive, chemi-
cally/biochemically responsive),

• multistimuli-responsive hydrogels (susceptible to the simultaneous or sequential
action of two or more stimuli).

Stimuli identified as the most promising and efficient for controlling behaviors of
the resulting hydrogels are: pH, reactive oxygen species (ROS), temperature, and NIR, as
schematically presented in Figure 4. This review focuses on these four types of stimuli as
the most frequently used both in research and in medical translational studies. This, of
course, does not limit the wide range of possibilities for using other types of stimuli, such
as ionic strength for example, which can be precisely used not only to induce hydrogelation
but also to modulate hydrogel properties (e.g., mechanical properties) and response (e.g.,
transport properties) [101–103].
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Figure 4. Various stimuli triggering the hydrogels’ response, created with BioRender.com (accessed
on 4 December 2023).

3.1. pH-Responsive Hydrogels

pH is a tightly regulated factor that plays a crucial role in maintaining the proper
function of the skin and its levels vary across different skin layers, increasing from the
surface to the deeper layers, therefore pH tends to fluctuate during differing stages of the
wound healing process [104]. pH is as an indicator of the wound’s condition, and changes
in pH levels can be used to predict whether a wound is likely to heal or deteriorate [105].
The pH levels differ based on the condition of the skin: healthy skin typically maintains
a slightly acidic pH (5–6), acute wounds exhibit a pH around 7.4, while chronic wounds
tend to have a more alkaline pH, ranging from 7.3 to 10, partly due to the presence of
proliferating bacterial colonies [106]. These pH fluctuations can impact bacterial infection
as well as colonization, which are common characteristics of chronic wounds.

BioRender.com
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The appropriate regulation of wound pH during the different healing phases can
accelerate wound healing. Restoration of the acidic environment in chronic wounds can
reduce microbial colonization on the skin surface and enhance adipose tissue metabolism.
However, the proliferation and migration of keratinocytes and fibroblasts favor a slightly
more alkaline environment with a pH of around 8.3. For example, creating an acidic
environment in the initial stages (hemostasis and inflammation) can inhibit bacterial in-
fection and promote vascular regeneration, whereas the alkaline environment (observed
during wound hyperplasia and remodeling) can enhance cell proliferation and skin remod-
eling [104]. Nevertheless, continuous wound pH regulation throughout all healing phases
remains a challenging goal for scientists [107].

pH-responsive matrix degradation is one of methods designed for the control of drug
release from hydrogels. The desired situation is, as bacteria multiply, this degradation is
activated. During this phase, the strength of the hydrogel’s three-dimensional structure
diminishes, leading to the formation of larger internal pores that in consequence enables
the release of the drug to inhibit the bacterial growth. Once the pH of the wound returns to
its typical level, the above process stops [108].

This strategy was implemented by Bonetti et al. in the production of a methylcellulose-
based hydrogel, which was crosslinked using ester bonds. Ester bonds are susceptible
to hydrolysis in an alkaline environment, causing the hydrogel network to expand and
facilitate drug release [15]. The change in swelling behavior can lead to the mentioned above
shift in the pore size within the hydrogel structure used for pH-responsive drug delivery or
signal transmission [109,110]. This method has also been reported in other studies related
to pH-responsive hydrogel wound dressings. The pH-dependent alterations in hydrogel
size predominantly concern the way these materials expand or contract [111,112].

To sum up, pH-responsive wound dressing hydrogels offer unique benefits in wound
care due to their exceptional biochemical and mechanical characteristics [113]. They ef-
fectively assess the wound’s condition by monitoring its pH, facilitate and accelerate
the controlled wound healing, and lower the risk of infection. Such constructs have the
capability to adjust their structure and active substances release in response to a pH stimu-
lus [114,115].

3.2. ROS-Responsive Hydrogels

Reduction–oxidation (redox) potential is a biological parameter that can be influenced
by various factors and may undergo alterations in certain states of disease, such as in-
flammation, cancer, or hypoxia [116]. ROSs are pivotal regulatory elements in the wound
healing process, facilitating natural skin repair. They also play a significant role in oxidative
bacterial elimination, thereby promoting angiogenesis and re-epithelialization at the wound
site [117]. However, excessive ROS levels can lead to oxidative damage, hindering the
proper healing process. It causes an inflammatory response that inhibits the functions of
both endogenous stem cells and macrophages and also retards tissue regeneration [118,119].
As a consequence, the wound remains in the inflammatory phase for a long time. Therefore,
the extended healing time does not allow for a smooth transition into the proliferation
and remodeling phase [120]. Notably, hypoxia impedes the wound healing process by
inhibition of fibroblast proliferation and collagen production. The overproduction and
accumulation of ROSs in the wound environment is also the common reason for the emer-
gence of bacterial infection or even a diabetic wound state. This is particularly evident in
chronic wounds, where prolonged oxidative stress prevails. Clearly, the improvement in
the healing process can be achieved by reducing the bacterial presence [20].

Hence, antioxidant hydrogels have the potential to reduce the excessive ROSs in
wound sites by neutralizing free radicals, interrupting the free radical chain reactions, and
alleviating dysfunction in the immune system [121]. Targeting oxidative stress in chronic
wounds through the restoration of the redox equilibrium has demonstrated effectiveness in
enhancing the proper wound repair [122]. The development of antioxidant hydrogels can
be approached in two main ways: either by using hydrogels as carriers for ROS scavengers
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or by creating hydrogels with inherent antioxidant properties, which can be achieved by
using antioxidant macromolecules as hydrogel precursors. Considering this evidence,
investigations into designing antioxidant wound dressing materials aimed to assess their
impact on the healing process acceleration. This can be achieved by hydrogel loading with
natural polyphenols such as tannins, gallic acid, and curcumin to capture and neutralize
free radicals [22,46,123].

In the case of hydrogels responsive to ROSs within the wound environment, the current
strategy applies either the introduction of an ROS-responsive block into the backbone
of a hydrogel-forming polymer or the use of the polymers with ROS-responsive side
chains [124]. An increase in ROS concentration in the surrounding environment leads
to the hydrolysis or degradation of chemical bonds in the hydrogel with a hydrophobic-
to-hydrophilic transition or polymer chain scission. This in turn leads to the controlled
release of hydrogel-loaded drugs. As the level of ROSs varies depending on successive
phases of the healing process [125], ROS-responsive hydrogels also release therapeutic
substances in response to ROS fluctuations occurring during these phases [126]. Thus, this
controlled release of therapeutic substances underlines their responsiveness to the dynamic
environment of the wound.

Taking these facts into consideration, ROS-responsive biomaterials (RRBs) are gaining
growing potential for mitigating oxidative stress in tissue microenvironments and serving
as targeted carriers for drug release in response to physiological oxidative conditions in
the wound environment. In particular, RRBs show a real potential in difficult wound
management, including diabetic wound treatment, which is one of the greatest challenges
of 21st century medicine.

3.3. Temperature-Responsive Hydrogels

Temperature plays a crucial role in wound healing as it affects the rates of enzyme
responses, given their temperature-dependent nature. Additionally, temperature serves as a
conventional indicator in the clinical assessment of chronic wounds, reflecting classic signs
and symptoms [127]. The temperature could be a signal for specialized wound dressings to
activate or respond in a particular way. Temperature-responsive hydrogels have significant
potential in drug or cell delivery systems and injured tissue repair. They are commonly
used in designing responsive systems due to their ease of control [128].

Hydrogels sensitive to temperature changes undergo the transition between a liq-
uid and solid (adhesive) state, displaying enhanced flexibility for conforming to irregu-
lar wound surfaces [129]. Temperature-responsive hydrogels are usually formed using
non-covalent interactions between the components, and their physical state depends on
temperature. This phenomenon can trigger the sol–gel transition, enabling the gel to adapt
perfectly to the wound site, in particular for injectable gel types. Incorporation of the drugs
into the liquid-state hydrogel ensures their homogeneous dispersion. Meanwhile, the rapid
gel formation (via the sol–gel transition, often occurring at a physiological temperature)
prevents an initial drug burst release, providing the sustained delivery of active substances.
Such materials can swell and shrink according to the environmental temperature [130],
with related changes in volume due to the hydrophobic/hydrophilic functional groups
present in the hydrogel structure [131,132]. This approach simplifies the use of hydrogels,
making the therapeutic process straightforward and user-friendly [133,134].

Normal body temperature is approx. 37 ◦C. In relation to this fact, hydrogel wound
dressings are often composed of thermal-sensitive materials with a critical solution temper-
ature lower than body physiological temperature. So-called lower critical solution tempera-
ture (LCST) hydrogel can shrink when the temperature is above the LCST point. Hydropho-
bic moieties, such as propyl, ethyl, and methyl groups, are characteristic for temperature-
responsive hydrogels. The polymers with LCST, which are currently used in biomedical
applications, are as follows: polyethylene glycol (PEG) (106–115 ◦C), poly(propylene gly-
col) (PPG) (10–40 ◦C), poly(vinyl alcohol) (PVA) (125 ◦C), poly(N-isopropylacrylamide)
(PNIPAAM) (32 ◦C), poly(methyl vinyl ether) (PMVE) (28–34 ◦C), poly(N-vinyl caprolac-
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tam) (PNVCa) (30–50 ◦C), and Pluronic-F127 (PF-127) (26.5 ◦C) [135,136]. Chitosan (CH),
chondroitin sulfate, hyaluronic acid (HA), alginate (Alg.), dextran, and cellulose belong to
natural polymers that can be blended with thermosensitive hydrogel polymers. This opens
the possibility for the development of innovative hydrogels with favorable characteristics
suitable for tissue engineering applications [83,134,137].

Thermosensitive hydrogels with positive characteristics have the ability to increase
their solubility above the upper critical solution temperature (UCST). Polymers exhibit-
ing UCST behavior become less soluble at temperatures exceeding their critical point,
leading to a sol–gel transition. In contrast, hydrogels with a lower critical solution temper-
ature (LCST) contract and precipitate from the solution above their critical temperature.
This phase transition is often reversible, allowing for controlled changes in the hydrogel
state. Thermosensitive hydrogels with LCST behavior swell in response to a decrease in
temperature [80,138].

3.4. NIR-Responsive Hydrogels

The near-infrared (NIR) light, falling within the wavelength range of 780–1700 nm, is
considered a therapeutic window for light-activated delivery systems in vivo [139]. The
distinctive feature of NIR light is its wide range of light wavelengths (780–1700 nm). This
feature makes the NIR-responsive materials excellent candidates for use as therapeutic
agents and biological tools in a variety of biomedical applications [140,141]. NIR’s ability
to penetrate tissues deeply with minimal phototoxicity and non-invasiveness is the big
advantage in biomedicine [142–145].

Light-responsive materials, particularly those responding to NIR light, have emerged
as a highly promising approach for managing bacterial infections during the wound healing
process [146–149]. Scientists have shown the significant role of NIR stimulation in the de-
velopment of wound dressing hydrogels with enhanced antibacterial properties [150–153].
The use of near infrared (NIR) in wound treatment offers benefits such as accelerating
the healing process by stimulating collagen production [154], improving blood microcir-
culation, anti-inflammatory and bactericidal effects, and effectiveness in the treatment of
chronic wounds [155].

Under NIR light the structure of materials changes as a result of chemical bonds
breaking and changes in molecular structure, thus enabling the release of active substances.
In order for a biomaterial to react to NIR by generating heat, it must contain factors
responsive to NIR. Such materials containing NIR-responsive additives may lead to thermal
decomposition of the hydrogels and, consequently, the release of active substances enclosed
in their structure [148,156,157]. When the drug enclosed in a hydrogel structure is in the
form of NIR-sensitive nanoparticles, heating the constructs may result in a faster controlled
release. It is possible due to a change in the hydrogel structure, resulting in increased
drug permeability. Such photothermal agents include gold nanoparticles [158], silver
nanoparticles [159], or carbon nanomaterials [160], which can produce heat when exposed
to NIR light, facilitating drug release [161].

It is worth mentioning that NIR stimulation can be used to obtain other effects besides
targeted drug release. For example, it is also an amazing tool for the synthesis of self-
removable wound dressings. For example, Zhao et al. [162] designed hydrogels consisting
of catechol–Fe3+ coordination cross-linked poly(glycerol sebacate)-co-poly(ethylene glycol)-
g-catechol and quadruple hydrogen bonding cross-linked ureido-pyrimidinone-modified
gelatin. Upon exposure to near-infrared (NIR) light, the hydrogel exhibited photothermal
effects. The rise in temperature caused the breakdown of hydrogen bonds, leading to the
dissolution of the hydrogel and facilitating its easy removal from the skin wound.

3.5. Examples of Existing Stimuli-Responsive Hydrogels

Depending on the components used in their production process, the resulting con-
structs exhibit distinct characteristics and properties. Examples of various stimuli-responsive
wound healing constructs were presented in Table 1 to highlight the huge diversity of such
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technologies in wound treatment applications. The more systematic discussion is provided
in Section 4.

Table 1. Examples of stimuli-responsive agents.

Composition
Stimuli
Response
Agent

Stimuli Mechanism Material’s Properties Ref.

Dodecyl, chitosan,
WS2 nanosheet,
ciprofloxacin

WS2
nanosheets

WS2 nanosheets
generated heat upon
exposure to
near-infrared (NIR)
light → triggering
the release of the
antibiotic at the
wound site

Injectable, self-adapting,
and rapidly molding
hydrogels with good
tissue adherence and
antibacterial potential

[163]

AuNPs,
Pluronic® F127,
hydroxypropyl
methylcellulose
(HPMC)

Pluronic®

F127

Stiff gel formation
when temperature
increased from 4 ◦C
to 32–37 ◦C

Improved bioavailability,
skin permeation,
antibacterial and
anti-inflammatory activity
of the prepared AuNPs’
thermoresponsive gels,
burn wound treatment
potential

[164]

Gelatin and
chondroitin sulfate

Chondroitin
sulfate

Tissue adherence at
37 ◦C, diminished at
low temperatures
(20 ◦C), enabling it
to detach effortlessly
from the tissue

Injectable self-healing
bioadhesive, underwater
adhesive properties,
tissue adhesive and
sealant for the closure of
bleeding wounds

[165]

Catechol-modified
quaternized
chitosan,
poly(d,l-lactide)-
poly(ethylene
glycol)-
poly(d,lalactide)
(PLEL)

PLEL

The temperature-
dependent
transition of PLEL
solution from a
reversible sol at
25 ◦C to a gel at
37 ◦C

Injectable,
thermo-sensitive adhesive
hydrogel with promoting
wound healing ability,
biocompatibility, and
bioactivity through
in vivo degradation,
stimulated endothelial
cell migration, and
angiogenesis

[166]

Galactose-modified
xyloglucan (MxG)
and hydroxybutyl
chitosan (HBC)

Galactose-
modified
xyloglucan

Gelation
temperature and
time can be
modulated via
adjusting the
MxG/HBC ratio

The composite hydrogel
could effectively prevent
repeated adhesion after
adhesiolysis, promote
wound healing, and
reduce scar formation

[167]

Pluronics,
hyaluronic acid,
corn silk extract, and
nanosilver

Pluronics,

The viscoelastic
parameters varied
within the
temperature range
of 25 to 40 ◦C

Hydrogel with
antibacterial activity
toward Gram-positive
and Gram-negative
bacteria

[168]

Collagen (COL),
guar gum (GG),
poly(N-
isopropylacrylamide)
(PNIPAM),
graphene
oxide (GO)

PNIPAM
and GO

Phase transition
after human body
temperature contact;
thermosensitive,
NIR responsive

Hydrogel with fast
self-healing properties,
super-ductile, injectable,
remoldable, conductive,
and skin wound-healing
acceleration properties

[169]
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4. Loading Stimuli-Responsive Hydrogels with Active Substances

Stimuli-responsive hydrogels can be classified not only based on the specific stimulus
they respond to but also on the type of active substance they are loaded with. Both the
hydrogel matrix and the loaded agent determine the final physiochemical and healing
properties of the resulting biomaterial, which have been concisely summarized in Table 2.
The dominant group of active substances in this type of hydrogel is compounds showing
antibacterial activity, with particular emphasis on substances other than antibiotics. This
trend is based on the search for alternatives to drugs that a significant number of bacterial
strains have developed resistance to. Nowadays, polyphenols, antibacterial polypeptides,
and silver nanoparticles are used most frequently for the preparation of stimuli-responsive
hydrogels containing non-antibiotic substances. Below, the representatives of such hy-
drogels are described, taking into consideration various stimuli used for the liberation
of their activity. At this point it is worth mentioning that instrumental techniques and
modeling approaches employed to monitor stimuli-induced variations play an important
role; the interested reader is therefore referred to a number of interesting publications in
this field [100,170–172].

Table 2. Key characteristics of stimuli-responsive hydrogel matrices loaded with active substances.

Hydrogel-Modified
Substance

Main Characteristics
of Modified Matrices Refs.

Polyphenols

mechanical strength,
structural integrity,
adhesion,
high elasticity,
self-healing properties,
hemostatic properties,
antibacterial properties,
antioxidant properties,
anti-inflammatory properties

[70,92,123,173–180]

Peptides, polypeptides,
and proteins

Biocompatibility,
regeneration processes,
stimulation,
antibacterial properties.

[181–186]

Silver nanoparticles

Antibacterial properties,
anti-inflammatory properties,
stability,
durability.

[15,168,187–191]

Antibiotics Antibacterial properties [192–198]

4.1. Hydrogels Loaded with Polyphenols

Polyphenols are a diverse group of natural compounds that are widely distributed in
plants, marine organisms, and various other sources. They have gained increasing attention
in biomedical fields for their numerous potential health benefits, including their inherent
biocompatibility, antioxidant and antibacterial activities [199]. Polyphenol compounds
include functional groups such as catechol and pyrogallol, enabling them to engage with a
multitude of molecules through the formation of diverse non-covalent interactions (e.g.,
hydrogen bonding, π–π interactions, cation–π interactions, etc.) as well as covalent in-
teractions (e.g., Michael addition/Schiff-base reaction, polyphenol–metal coordination,
etc.) [200,201]. It makes them great candidates for the synthesis and modification of hydro-
gels’ biomaterials for medical purposes, including wound dressings (WDs).

The addition of polyphenols to polymers used for hydrogel WD synthesis allows
for numerous interactions between these two compounds, leading to a tighter and more
interconnected network. This contributes to improved mechanical strength and structural
integrity of the matrix. Consequently, they often exhibit exceptional properties such as
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adhesion, high elasticity, and self-healing, qualities that are highly desired in the design
of “intelligent” hydrogels. These properties are particularly desired during the healing
of wounds with continuous and persistent bleeding because they ensure excellent hemo-
static performance even with deep wounds after adhering to the wound site [202,203].
Introducing polyphenols into the hydrogel structure enhances the overall performance
of hydrogels.

Tannic acid (TA), belonging to the class of polyphenols, is one of the most widely
recognized within this category. TA contains many hydroxyl groups showing the affinity
for the formation of hydrogen bonds with proteins and other biomolecules. This property
allowed for the use of TA for traditional medicine to treat a variety of maladies [204]. TA has
been shown to reduce inflammation as an antioxidant and can induce apoptosis in several
cancer types. TA has also displayed antiviral and antifungal activity. Moreover, taking
into account the results of new preclinical and clinical studies and the growing resistance
of bacteria to antibiotics, new intriguing perspectives emerge for this natural compound
in relation to TA application as an antibacterial agent. In biomaterials research, as was
already mentioned, TA can enhance the mechanical properties of natural and synthetic
hydrogels and polymers due to its crosslinking property, imparting beneficial attributes to
these materials [204,205].

Although other polyphenols, such as gallic acid and resveratrol have been employed
in the production of stimuli-responsive hydrogel dressings, TA stands out as the most
effective in this regard. The comparative analysis presented in Table 3 illustrates exam-
ples of hydrogels synthesized using various polyphenols; however, it is evident that TA
is superior to others in terms of its suitability for the production of stimuli-responsive
hydrogel dressings.

Table 3. Polyphenol-loaded stimuli-responsive wound dressing hydrogels.

Hydrogel Composition Stimuli Effects Ref.

Gelatin (Gel),
tannic acid (TA)
Gel/TA

pH pH-dependent release of TA. [70]

Phenylboric acid-modified
polyphosphazene (PPBA),
tannic acid (TA),
poly(vinyl alcohol)
PPBA-TA-PVA

ROS

ROS-dependent release of TA
(scavenging of
2,2-diphenyl-1-picrylhydrazyl
(DPPH) radicals and OH radicals
in vitro)
ROS-responsive degradation.

[173]

Quaternized chitosan (QCS),
tannic acid (TA)
QCS/TA

ROS
Self-healing properties,
free radical-scavenging activity
due to TA presence.

[123]

Physical crosslinked
quaternized chitosan (QCS),
tannic acid (TA),
ferric iron Fe(III)
QCS/TA/Fe

NIR
Antibacterial activity induced by
NIR-stimulated modified
hydrogels.

[174]

Polydopamine (P),
tannic acid (T),
chitosan (C),
poloxamer 407/188 (PP)
PTCPP hydrogel

Temp.
NIR

Sol–gel transition of liquid
hydrogel formulation
at around 30 ◦C,
significant enhancement of
hydrogel’s antibacterial activity
after NIR irradiation.

[175]

Poly(acrylamide) (PAM),
naturally derived chitosan (CS),
tannic acid/ferric ion chelates
(TA@Fe3+)
PAM/CS/TA@Fe3+

NIR
In vivo and in vitro antibacterial
activity to prevent microbial
infection after NIR stimulation.

[176]
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Table 3. Cont.

Hydrogel Composition Stimuli Effects Ref.

Hyaluronic acid (HA),
poly(ether urethane),
(D-DHP407),
gallic acid (GA),
HA/D-DHP407-GA

ROS
Temp.

Reduction in intracellular ROS
level due to ROS-induced
GA release,
sol–gel transition of liquid
hydrogel precursor in response
to temperature changes (37 ◦C).

[177]

Gallic-acid-functionalized
hyaluronic acid (HAGA),
hyaluronic acid
methacrylate (HAMA)
HAGA/HAMA hydrogel

pH
Temp.

Swelling under acidic conditions
and stability at neutral and
basic pH.
Self-healing ability at 37 ◦C
and increased hydrogel-to-tissue
adhesion due to gallic
acid presence.

[178]

Resveratrol (RSV),
polyethylene glycol (PEG)-
cellulose nanofibrils (CNF)
(RPC)
Poly(vinyl alcohol) (PVA)
RPC+PVA+BORAX→
RPC/PB hydrogel

pH pH-dependent
resveratrol release. [92]

Hydroxypropyl chitin (HPCH),
tannic acid (TA),
ferric ion (Fe)
HPCHC/TA/Fe

pH
Temp.

pH-dependent TA release,
temperature-dependent gelation. [179]

polyvinyl alcohol (PVA),
Bacterial cellulose (BC),
graphene oxide (GO),
curcumin,
bacterial cellulose-
functionalized-graphene oxide
PVA/BC-f -GO
Crosslinker:
tetraethyl orthosilicate (TEOS)

pH pH-dependent curcumin release. [180]

The gelatin-TA (GelTA) hydrogel accelerates skin healing by releasing TA in a pH-
dependent manner. This release is responsible for an antibacterial, antioxidant, hemostatic,
and anti-inflammatory activity of the hydrogel. Moreover, the GelTA hydrogel signifi-
cantly enhances extracellular matrix formation, wound closure, re-epithelialization, and
collagen deposition in vivo by offering cell adhesion sites within the gelatin matrix [70].
Ni et al. synthesized TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) by mixing
TA, phenylboric-acid-modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA).
PPBA–TA–PVA hydrogels were shown to be a promising platform for reducing inflamma-
tion and speeding up wound healing. They exhibited ROS-scavenging activity due to the
ROS-responsive degradation depending on phenylboric acid presence. As a result of this
degradation, the hydrogel released TA, which was responsible for the ROS-scavenging phe-
nomenon. This led to shortening the healing time of diabetic wounds [173]. Pan et al. [123]
synthesized injectable hydrogel with self-healing properties and antibacterial activity
against Staphylococcus aureus and Escherichia coli based on quaternized chitosan (QCS) and
tannic acid. It also showed the ability to reduce free radicals. In vivo studies on diabetic
rats have shown the suppression of inflammation and acceleration of collagen deposition
in skin defects. The multifunctional QCS/TA/Fe hydrogel developed by Guo et al. [174]
as a wound dressing for the closure and healing of wounds demonstrated antibacterial
properties attributed to its responsiveness to NIR (temperature even increased by 60 ◦C).
The photothermal effect was achieved through the presence of TA/Fe3+, and it increased
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with the increased Fe3+ content. In vivo study results indicated that this multifunctional
hydrogel dressing effectively closed and healed wounds, eliminating Staphylococcus aureus
infection, promoting angiogenesis, reducing the inflammation, and decreasing the secretion
of various pro-inflammatory cytokines. Su et al. created a PTCPP hydrogel. Its liquid
formula turned from sol to gel state at around 30 ◦C [175]. In vitro antibacterial results
showed that the bactericidal rates of PTCPP against Staphylococcus aureus and Escherichia
coli under NIR irradiation were 99.994% and 99.91%, respectively. In in vivo experiments,
PTCPP adapted to the shape of the wound, showing good adhesion properties and promot-
ing the healing of infected wounds. A simple one-pot synthesis procedure was utilized to
prepare self-adhesive hydrogels composed of poly(acrylamide) (PAM), naturally derived
chitosan (CS), and tannic acid/ferric ion chelates (TA@Fe3+) [176]. The impressive near-
infrared (NIR) photothermal conversion capabilities of TA@Fe3+ conferred the excellent
antibacterial characteristics to the hydrogels, eliminating the necessity of antibiotics use.
This has been confirmed through antibacterial experiments conducted both in laboratory
settings (in vitro) and within living organisms (in vivo). Moreover, TA@Fe3+ exhibited
favorable compatibility with fibroblasts cells, promoting cell attachment, proliferation,
and the differentiation of the cells. This acceleration of these processes led to the faster
closure of skin wounds and the maturation of tissues. A hydrogel was designed by Lau-
rano et al. [177] that exhibited an ROS-stimulated release of gallic acid. In consequence,
the reduction in ROS concentration mediated by gallic acid activity was observed. The
hydrogel also had the ability to change consistency (from liquid to gel) in response to
temperature changes (specifically to a temperature of 37 ◦C). Meanwhile, in response to
lowering the temperature (up to 3 ◦C), the hydrogels turn back into a liquid state. A hy-
drogel composed of two components: gallic-acid-functionalized hyaluronic acid (HAGA)
and hyaluronic acid methacrylate (HAMA) showed the ability to swell in an acidic envi-
ronment while remaining stable in a neutral environment. Thus, the hydrogel exhibited
pH-responsiveness [178]. This hydrogel also exhibited a response to the temperature. After
30 min of incubation at 37 degrees, the cut pieces of the hydrogel were able to rejoin. This
indicates the self-healing ability of this hydrogel. Moreover, the presence of gallic acid
increased the adhesiveness of the hydrogel to tissues, thus enhancing the probability of
wound healing acceleration. Yang et al. synthesized a very complex hydrogel based on
resveratrol, PEG, CNF (cellulose nanofibrils), and PVA, crosslinked by borax. The resulting
hydrogel exhibited a 2.33 times greater release of the resveratrol under acidic pH conditions
compared to a neutral pH [92]. Due to the presence of resveratrol, the hydrogel exhibited
significant antibacterial and antioxidant properties with beneficial influence on the wound
healing process. Ma et al. developed an HPCHC/TA/Fe smart hydrogel with dual stimuli
responsiveness (pH and temperature) [179]. The presence of a TA addition in the hydrogel
structure acted as a crosslinker to enhance the mechanical properties of the hydrogel and
acted as an antibacterial agent. Such hydrogel exhibited a pH-dependent TA release process
that was responsible for the antibacterial properties of hydrogel against Escherichia coli and
Staphylococcus aureus. The HPCH/TA/Fe hydrogel precursor solution, prior to gelation
at low temperatures, can be injected onto the wound site to fill irregular defects, rapidly
forming a gel under physiological conditions. Additionally, in a mouse wound model, it
demonstrated the remarkable ability to accelerate wound healing without scars. Increas-
ing graphene oxide (GO) content in hydrogels designed by Alarjan et al. [180] slowed
down biodegradation due to complex polymerization. However, it concurrently enhanced
mechanical strength and hydrophilicity. The pH-sensitive swelling observed in buffer
and non-buffer solutions indicates the hydrogels’ suitability for controlled drug release.
Thus, these hydrogels, with a higher GO content, can be employed for controlled curcumin
release. Such constructs also possessed antibacterial activity against Staphylococcus aureus,
Escherichia coli, and Pseudomonas aeruginosa.
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4.2. Hydrogels Loaded with Peptides, Polypeptides, and Proteins

With more than one hundred products approved by the US Food and Drug Adminis-
tration (and many more being actually developed), polypeptide/protein-based therapeutics
have gained significant attention in all areas of medicine, including cancer therapies, inflam-
matory diseases, vaccines, and diagnostics. Polypeptides and proteins can provide highly
specific and complex functions that are often unable to be provided by small synthetic com-
pounds, including catalyzing desired biochemical reactions, participating in the formation
of membrane receptors and channels, and transporting molecules providing intracellular
and extracellular scaffolding support [206]. Therefore, polypeptides and proteins have
always been widely studied as therapeutic agents for the treatment of various human
diseases [207]. However, their physicochemical properties often render them difficult
to be used as bare therapeutic agents [208]. Their incorporation in a three-dimensional
hydrogel structure additionally provides a number of possibilities when it comes to thera-
peutic outcomes; examples of hydrogel systems loaded with polypeptides and proteins are
summarized in Table 4.

Table 4. Polypeptides-loaded stimuli-responsive wound dressing hydrogels.

Hydrogel Composition Stimuli Effects Ref.

PEG–PLGA–PEG triblock
copolymer loaded with
TGF-β1 polypeptide

Temp.
Temperature-initiatied
re-epithelialization and
collagen synthesis

[181]

N-carboxyethyl chitosan,
hyaluronic acid–aldehyde,
adipic acid dihydrazide,
insulin

pH pH-responsive insulin release [182]

oxidized dextran,
antimicrobial peptide DP7,
ceftazidime

pH
pH-sensitive hydrogel erosion
accelerating the release rate of
the drugs

[183]

PEG-based Tβ4-loaded hydrogels MMPs
Enzymatic activity-dependent
release of Tβ4 mediated by
tissue metalloproteinases

[184]

PEG–vinylsulfone-based
Tβ4-loded hydrogels MMPs

Enzymatic activity-dependent
release of Tβ4 mediated by
tissue metalloproteinases

[185]

Tβ4@TNT–PDA/PVHA ROS ROS-dependent Tβ4 release by
borate bonding cleavage [186]

Lee et al. synthesized a thermosensitive hydrogel made of a triblock copolymer,
PEG–PLGA–PEG containing plasmid TGF-β1 (a protein known for its inhibitory action
of autoimmune and chronic inflammatory diseases) and used the obtained material to
accelerate diabetic wound healing [181]. The bare and TGF-β1-loaded hydrogels were
administered to the wound and it was found that while bare hydrogel is slightly benefi-
cial for re-epithealization at an early stage of healing (1–5 days), significantly accelerated
re-epithelializaion is observed in the wound treated with a TGF-β1-loaded hydrogel. More-
over, the accelerated re-epithelialization was accompanied by increased cell proliferation,
enhanced collagen synthesis, and more organized extracellular matrix deposition. A
commercial wound dressing, Humatrix®, was also doped with TGF-β1 but the resulting
formulation had little effect when compared with the obtained PEG–PLGA–PEG hydrogels,
which shows the importance of the proper choice of the matrix.

Li et al. developed a self-healing hydrogel composed of N-carboxyethyl chitosan
(N-chitosan) and adipic acid dihydrazide, which was crosslinked in situ by hyaluronic
acid–aldehyde and loaded with insulin [182]. This construct exhibits pH-responsive long-
term insulin release, offering an appealing mechanism to reduce glucose levels, making it
particularly advantageous for diabetic skin wounds.
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Temperature-sensitive and thermoreversible hydrogels based on a thermosensitive
polymer, poly-(N-isopropylacrylamide) (PNIPAM), were obtained by a combination of a
short peptide (I3K) with PNIPAM [105]. An antibacterial peptide G(IIKK)3I-NH2 (a short
cationic helical peptide with confirmed antimicrobial properties [209]) was encapsulated in
the hydrogel matrix as a model drug. The fabricated composite hydrogel gave a sustained
and controlled linear release of G(IIKK)3I-NH2 over time. Using the peptide nanofibrils
as three-dimensional scaffolds, the obtained thermoresponsive hydrogels can mimic the
extracellular matrix and could potentially be used for tissue engineering [210]. It should
be mentioned that PNIMAM-based hydrogels enable faster drug release at an elevated
temperature (e.g., during the inflammatory state of chronic wounds) and slower delivery
at lower temperatures, which results from a low critical solution temperature, close to the
body temperature [211]. This makes PNIMAM a very promising hydrogel matrix for use in
the treatment of inflamed wounds [35].

Several short peptide-based wound healing systems have been reported in recent
years [212]. For example, Wu et al. employed an antimicrobial peptide DP7 (a short
twelve amino acid cationic peptide with broad-spectrum antibacterial activities [213]) to
create a pH-sensitive hydrogel wound dressing, based on preoxidized dextran as the
polymeric matrix [183]. The resulting hydrogel not only inhibited the growth of multidrug-
resistant bacteria but it also did not cause an increase in bacterial resistance. To enhance its
efficacy, the hydrogel was loaded with ceftazidime for synergistic antibacterial effects. The
combined action of DP7, ceftazidime, and oxidized polysaccharides exhibited significant
efficacy against a variety of multidrug-resistant P. aeruginosa strains. Remarkable wound
healing was observed in the in vivo experiment, in both wild type C57 and diabetic mouse
models [183], which is attributed to the hydrogel erosion accelerating the release rate of the
drugs, which is schematically presented in Figure 5.
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Rezaei et al. synthesized thermo-responsive chitosan-based hydrogels loaded with
various concentrations of piscidin-1 (a fish-derived 22-amino-acid cationic peptide with
potent antimicrobial and antiendotoxin activities [214]) to fabricate an antibacterial wound
dressing that is able to treat a resistant Acinetobacter baumannii. β-glycerolphosphate
disodium salt pentahydrate was used to tune the gelation time of the resulting hydrogels. A
total of 16 µg·mL−1 of piscidin-1 in the hydrogel was found to be the optimal concentration
to provide effective antibacterial activity against resistant clinical isolates of A. baumannii
and no signs of cytotoxicity for human cells were observed [215].

The above-discussed examples of the DP7 and piscidin-1 peptides show increasing
interest in antimicrobial peptides (AMPs) as active ingredients of various hydrogel for-
mulations. AMPs constitute an important part of the innate immune defense system in
multicellular organisms and can act in two ways: (i) directly, i.e., kill microbial pathogens
(most of AMPs), (ii) indirectly: modulate the host defense system [216,217].

Interesting example of Thymosin β4

One of the most prospectus polypeptides is thymosin β4 (Tβ4). Being the most abun-
dant, it constitutes 70–80% of the β-thymosin polypeptides initially extracted and identified
over four decades ago from the calf thymus. It was later shown to be expressed by multiple
cells, including immune, brain, liver, testis, myocardium, and blood cells, except for ery-
throcytes [218]. This is a classical moonlight protein, showing different biological activities
in eukaryotic cells, i.e., angiogenic, anti-inflammatory, and anti-microbial properties. Tβ4
upregulates vascular endothelial growth factor VEGF, promotes endothelial cell migration,
tube formation, angiogenesis, and wound healing in vivo [219,220]. Via the downregula-
tion of chemo- and cytokines, it can decrease inflammation [221,222], while in platelets it
shows antimicrobial properties [223]. As Tβ4 is highly expressed in platelets and wound
fluids, this explains its contribution to wound healing and tissue regeneration [224]. In
preclinical models and in patients Tβ4 accelerated the rate of dermal healing when applied
directly on the injured site or was given intraperitoneally [225]. When Tβ4 was injected
intradermally on the second-degree burn wound site it promoted skin regeneration in
mice [226], suggesting its potential therapeutic use in the treatment of severe burns. In
addition, Tβ4, especially at the SDKP (serine–aspartate–lysine–proline) region, prevents or
can reverse uncontrolled wound healing resulting in fibrosis/scarring via the inhibition of
macrophage infiltration and secretion of fibrotic factors (TGF-b, IL-10, CTGF) [227].

Interestingly, in human clinical trials on patients with chronic cutaneous pressure
ulcers and venous stasis ulcers accompanied with varicose veins and an open ulceration, the
topical application of gel containing Tβ4 increased the rate of complete wound healing [225].
As it is a good candidate for future treatments, there are new developments toward new
application modes of this factor to improve its effectiveness in wound healing. Transdermal
administration of the encapsulated Tβ4 in the ethosomal gels can improve the percutaneous
drug absorption and shorten wound recovery [228]. Future prospectives are also attracted
to the possible application of Tβ4 in the regeneration of adult tissues such as the heart
that was shown in mice where the peptide enhanced myocyte survival and improved
cardiac function after coronary artery ligation [229]. For this application the new solutions
were developed for Tβ4 delivery. The injectable collagen–chitosan-based hydrogels loaded
with Tβ4 were shown to impact heart regeneration by the stimulation of angiogenesis and
migration of epicardial heart cells [230]. The controlled delivery and release of Tβ4 into the
infarct area was also achieved by the same type of hydrogels with a beneficial effect on the
reduction in heart tissue loss and revascularization [231]. The hydrogel solution provides
mechanical support to the host tissue, adapting to the geometry of the ventricular space,
and offers a less invasive strategy compared to the scaffold patches or other solutions. A
similar approach of the long-term Tβ4 delivery was presented with poly(ethylene glycol)
(PEG)-based hydrogels [184] or another version [185]. The active factor is released by
proteolytic activity tissue-present metalloproteinases (MMPs). This biomatrix provides
a three-dimensional environment that is desired when considering the regeneration of
vascular structures and networks.
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4.3. Hydrogels Loaded with Silver Nanoparticles

Given the growing prevalence of multidrug resistant (MDR) bacteria, nanoparticles
(NPs) with inherent antibacterial potential, such as silver (Ag) [232], copper (Cu) [233], gold
(Au) [234], zinc oxide (ZnO) NPs [235], and more, have emerged as promising alternatives
for bacterial infection treatment and preventing biofilm formation [236]. NPs possess
distinct physicochemical, optical, and biological properties that are crucial in biomedical
applications [33,34]. They also exhibit complex antimicrobial mechanisms, significantly
reducing the likelihood of bacterial drug-resistance development. NPs can penetrate the
bacterial cell walls, then positive charges of NPs are linked to negatively charged sectors at
the surfaces of bacteria. As a result, hydrophobic interactions can lead to holes in bacteria
surfaces. In addition, they adversely impact the proton efflux pumps and subsequently,
with a modification of the pH range, destroy the membrane’s surface charge [236].

Moreover, NPs with small sizes and large surface areas, including polymeric, liposo-
mal, lipid-based, and inorganic NPs, have the capacity to transport and release therapeutic
agents at wound sites. Furthermore, these NPs can be integrated into a variety of wound
dressing systems to enhance the safety and effectiveness of infected wound treatment [237].
Consequently, the development of intelligent nanomaterial-based hydrogel carriers capable
of responding in a controlled manner to the specific microenvironmental stimuli created
by bacterial infections or external stimuli is an effective strategy for the design of wound
dressings. These stimuli include an acidic pH, excess of ROSs, bacterial-secreted toxins and
enzymes, light, heat, and magnetic fields. So far, these intelligent nanocarriers undergo
extensive research and hold the potential for further integration into wound dressings to
enhance the wound healing process [87,238].

Among the different metal NPs, silver nanoparticles (AgNPs) are widely employed
as bactericidal agents in the treatment of burns and various types of ulcers to prevent
bacterial infections [238–241]. This is due to their unique surface properties, characterized
by a high ratio of surface atoms to inner surface atoms and elevated surface energy, along
with their small size, resulting in a substantial specific surface area [242]. These features
enable AgNPs to disrupt the membrane structure and hinder enzyme activity in bacteria.
AgNPs adhere to the bacterial cell membrane, subsequently releasing silver ions or intact
nanoparticles into the bacterial cells. Within these cells, they interact with phosphorus
and sulfur groups present in proteins and DNA, effectively exerting their antibacterial
effects [243]. AgNPs are used in wound healing due to their remarkable anti-inflammatory
and antibacterial properties. When AgNPs come into contact with the wound site, they
interact with bacterial cells, disrupting their cell membranes and interfering with their
metabolic processes. This action helps prevent or reduce infections at the wound site, which
is a crucial aspect of efficient wound healing. Moreover, AgNPs exhibit anti-inflammatory
effects by reducing immune cell activation and the release of pro-inflammatory cytokines.
They also modulate neutrophil activity, helping to control excessive inflammation and
creating a more conducive environment for the wound healing process [244–246].

The utilization of natural substances obtained from plants and microorganisms for
the biosynthesis of nanoparticles has gained significant interest, primarily driven by the
growing need to develop environmentally sustainable and non-toxic approaches. This
method, which relies on renewable materials and avoids the use of hazardous chemicals and
environmentally unfriendly solvents, renders the nanoparticles more suitable for various
biomedical applications. Table 5 presents the latest advancements in stimuli-responsive
hydrogels for wound healing that are enriched with AgNPs.
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Table 5. Silver nanoparticles (AgNPs)-loaded stimuli-responsive wound dressing hydrogels.

Hydrogel Composition Stimuli Effects Ref.

Cassava starch modified by
carboxymethylation (CMS),
poly vinyl alcohol (PVA),
CMS/PVA–H
tannic acid (TA),
Silver nanoparticles (AgNPs)
H-AgNPs

NIR
pH

NIR-stimulated
antibacterial activity
pH-responsive TA release

[187]

Methacrylic acid (mAA),
acrylamide (AAm),
N, N’-Methylenebisacrylamide (MBMa),
poly(mAA-co-AAm) hydrogel
Mercaptossucinic acid (MSA)-protected
AgNPs (MSA–AgNPs)
poly(mAA-co-AAm)–AgNPs

pH pH-dependent AgNP
release [188]

N-isopropylacrylamide (Nipam)+acrylic
acid (AAc)→ Pnipam AgNPs
Pnipam–PAA–AgNPs

pH
Temp.

pH-dependent AgNPs’
release
Controlled release and
delivery of AgNPs

[189]

N-isopropylacrylamide (NIPAAm),
acrylamide (AAm),
Ag2S quantum dots (Ag2SQDs)
modified by mSiO2 mesoporous silica,
(NP hydrogel),
3-(trimethoxylmethosilyl) propyl
methacrylate (MPS),
Ag2S QDs/mSiO2 NP–MPS

NIR
NIR laser-induced
controlled release of silver
ions (Ag+)

[190]

Pluronics F127 and F68,
hyaluronic acid (HA),
corn silk extract (CSE),
AgNPs
Pluronic/HA/CSE/Ag

Temp. Temperature-dependent
sol–gel transition [168]

methylcellulose (MC),
citric acid (CA),
AgNPs
MC/AgNPs nanocomposite hydrogels

Temp.
pH

Temperature-induced
changes in swelling rate
and rheological properties
pH-induced changes in
swelling rate and
rheological properties

[15]

Ag nanoparticles/phosphotungstic
acid–polydopamine nano-flowers
(AgNPs/POM–PDA),
chitosan,
gelatin,
AgNPs/POM–PDA@ chitosan/gelatin

NIR Ag+ release under NIR
light irradiation [191]

Srikhao et al. reported CMS/PVA–H hydrogels based on the idea of AgNP incorpora-
tion into cassava starch modified by carboxymethylation (CMS), mixed with PVA and TA.
NIR stimulation of the fabricated hydrogel resulted in the generation of elevated tempera-
tures from 21.5 to 31.7 ◦C, demonstrating enhanced photothermal capabilities [187]. The
addition of (TA-reduced) AgNPs to the hydrogel also allowed a pH-responsive release of
TA as a therapeutic agent. The increased levels of loaded AgNPs enhanced the antibacterial
and mechanical properties of hydrogel. The obtained nanocomposite hydrogel showed
remarkable potential for future applications in wound dressings. Haidari et al. developed
a facile synthetic procedure to polymerize methacrylic acid (mAA) in combination with
acrylamide (AAm) crosslinked with N,N’-Methylenebisacrylamide (MBMa) to establish a
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sensitive pH-responsive hydrogel delivery system for AgNPs [188]. The prepared hydrogel
restricts the release of AgNPs at an acidic pH (pH = 4) but substantially amplifies it at an
alkaline pH (pH = 7.4 and pH = 10). This facilitates a controlled AgNP release and exhibits
strong antibacterial properties against both Gram-negative and Gram-positive bacteria,
all while remaining non-toxic to mammalian cells. A dual-responsive hydrogel (pnipam–
PAA–AgNPs) was prepared by the Haidari research group [189]. They achieved this by
crosslinking N-isopropyl acrylamide with acrylic acid and incorporating ultrasmall AgNPs.
This hydrogel operates by adapting to the physiological conditions of an infected wound,
enabling the “on-demand” release of ultrasmall AgNPs based on the wound’s pathological
state. It contains a pH-responsive component that swells as the pH increases, promoting
the gradual release of AgNPs. It responds to changes in both pH and temperature, by
transitioning from a hydrophilic to a hydrophobic state at a temperature near 37 ◦C. In
infected wounds, where the pH is higher, the release of Ag+ ions is accelerated, effectively
eliminating bacteria and supporting wound healing. Moreover, the Pnipam–PAA–AgNPs
hydrogel maintains its ability to respond to body temperature regardless of the pH condi-
tions in the wound environment. This is advantageous in the context of infection treatment
and wound healing.

Du et al. [190] designed a composite Ag2S quantum dot/mSiO2NPs hydrogel (NP
hydrogel) with an antibacterial ability. It was constructed by incorporating Ag2S quan-
tum dots (QDs) modified by mesoporous silica (mSiO2) into the network structure of
3-(trimethoxylmethosilyl) propyl methacrylate based on free radical polymerization. The
hydrogel demonstrated remarkable performance, with a photothermal conversion effi-
ciency of 57.3% when exposed to 808 nm near-infrared (NIR) light. Moreover, the hydrogel
released silver ions (Ag+) in a controlled manner in response to NIR laser-induced volume
changes, enhancing its antibacterial properties. It efficiently eliminated 99.7% of Escherichia
coli and 99.8% of methicillin-resistant Staphylococcus aureus (MRSA) within just 4 min under
NIR laser exposure. It was also responsive to photodynamic therapy (PDT), generating
reactive oxygen species (ROS) upon NIR light exposure, further aiding bacterial eradication.
Thermosensitive, injectable nanocomposite hydrogels (Pluronic/HA/CSE/Ag) containing
AgNPs demonstrated good mechanical properties with a gelation temperature close to the
body temperature, thus allowing for the easy possibility of an application. They exhib-
ited antibacterial activity toward Gram-positive and Gram-negative bacterial strains and
allowed for a facilitated accelerated wound closure and regeneration process [168].

Methylcellulose (MC) and AgNPs-loaded hydrogels were prepared and crosslinked
with citric acid (CA) at three different crosslinking degrees: low (MC-L), medium (MC-
M), and high (MC-H). Pristine hydrogel (MC) was used as a control. All hydrogel vari-
ants at 25 ◦C exhibited a rapid swelling behavior, reaching a high degree of swelling
(SR = 4000–6000%). Subsequently, they dissolved within 72 h, irrespective of the pH. This
suggests that at a temperature lower than the phase transition temperature (Tt), these hy-
drogels were in a liquid state and underwent rapid dissolution in the aqueous environment.
Highly crosslinked hydrogels (MC-H) displayed remarkable pH-responsive characteris-
tics, mainly due to selective hydrolysis in an alkaline environment. As an accompanying
phenomenon, a significant release of AgNPs was detected (several times higher at pH 12
than at pH 4). Temperature also affected the properties of described hydrogels because
they exhibited a significantly higher swelling ratio at lower temperatures (25 ◦C) than at
higher ones (50 ◦C). MC-H hydrogels were identified as a promising approach for in-situ
synthesis of AgNPs, followed by pH-triggered release. This platform seems to be the
potential solution to effectively regulate pathogen growth in chronically infected wounds
characterized by an alkaline pH environment [15].

A bactericidal nanocomposite was obtained using Ag nanoparticles/phosphotungstic
acid–polydopamine nanoparticles (AgNPs/POM–PDA). The final multifunctional wound
dressing was obtained by embedding the resulting nanocomposite into the chitosan–gelatin
hydrogel [191]. Ag+ release from the hydrogel took place under NIR light irradiation.
That process was responsible for excellent synergistic anti-bacterial activity against Gram-
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negative Escherichia coli and Gram-positive Staphylococcus aureus. The synergistic effect
of the simultaneous presence of AgNPs/POM–PDA nanocomposites and CS/GE hy-
drogel in the final formula remarkably accelerated wound healing in vivo due to the
excellent biocompatibility, hydroabsorptivity, and breathability of the hydrogel. The
in vivo infectious wound healing test showed that the obtained multicomponent hydrogel-
based scaffolds promoted wound healing by inhibiting wound infection and reducing the
inflammatory response.

4.4. Hydrogels Loaded with Antibiotics and Drugs

Although stimuli-responsive systems can deliver drugs in a controlled manner, the
antibiotic-based strategy proves inefficient in the long run, ultimately leading to undesirable
effects. This includes increasing local drug concentration at infection sites, antibiotic
accumulation in healthy host tissues, the risks of toxicity, and exposure of commensal
microflora to sub-lethal antibiotic doses [236]. The biggest danger that systems based on
antibiotics face is the risk of the potential development of antimicrobial resistance associated
with prolonged exposure to these substances. Moreover, biofilm-forming bacteria are less
prone to the action of the human immune system due to the formation of a mechanical
barrier as well as antiphagocytic properties of the resulting biofilm, limiting penetration
and further action of antimicrobial agents. Secondly, the biofilm environment enables
bacterial communication and thus promotes phenotypic changes that are enhanced by the
use of antibiotics [247,248]. Besides contributing to the development of resistance, the use
of topical antibiotics may also trigger adverse effects, including delayed hypersensitivity
reactions, superinfections, and contact dermatitis [249]. In Table 6, the examples of the
drug-loaded stimuli-responsive hydrogel formulas are presented.

Zhao et al. created an ROS-scavenging hydrogel designed to eliminate high ROS levels
in wound sites [192]. This PVA-based hydrogel was an ROS-responsive TPA linker. Such
construct was loaded with mupirocin (MP) (antibiotic) and a tissue-regenerating growth
factor (GM-CSF). It showed antibacterial activity and effectively lowered intracellular ROS
levels. Additionally, it decreased the secretion of pro-inflammatory factors, controlled
macrophage behavior, stimulated the formation of new blood vessels and collagen, and
markedly enhanced wound healing capabilities. The study utilized a freeze–thaw method
to develop a pH-responsive hydrogel named FTS-G@PC, which is composed of polyvinyl
alcohol (PVA) and chitosan (CS), with gentamicin (GS) incorporated and crosslinked within.
This hydrogel is exceptionally biocompatible due to its use of natural wood and the physical
crosslinking achieved through repeated freezing and thawing. Additionally, gentamicin
was released in a weakly acidic pH and enhanced antibacterial capabilities, reducing
bacterial growth and increasing mortality rates, especially against Staphylococcus aureus and
Escherichia coli [193]. The uniqueness of this hydrogel lies in its biocompatibility, owing to
the use of natural wood and the physical crosslinking achieved through freeze–thaw cycles.

Rezaei et al. [194] proposed the pH-sensitive vancomycin-loaded silk fibroin–sodium
alginate nanoparticles (SF–SANPs) embedded in a poly(N-isopropylacrylamide) (PNI-
PAM) hydrogel containing epidermal growth factor (EGF) for the treatment of chronic
burn wound infections. Vancomycin exhibited a pH-dependent release behavior from the
nanoparticles with a higher release rate in an alkaline pH compared to the neutral pH
values. Hu et al. [195] proposed a dual-responsive hydrogel system (Hydrogel@AM&MIC
and Hydrogel@NAP&MIC) by grafting phenylboronic acid to the side chain of the alginate
polymer. By grafting phenylboronic acid onto the alginate polymer’s side chain, a highly
specific hydrogel responsive to a low pH and high ROS levels was obtained. The hydrogel
was endowed with antibacterial and anti-inflammatory properties respectively via the ef-
fective assembly of amikacin (antibiotic) and naproxen (anti-inflammatory drug) preloaded
into the micelles.
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Table 6. Antibiotic- and drug-loaded stimuli-responsive wound dressing hydrogels.

Hydrogel Composition Stimuli Effects Ref.

N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1,
N1, N3, N3-tetramethylpropane-1, 3-diaminium
(TPA), poly(vinyl alcohol) (PVA)
TPA + PVA = Hydrogel
mupirocin (MP),
granulocyte-macrophage colony-stimulating
factor (GM-CSF),

ROS ROS-responsive
degradation [192]

Triplochitin scleroxylon wood (TS),
gentamicin (G),
polyvinyl alcohol (PVA),
chitosan (CS),
FTS-G@PC Flexible wood-based hydrogel

pH pH-responsive
gentamicin release [193]

Poly(N-isopropylacrylamide) (PNIPAM),
epidermal growth factor (EGF),
silk fibroin–sodium alginate,
nanoparticles (SF–SANPs),
Vancomycin (VANCO)
PNIPAM and EGF/SF–SANPs

pH pH-responsive
vancomycin release [194]

Hyaluronic acid (HA),
boronic acid (BA),
HA + BA = hydrogel
micelle-loaded amikacin (AM),
micelle-loaded naproxen (NAP),
Hydrogel@AM&MIC
Hydrogel@NAP&MIC

pH
ROS

pH-dependent
amikacin release
ROS-responsive
naproxen release

[195]

Poloxamer 188,
solution of poloxamer 407,
gentamicin

Temp. Sol–gel transition at
around 37 ◦C [196]

Vinyl carboxymethyl chitosan (CG),
graphene (GM),
N-isopropylacrylamide (NIPAM),
ciprofloxacin hydrochloride,
NIPAM–CG/GM

Temp.
Temperature-
dependent drug
release

[197]

Pluronic F127 (PF127),
complex of zinc and metformin, (ZnMet);
ZnMet-PF127

Temp. Sol–gel transition at
around 37 ◦C [198]

Niyompanich et al. designed poloxamer hydrogels loaded with the gentamicin sulfate,
which exhibited antibacterial properties against Escherichia coli, Bacillus cereus, Staphylo-
coccus aureus, and MRSA [196]. Temperature-sensitive NIPAM–CG/GM hydrogels [197]
showed strong mechanical properties and an excellent drug loading capacity. Its phase
transition closely matches the human body temperature, facilitating efficient drug release.
Additionally, the hydrogel effectively prevents microbial invasion in wounds and ensures a
moist conducive environment for healing without harmful bacteria.

Sprayable ZnMet-PF127 developed by Liu et al. [198] was used to evenly cover the
surface of an irregular skin defect. The application of ZnMet-PF127 promoted granulation
tissue formation, collagen deposition, new vessel formation, and inhibited ROS accumula-
tion and inflammation. It also showed antibacterial activity against Staphylococcus aureus or
Escherichia coli.

5. Conclusions and Perspectives

This review presents and discusses the-state-of-the-art discoveries regarding stimuli-
responsive hydrogels used in wound healing and skin tissue regeneration. Over the last
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few years, a plethora of various additives (e.g., polyphenols, polypeptides, nanoparticles)
have been investigated and promising results have been obtained, as discussed in this
review. However, the use of new types of additives to support the wound healing process
could lead to significant breakthroughs in this field; a very good example is thymosin β4
discussed in Section 4.2. Despite these significant achievements, there are still important
issues that need to be addressed in the future.

Firstly, ensuring high biocompatibility and cytocompatibility not only of the hydrogel
itself but also of its degradation products needs to be addressed. For this reason, the
development of hydrogels based on natural hydrogelators such as hyaluronic acid, chitosan,
gelatin, and collagen is often considered as a first choice.

Secondly, despite great progress being made in the targeted release of bioactive
agents/drugs, this field requires further clarification to achieve effective therapies that
could be translated to the clinic. Some of the challenges here are: (i) the proper dosage
for optimal treatment, (ii) identification of the hydrogel matrix influence on the releasing
drug side effects as well as on therapeutic outcomes, and (iii) the precise control over
the drug release profile with the minimalization of the unwanted drug-leakage during
transportation and avoidance of possible off-target.

Thirdly, new chemical and physical crosslinking approaches better mimicking in vivo
dynamic behavior are needed to be developed to broaden hydrogels’ applications; those
approaches may include inter alia click chemistry or enzymatic reactions. The projected
routes should also focus on the fabrication of pH-responsive hydrogels that are more
effective at an alkaline pH, given that the chronic wound environment is alkaline, but most
pH-responsive hydrogels currently appear more friendly to acidic environments.

In the future, stimuli-responsive hydrogel-based dressings may provide an excellent
control over the wound healing processes, and if integrated with a miniaturized sensor
system, they will enable the tailoring of therapeutic strategies. It is worth mentioning that
smart hydrogels integrated with sensors are actually conceptualized to deliver real-time
information about the wound healing process. Real-time monitoring of the wound healing
process is of paramount importance as many related processes and parameters dynamically
change, which makes it difficult to develop a dressing that could simultaneously meets the
needs of the entire healing process.

Finally, integration with other functional ingredients (e.g., hemostatic, conductive, or
adhesive materials) will certainly bring the potential clinical application much closer. This
translational approach requires the concerted endeavors of researchers and clinicians in
this booming field.
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