Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Compositions and Crystal Structure
3.2. Morphologies
3.3. Photoluminescence Properties
3.4. Local Environments around Cr3+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid-State Lett. 2006, 9, H22–H25. [Google Scholar] [CrossRef]
- Piao, X.; Machida, K.; Horikawa, T.; Hanzawa, H.; Shimomura, Y.; Kijima, N. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem. Mater. 2007, 19, 4592–4599. [Google Scholar] [CrossRef]
- Kim, H.S.; Horikawa, T.; Hanzawa, H.; Machida, K. Luminescence properties of CaAlSiN3:Eu2+ mixed nitrides prepared by carbothermal process. J. Phys. Conf. Ser. 2012, 379, 012016. [Google Scholar] [CrossRef]
- Daicho, H.; Shinomiya, Y.; Enomoto, K.; Nakano, A.; Sawa, H.; Matsuishi, S.; Hosono, H. A novel red-emitting K2Ca(PO4)F:Eu2+ phosphor with a large Stokes shift. Chem. Commun. 2018, 54, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, M. Recent progress of near-infrared fluorescence in vivo bioimaging in the second and third biological window. Anal. Sci. 2021, 37, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Gil, H.M.; Price, T.W.; Chelani, K.; Bouillard, J.-S.G.; Calaminus, S.D.J.; Stasiuk, G.J. NIR-quantum dots in biomedical imaging and their future. iScience 2021, 24, 102189. [Google Scholar] [CrossRef] [PubMed]
- Piwoński, H.; Nozue, S.; Habuchi, S. The pursuit of shortwave infrared-emitting nanoparticles with bright fluorescence through molecular design and excited-state engineering of molecular aggregates. ACS Nanosci. Au 2022, 2, 253–283. [Google Scholar] [CrossRef] [PubMed]
- Congiu, M.; Alamiry, M.; Moudam, O.; Ciorba, S.; Richardson, P.R.; Maron, L.; Jones, A.C.; Richards, B.S.; Robertson, N. Preparation and photophysical studies of [Ln(hfac)3DPEPO], Ln = Eu, Tb, Yb, Nd, Gd; interpretation of total photoluminescence quantum yields. Dalton Trans. 2013, 42, 13537–13545. [Google Scholar] [CrossRef]
- Tamatani, M. Luminescence centers of transition metal ions. In Phosphor Handbook; Shionoya, S., Yen, W.M., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 153–176. [Google Scholar]
- Sijbom, H.F.; Verstraete, R.; Joos, J.J.; Poelman, D.; Smet, P.F. K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs: A review of properties and perspectives. Opt. Mater. Exp. 2017, 7, 3332–3365. [Google Scholar] [CrossRef]
- Sankarasubramanian, K.; Devakumar, B.; Annadurai, G.; Sun, L.; Zeng, Y.-J.; Huang, X. Novel SrLaAlO4:Mn4+ deep-red emitting phosphors with excellent responsiveness to phytochrome PFR for plant cultivation LEDs: Synthesis, photoluminescence properties, and thermal stability. RSC Adv. 2018, 8, 30223–30229. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Devakumar, B.; Li, B.; Sun, L.; Liang, J.; Chen, D.; Huang, X. Novel far-red-emitting SrGdAlO4:Mn4+ phosphors with excellent responsiveness to phytochrome PFR for plant growth lighting. RSC Adv. 2018, 8, 39307–39313. [Google Scholar] [CrossRef] [PubMed]
- Luchechko, A.; Vasyltsiv, V.; Zhydachevskiyy, Y.; Kushlyk, M.; Ubizskii, S.; Suchocki, A. Luminescence spectroscopy of Cr3+ ions in bulk single crystalline β-Ga2O3. J. Phys. D Appl. Phys. 2020, 53, 354001. [Google Scholar] [CrossRef]
- Wood, D.L.; Imbusch, G.F.; Macfarlane, R.M.; Kisliuk, P.; Larkin, D.M. Optical spectrum of Cr3+ ions in spinels. J. Chem. Phys. 1968, 48, 5255–5263. [Google Scholar] [CrossRef]
- Derkosch, J.; Mikenda, W.; Preisinger, A. N-lines and chromium-pairs in the luminescence spectra of the spinels ZnAl2O4:Cr3+ and MgAl2O4:Cr3+. J. Solid State Chem. 1977, 22, 127–133. [Google Scholar] [CrossRef]
- Brik, M.G.; Papan, J.; Jovanović, D.J.; Dramićanin, M.D. Luminescence of Cr3+ ions in ZnAl2O4 and MgAl2O4 spinels: Correlation between experimental spectroscopic studies and crystal field calculations. J. Lumin. 2016, 177, 145–151. [Google Scholar] [CrossRef]
- Tran, M.T.; Trung, D.Q.; Tu, N.; Anh, D.D.; Thu, L.T.H.; Du, N.V.; Quang, N.V.; Huyen, N.T.; Kien, N.D.T.; Viet, D.X.; et al. Single-phase far-red-emitting ZnAl2O4:Cr3+ phosphor for application in plant growth LEDs. J. Alloys Compd. 2021, 884, 161077. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, H.; Wang, C.; Zhang, J.; Yao, Q.; Wu, S.; Hu, Y. Co-precipitation synthesis of ZnAl2O4:Cr3+ phosphor for better light penetration in pc-LED. J. Mater. Sci. Mater. Electron. 2022, 33, 19871–19883. [Google Scholar] [CrossRef]
- Pott, G.T.; McNicol, B.D. Luminescence of Cr3+ ions in ordered and disordered LiAl5O8. J. Solid State Chem. 1973, 7, 132–137. [Google Scholar] [CrossRef]
- Khaidukov, N.M.; Nikonov, K.S.; Brekhovskikh, M.N.; Kirikova, N.Y.; Kondratyuk, V.A.; Makhov, V.N. Low-temperature luminescence of lithium aluminate spinel LiAl5O8 doped with chromium ions. Inorg. Mater. 2022, 58, 751–763. [Google Scholar] [CrossRef]
- Sevast’yanov, B.K.; Sviridov, D.T.; Orekhova, V.P.; Pasternak, L.B.; Sviridova, R.K.; Veremeichik, T.F. Optical absorption spectrum of excited Cr3+ ions in yttrium aluminum garnet. Sov. J. Quantum Electron. 1973, 2, 339. [Google Scholar] [CrossRef]
- Yamaga, M.; Henderson, B.; O’Donnell, K.P.; Yue, G. Temperature dependence of the lifetime of Cr3+ luminescence in garnet crystals. Appl. Phys. B 1990, 51, 132–136. [Google Scholar] [CrossRef]
- Głuchowski, P.; Pązik, R.; Hreniak, D.; Stręk, W. Luminescence properties of Cr3+:Y3Al5O12 nanocrystals. J. Lumin. 2009, 129, 548–553. [Google Scholar] [CrossRef]
- Martín-Rodríguez, R.; Valiente, R.; Rodríguez, F.; Bettinelli, M. Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles. Nanotechnology 2011, 22, 265707. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.L.; Ferguson, J.; Knox, K.; Dillon, J.F., Jr. Crystal-field spectra of d3,7 ions. III. Spectrum of Cr3+ in various octahedral crystal fields. J. Chem. Phys. 1963, 39, 890–898. [Google Scholar] [CrossRef]
- Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.; Merkulov, V. Optical properties of natural and synthetic beryl crystals. IOP Conf. Ser. Mater. Sci. Eng. 2015, 77, 012034. [Google Scholar] [CrossRef]
- Liu, G.; Molokeev, M.S.; Xia, Z. Structural rigidity control toward Cr3+-based broadband near-infrared luminescence with enhanced thermal stability. Chem. Mater. 2022, 34, 1376–1384. [Google Scholar] [CrossRef]
- Rajendran, V.; Fang, M.-H.; Huang, W.-T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S.M.; Pang, W.K.; Peterson, V.K.; et al. Chromium ion pair luminescence: A strategy in broadband near-infrared light-emitting diode design. J. Am. Chem. Soc. 2021, 143, 19058–19066. [Google Scholar] [CrossRef]
- Back, M.; Ueda, J.; Brik, M.G.; Lesniewski, T.; Grinberg, M.; Tanabe, S. Revisiting Cr3+-doped Bi2Ga4O9 spectroscopy: Crystal field effect and optical thermometric behavior of near-infrared-emitting singly-activated phosphors. ACS Appl. Mater. Interfaces 2018, 10, 41512–41524. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, Z. Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors. RSC Adv. 2014, 4, 46313–46318. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Cai, H.; Zhang, S.Y.; Song, Z.; Liu, Q.L. Octahedron-dependent near-infrared luminescence in Cr3+-activated phosphors. Materialstoday Chem. 2022, 23, 100704. [Google Scholar] [CrossRef]
- Kobayashi, R.; Tamura, H.; Kamada, Y.; Kakihana, M.; Matsushima, Y. A new host compound of aluminum lithium fluoride oxide for deep red phosphors based on Mn4+, Fe3+ and Cr3+. ECS Trans. 2019, 88, 225–236. [Google Scholar] [CrossRef]
- Belov, S.F.; Abaeva, T.I.; Rozdin, I.A.; Varfolomeev, M.B. Reaction of Al2O3 with LiF. Inorg. Mater. 1984, 20, 1675–1676. [Google Scholar]
- Takahashi, H.; Takahashi, H.; Watanabe, K.; Kominami, H.; Hara, K.; Matsushima, Y. Fe3+ red phosphors based on lithium aluminates and an aluminum lithium oxyfluoride prepared from LiF as the Li Source. J. Lumin. 2017, 182, 53–58. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, J.; Kong, L.; Qiu, B.; Li, J.; Huang, H.; Wen, H. Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F:Mn4+ red phosphor for solid-state lighting. J. Alloys Compd. 2019, 772, 499–506. [Google Scholar] [CrossRef]
- Izumi, F.; Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Kawamura, K. Environmental Nano-Mechanics·Molecular Simulations. Available online: https://kats-labo.jimdofree.com/mxdorto-mxdtricl/ (accessed on 25 December 2023).
- Ichikawa, J.; Kominami, H.; Hara, K.; Kakihana, M.; Matsushima, Y. Electronic structure calculation of Cr3+ and Fe3+ in phosphor host materials based on relaxed structures by molecular dynamics simulation. Technologies 2022, 10, 56. [Google Scholar] [CrossRef]
- Datta, R.K.; Roy, R. Phase transitions in LiAl5O8. J. Am. Ceram. Soc. 1963, 46, 388–390. [Google Scholar] [CrossRef]
- Pott, G.T.; McNicol, B.D. Zero-phonon transition and fine structure in the phosphorescence of Fe3+ ions in ordered and disordered LiAl5O8. J. Chem. Phys. 1972, 56, 5246–5254. [Google Scholar] [CrossRef]
- McNicol, B.D.; Pott, G.T. Luminescence of Mn ions in ordered and disordered LiAl5O8. J. Lumin. 1973, 6, 320–334. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Mironova-Ulmane, N.; Brik, M.G.; Grube, J.; Krieke, G.; Kemere, M.; Antuzevics, A.; Gabrusenoks, E.; Skvortsova, V.; Elsts, E.; Sarakovskis, A.; et al. EPR, optical and thermometric studies of Cr3+ ions in the α-Al2O3 synthetic single crystal. Opt. Mater. 2022, 132, 112859. [Google Scholar] [CrossRef]
- Singh, V.; Chakradhar, R.P.S.; Rao, J.L.; Kwak, H.-Y. Characterization, EPR and photoluminescence studies of LiAl5O8:Cr phosphors. Solid State Sci. 2009, 11, 870–874. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions. I. J. Phys. Soc. Jpn. 1954, 9, 753–766. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions, III the calculation of the crystalline field strength. J. Phys. Soc. Jpn. 1956, 11, 864–877. [Google Scholar] [CrossRef]
- Vink, A.P.; De Bruin, M.A.; Roke, S.; Peijzel, P.S.; Meijerink, A. Luminescence of exchange coupled pairs of transition metal ions. J. Electrochem. Soc. 2001, 148, E313–E320. [Google Scholar] [CrossRef]
- De Biasi, R.S.; Rodrigues, D.C.S. Influence of chromium concentration and particle size on the ESR linewidth of Al2O3:Cr3+ powders. J. Mater. Sci. 1981, 16, 968–972. [Google Scholar] [CrossRef]
- Wenzel, R.F.; Kim, Y.W. Linewidth of the electron paramagnetic resonance of (Al2O3)1−x(Cr2O3)x. Phys. Rev. 1965, 140, A1592–A1598. [Google Scholar] [CrossRef]
- Grant, W.J.C.; Strandberg, M.W.P. Line shapes of paramagnetic resonances of chromium in ruby. Phys. Rev. 1964, 135, A727–A739. [Google Scholar] [CrossRef]
- Manenkov, A.A.; Prokhorov, A.M. The fine structure of the spectrum of the paramagnetic resonance of the ion Cr3+ in Chromium corundum. Sov. Phys.-JETP 1955, 1, 611. [Google Scholar]
- Zaripov, M.M.; Shamonin, I.I. Paramagnetic resonance in synthetic ruby. Sov. Phys.-JETP 1956, 3, 171–175. [Google Scholar]
- Geusic, J.E. Paramagnetic fine structure spectrum of Cr+++ in a single ruby crystal. Phys. Rev. 1956, 102, 1252–1253. [Google Scholar] [CrossRef]
- Manenkov, A.A.; Prokhorov, A.M. Hyperfine structure of the paramagnetic resonance spectrum of 53Cr3+ in Al2O3. Sov. Phys.-JETP 1957, 4, 288–289. [Google Scholar]
- Zverev, G.M.; Prokhorov, A.M. Fine structure and hyperfine structure of paramagnetic resonance of Cr+++ in synthetic ruby. Sov. Phys.-JETP 1958, 7, 354–355. [Google Scholar]
- Schulz-Du Bois, E.O. Paramagnetic spectra of substituted sapphires–Part I: Ruby. Bell Syst. Tech. J. 1959, 38, 271–290. [Google Scholar] [CrossRef]
- De Biasi, R.S.; Rodrigues, D.C.S. Measurement of small concentrations of Cr and Fe in α-Al2O3 using electron spin resonance. J. Am. Ceram. Soc. 1985, 68, 409–412. [Google Scholar] [CrossRef]
- Orton, J.W. Electron Paramagnetic Resonance: An introduction to Transition Group Ions in Crystals; ILIFFE Book Ltd.: London, UK, 1968. [Google Scholar]
- Ardelean, I.; Ilonca, G.; Peteanu, M.; Barbos, E.; Indrea, E. EPR and magnetic susceptibility studies of xCr2O3-(1−x) 3B2O3-PbO glasses. J. Mater. Sci. 1982, 17, 1988–1996. [Google Scholar] [CrossRef]
- Landry, R.J.; Fournier, J.T.; Young, C.G. Electron spin resonance and optical absorption studies of Cr3+ in a phosphate glass. J. Chem. Phys. 1967, 46, 1285–1290. [Google Scholar] [CrossRef]
- McClure, D.S. Optical spectra of transition-metal ions in corundum. J. Chem. Phys. 1962, 36, 2757–2779. [Google Scholar] [CrossRef]
- Rigaku Co. Measurement of Trace Components Using D/teX Ultra. Available online: https://japan.rigaku.com/en/applications/bytes/xrd/miniflex/1302286925 (accessed on 25 December 2023).
Preparation Temperature | Chemical Composition |
---|---|
1100 °C | Al4.69 Li1.31 F0.28 O7.55 |
1200 °C | Al4.73 Li1.27 F0.17 O7.65 |
1300 °C | Al4.83 Li1.17 F0.10 O7.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamada, Y.; Hayasaka, R.; Uchida, K.; Suzuki, T.; Takei, T.; Kitaura, M.; Kominami, H.; Hara, K.; Matsushima, Y. Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material. Materials 2024, 17, 338. https://doi.org/10.3390/ma17020338
Kamada Y, Hayasaka R, Uchida K, Suzuki T, Takei T, Kitaura M, Kominami H, Hara K, Matsushima Y. Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material. Materials. 2024; 17(2):338. https://doi.org/10.3390/ma17020338
Chicago/Turabian StyleKamada, Yuki, Ryusei Hayasaka, Kento Uchida, Taisei Suzuki, Takahiro Takei, Mamoru Kitaura, Hiroko Kominami, Kazuhiko Hara, and Yuta Matsushima. 2024. "Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material" Materials 17, no. 2: 338. https://doi.org/10.3390/ma17020338
APA StyleKamada, Y., Hayasaka, R., Uchida, K., Suzuki, T., Takei, T., Kitaura, M., Kominami, H., Hara, K., & Matsushima, Y. (2024). Deep Red Photoluminescence from Cr3+ in Fluorine-Doped Lithium Aluminate Host Material. Materials, 17(2), 338. https://doi.org/10.3390/ma17020338