Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications
Abstract
:1. Introduction
2. Ionizing Radiation and Radiolysis
2.1. Electromagnetic Waves or High-Energy Photons
2.2. Particle Beams
2.3. Radiolysis
3. Synthesis of Metallic Nanostructures Using Ionizing Radiation
3.1. Principle and Advantages
3.2. Radiolysis of Solvent and Reduction of Metallic Ions
3.3. Nucleation and Growth of Clusters
3.4. Dose Rate Effects on the Size and Morphology of the Nanostructures
3.5. Stabilization of the Formed Nanostructures and Supported Nanoparticles
4. Properties and Applications of the Generated Nanostructures
4.1. Redox Properties and Silver-Based Photography
4.2. Optical Properties and Applications
4.3. Applications in Chemistry
4.3.1. Catalysis
4.3.2. Electrocatalysis
4.3.3. Photocatalysis
4.4. Biomedical Applications
4.4.1. Antimicrobial Properties
4.4.2. Radiotherapy and Hadrontherapy
4.4.3. Hyperthermal Therapy
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thierry-Chef, I.; Cardis, E.; Damilakis, J.; Frija, G.; Hierath, M.; Hoeschen, C. Medical applications of ionizing radiation and radiation protection for European patients, population and environment. EPJ Nucl. Sci. Technol. 2022, 8, 44. [Google Scholar] [CrossRef]
- Available online: http://icrpaedia.org/Application_of_ionising_radiation_in_healthcare (accessed on 3 November 2023).
- Available online: https://www.iaea.org/newscenter/news/where-can-you-find-industrial-irradiation-facilities-visit-a-new-online-database (accessed on 3 November 2023).
- Gopinath, D.V.; Ramamoorthy, N. Ionizing Radiaton and Mankind; Cambridge Scholars Publishing: Berlin, Germany, 2020; 349p. [Google Scholar]
- El Sayed, M. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef]
- Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41, 8099–8139. [Google Scholar] [CrossRef] [PubMed]
- Jin, R. The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol. Rev. 2012, 1, 31–56. [Google Scholar] [CrossRef]
- Kumar, K.H.; Venkatesh, N.; Bhowmik, H.; Kuila, A. Metallic nanoparticles: A review. Biomed. J. Sci. Techol. Res. 2018, 4, 3765–3775. [Google Scholar]
- Alshammari, A.S. Heterogeneous Gold Catalysis: From Discovery to Applications. Catalysts 2019, 9, 402. [Google Scholar] [CrossRef]
- Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A Gen. 2001, 222, 427–437. [Google Scholar] [CrossRef]
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, H.-Y.; Choi, H.K.; Lee, J.-Y.; Choi, J.-W. Application of Gold Nanoparticle to Plasmonic Biosensors. Int. J. Mol. Sci. 2018, 129, 2021. [Google Scholar] [CrossRef]
- Li, M.; Wei, J.; Song, Y.; Chen, F. Gold nanocrystals: Optical properties, fine-tuning of the shape, and biomedical applications. RSC Adv. 2022, 12, 23057–23073. [Google Scholar] [CrossRef] [PubMed]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Abedini, A.; Bakar, A.A.A.; Larki, F.; Menon, P.S.; Islam, S.; Shaari, S. Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Res. Lett. 2016, 11, 287. [Google Scholar] [CrossRef]
- Clifford, D.M.; Castano, C.E.; Rojas, J.V. Supported transition metal nanomaterials: Nanocomposites synthesized by ionizing radiation. Radiat. Phys. Chem. 2017, 132, 52–64. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; López-Saucedo, F.; Bucio, E. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiat. Phys. Chem. 2018, 169, 107962. [Google Scholar] [CrossRef]
- Ghoreishian, S.M.; Kang, S.-M.; Raju, G.S.R.; Norouzi, M.; Jang, S.-C.; Yun, H.J.; Lim, S.T.; Han, Y.-K.; Roh, C.; Huh, Y.S. γ-radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: A review of mechanisms and applications. Chem. Eng. J. 2019, 360, 1390–1406. [Google Scholar] [CrossRef]
- Belloni, J.; Delcourt, M.-O. Interaction rayonnement ionisant-matière condensée. In Réactions Ultrarapides en Solution, Approches Expérimentales et Théoriques; Gustavsson, T., Mostafavi, M., Eds.; CNRS Éditions: Paris, France, 2006; pp. 33–55. [Google Scholar]
- Baldacchino, G.; Brun, E.; Denden, I.; Bouhadoun, S.; Roux, R.; Hodja, H.; Sicard-Roselli, C. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Nanotechnol. 2019, 10, 3. [Google Scholar] [CrossRef]
- Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J.-L.; Delcourt, M.-O. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloïds. New J. Chem. 1998, 22, 1239–1255. [Google Scholar] [CrossRef]
- Schwarz, H.A. Free radicals generated by radiolysis of aqueous solutions. J. Chem. Educ. 1981, 58, 101–105. [Google Scholar] [CrossRef]
- Schwarz, H.A.; Dodson, R.W. Reduction potentials of CO2− and the alcohol radicals. J. Phys. Chem. 1989, 93, 409–414. [Google Scholar] [CrossRef]
- Tausch-Treml, R.; Henglein, A.; Lilie, J. Reactivity of silver atoms in aqueous solution II. A pulse radiolysis study. Ber. Bunsenges. Phys. Chem. 1978, 82, 1335–1343. [Google Scholar] [CrossRef]
- Janata, E.; Henglein, A.; Ershov, B.G. First clusters of Ag+ ion reduction in aqueous soluton. J. Phys. Chem. 1994, 98, 10888–10890. [Google Scholar] [CrossRef]
- Baxendale, J.H.; Koulkes-Pujo, A.-M. Study by pulse radiolysis of the transitory species Au(II). J. Chim. Phys. 1970, 67, 1602–1607. [Google Scholar] [CrossRef]
- Henglein, A. The reactivity of silver atoms in aqueous solutions (a γ-radiolysis study). Ber. Bunsenges. Phys. Chem. 1977, 81, 556–561. [Google Scholar] [CrossRef]
- Rémita, S.; Mostafavi, M.; Delcourt, M.-O. EDTA and CN- complexing effect on the kinetics, spectral properties and redox properties of Ag10 et Ag2+ in aqueous solutions. J. Phys. Chem. 1996, 100, 10187–10193. [Google Scholar] [CrossRef]
- Texier, I.; Rémita, S.; Archirel, P.; Mostafavi, M. Reduction of AgI1(NH3)2+ to Ag01(NH3)2 in solution. Redox potential and spectral study. J. Phys. Chem. 1996, 100, 12472–12476. [Google Scholar] [CrossRef]
- Lampre, I.; Pernot, P.; Mostafavi, M. Spectral properties and redox potentials of silver atoms complexed by chloride ions in aqueous solution. J. Phys. Chem. B 2000, 104, 6233–6239. [Google Scholar] [CrossRef]
- Belloni, J. Metal nanocolloids. Curr. Opin. Colloid Interface Sci. 1996, 1, 184–196. [Google Scholar] [CrossRef]
- Henglein, A. Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 1993, 97, 5457–5471. [Google Scholar] [CrossRef]
- Gachard, E.; Remita, H.; Khatouri, J.; Keita, B.; Nadjo, L.; Belloni, J. Radiation-induced and chemical formation of gold clusters. New J. Chem. 1998, 22, 1257–1265. [Google Scholar] [CrossRef]
- Ershov, B.G.; Janata, E.; Henglein, A. Early stages of metal clusters in aqueous solutio: Reaction of Zn+ and Cd+ with Ag+. Radiat. Phys. Chem. 1996, 47, 59–60. [Google Scholar] [CrossRef]
- Belloni, J. Nucleation, growth and properties of nanoclusters studied by radiation chemistry. Application to catalysis. Catal. Today 2006, 113, 141–156. [Google Scholar] [CrossRef]
- Treguer, M.; de Cointet, C.; Remita, H.; Khatouri, J.; Mostafavi, M.; Amblard, J.; Belloni, J.; de Keyzer, R. Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. J. Phys. Chem. B 1998, 102, 4310–4321. [Google Scholar] [CrossRef]
- Rémita, S.; Picq, G.; Khatouri, J.; Mostafavi, M. Radiolytic formation of bilayered Ptcore/Aushell and Aucore/Ptshell clusters in aqueous solution. Radiat. Phys. Chem. 1999, 54, 463–473. [Google Scholar] [CrossRef]
- Remita, H.; Lampre, I.; Mostafavi, M.; Balanzat, E.; Bouffard, S. Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation. Radiat. Phys. Chem. 2005, 72, 575–586. [Google Scholar] [CrossRef]
- Remita, H.; Etcheberry, A.; Belloni, J. Dose rate effect on bimetallic gold-palladium cluster structure. J. Phys. Chem. B 2003, 107, 31–36. [Google Scholar] [CrossRef]
- Zhang, Z.; Nenoff, T.M.; Leung, K.; Ferreira, S.R.; Huang, J.Y.; Berry, D.T. Room-temperature synthesis of Ag-Ni and Pd-Ni alloy nanoparticles. J. Phys. Chem. C 2010, 114, 14309–14318. [Google Scholar] [CrossRef]
- Abedini, A.; Larki, F.; Salon, E.B.; Zakaria, A.; Hussein, M.Z. Radiation formation of Al–Ni bimetallic nanoparticles in aqueous system. J. Radioanal. Nucl. Chem. 2012, 292, 361–366. [Google Scholar] [CrossRef]
- Grand, J.; Ferreira, S.R.; de Waele, V.; Mintova, S.; Nenoff, T.M. Nanoparticle alloy formation by radiolysis. J. Phys. Chem. C 2018, 122, 12573–12588. [Google Scholar] [CrossRef]
- Khozemy, E.E.; Nasef, S.M.; Mahmoud, G.A. Synthesis and characterization of antimicrobial nanocomposite hydrogel based on wheat flour and Poly(Vinyl Alcohol) Using γ-Irradiation. Adv. Polym. Technol. 2018, 37, 3252–3261. [Google Scholar] [CrossRef]
- Menéndez Miranda, M.; Liu, W.; Godinez-Leon, J.A.; Amanova, A.; Houel-Renault, L.; Lampre, I.; Remita, H.; Gref, R. Colloidal silver nanoparticles obtained via radiolysis: Synthesis optimization and antibacterial properties. Pharmaceutics 2023, 15, 1787. [Google Scholar] [CrossRef] [PubMed]
- Lungulescu, E.-M.; Sbarcea, G.; Setnescu, R.; Nicula, N.; Ducu, R.; Luchian, A.M.L.; Ion, I.; Marinescu, V. Gamma radiation synthesis of colloidal silver nanoparticles. Rev. Chim. 2019, 70, 2826–2830. [Google Scholar] [CrossRef]
- Jovanovic, Z.; Radosavljevic, A.; Siljegovic, M.; Bibic, N.; Miskovic-Stankovic, V.; Kačarević-Popović, Z. Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation. Radiat. Phys. Chem. 2012, 81, 1720–1728. [Google Scholar] [CrossRef]
- Shin, H.S.; Yang, H.J.; Kim, S.B.; Lee, M.S. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J. Colloid Interface Sci. 2004, 274, 89–94. [Google Scholar] [CrossRef]
- Sheikh, N.; Akhavan, A.; Kassaee, M.Z. Synthesis of antibacterial silver nanoparticles by γ-irradiation. Phys. E Low-Dimens. Syst. Nanostruct. 2009, 42, 132–135. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kosawa, T.; Tagawa, S.; Naito, M.; Marignier, J.-L.; Mostafavi, M.; Belloni, J. Radiation-induced synthesis of metal nanoparticles in ethers THF and PGMEA. Radiat. Phys. Chem. 2013, 91, 148–155. [Google Scholar] [CrossRef]
- Vô, K.D.N.; Kowandy, C.; Dupont, L.; Coqueret, X.; Hien, N.Q. Radiation synthesis of chitosan stabilized gold nanoparticles comparison between e− beam and γ irradiation. Radiat. Phys. Chem. 2014, 94, 84–87. [Google Scholar] [CrossRef]
- Pushpavanam, K.; Chang, J.; Sapareto, S.; Rege, K. Polypeptide-facilitated formation of bimetallic plasmonic nanoparticles in presence of ionizing radiation. Nano LIFE 2017, 7, 1650006. [Google Scholar] [CrossRef]
- Thomas, S.; Mahal, H.S.; Kapoor, S.; Mukherjee, T. Complexation of gold and silver nanoparticles with radiolytically-generated radicals. Res. Chem. Intermed. 2004, 31, 595–603. [Google Scholar] [CrossRef]
- Biswal, J.; Ramnani, S.P.; Tewari, R.; Dey, G.K.; Sabharwal, S. Short aspect ratio gold nanorods prepared using gamma radiation in the presence of cetyltrimethyl ammonium bromide (CTAB) as a directing agent. Radiat. Phys. Chem. 2010, 79, 441–445. [Google Scholar] [CrossRef]
- Henglein, A. Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition. J. Phys. Chem. 1979, 83, 2209–2216. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, Y.; Zhang, M.; Chen, Z.; Lu, B.; Wang, C. Preparation of nanocrystalline silver powders by y-ray radiation combined with hydrothermal treatment. Mater. Lett. 1993, 17, 314–318. [Google Scholar]
- Clifford, D.M.; Castano, C.E.; Rojas, J.V. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis. Radiat. Phys. Chem. 2018, 144, 111–115. [Google Scholar] [CrossRef]
- Guleria, A.; Aishwarya, J.; Kunwar, A.; Neogy, S.; Debnath, A.K.; Rath, M.C.; Adhikari, S.; Tyagi, A.K. Solvated electron-induced synthesis of cyclodextrin-coated Pd nanoparticles: Mechanistic, catalytic, and anticancer studies. Dalton Trans. 2023, 52, 1036–1051. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Clément, M.; Martini, C.; Abdellah, I.; Beaunier, P.; Rodriguez-Lopez, J.-L.; Huc, V.; Remita, H.; Lampre, I. Stabilisation of small mono- and bimetallic gold–silver nanoparticles using calix[8]arene derivatives. New J. Chem. 2018, 42, 14128–14137. [Google Scholar] [CrossRef]
- De Cointet, C.; Khatouri, J.; Mostafavi, M.; Belloni, J. Coalescence and reactivity of Gold-Silver bimetallic clusters in cyanide solution. J. Phys. Chem. B 1997, 101, 3517–3522. [Google Scholar] [CrossRef]
- Treguer, M.; Remita, H.; Pernot, P.; Khatouri, J.; Belloni, J. Redox kinetics of Chini-type platinum carbonyl clusters studied by time-resoved pulse radiolysis. J. Phys. Chem. A 2001, 105, 6102–6108. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, X.; Gao, H. Radiolytic syntheses of nanoparticles in supramolecular assemblies. Adv. Colloid Interface Sci. 2010, 159, 32–44. [Google Scholar] [CrossRef]
- Attia, J.; Rémita, S.; Jonic, S.; Lacaze, E.; Fauré, M.-C.; Larquet, E.; Goldmann, M. Radiation-induced synthesis and cryo-TEM characterization of silver nanoshells on linoleate spherical micelles. Langmuir 2007, 23, 9523–9526. [Google Scholar] [CrossRef]
- Abidi, W.; Selvakannan, P.R.; Guillet, Y.; Lampre, I.; Beaunier, P.; Pansu, B.; Palpant, B.; Remita, H. One-pot radiolytic synthesis of gold nanorods and their optical properties. J. Phys. Chem. C 2010, 114, 14794–14803. [Google Scholar] [CrossRef]
- Biswal, J.; Ramnani, S.P.; Shirolikar, S.; Sabharwal, S. Seedless synthesis of gold nanorods employing isopropyl radicals generated using gamma radiolysis technique. Int. J. Nanotechnol. 2010, 7, 9–12. [Google Scholar] [CrossRef]
- Surendram, G.; Tokumoto, M.S.; Pena dos Santos, E.; Remita, H.; Ramos, L.; Kooyman, P.J.; Santilli, C.V.; Bourgaux, C.; Dieudonné, P.; Prouzet, E. Highly swollen liquid crystals as new reactors for the synthesis of nanomaterials. Chem. Mater. 2005, 17, 1505–1514. [Google Scholar] [CrossRef]
- Ghosh, S.; Ramos, L.; Remita, H. Swollen hexagonal liquid crystals as smart nanoreactors: Implementation in materials chemistry for energy applications. Nanoscale 2018, 10, 5793–5819. [Google Scholar] [CrossRef] [PubMed]
- Surendram, G.; Ramos, L.; Pansu, B.; Prouzet, E.; Beaunier, P.; Audonnet, F.; Remita, H. Synthesis of porous platinum nanoballs in soft templates. Chem. Mater. 2007, 19, 5045–5048. [Google Scholar] [CrossRef]
- Surendram, G.; Ksar, F.; Ramos, L.; Keita, B.; Nadjo, L.; Prouzet, E. Porous palladium nanoballs synthesized in hexagonal mesophases. J. Phys. Chem. C 2008, 112, 10740–10744. [Google Scholar] [CrossRef]
- Lehoux, A.; Ramos, L.; Beaunier, P.; Bahena Uribe, D.; Dieudonné, P.; Audonnet, F.; Etcheberry, A.; José-Yacaman, M.; Remita, H. Tuning the porosity of bimetallic nanostructures by a soft templating approach. Adv. Funct. Mater. 2012, 22, 4900–4908. [Google Scholar] [CrossRef]
- Ksar, F.; Surendram, G.; Ramos, L.; Keita, B.; Nadjo, L.; Prouzet, E.; Beaunier, P.; Hagege, A.; Audonnet, F.; Remita, H. Palladium nanowires synthesized in hexagonal mesophases: Application in ethanol oxidation. Chem. Mater. 2009, 21, 1612–1617. [Google Scholar] [CrossRef]
- Kshirasagar, K.J.; Markad, U.S.; Saha, A.; Sharma, K.K.K.; Sharma, G.K. Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications. Mater. Res. Express 2017, 4, 025015. [Google Scholar] [CrossRef]
- Siril, P.F.; Ramos, L.; Beaunier, P.; Archirel, P.; Etcheberry, A.; Remita, H. Synthesis of ultrathin hexagonal palladium nanosheets. Chem. Mater. 2009, 21, 5170–5175. [Google Scholar] [CrossRef]
- Ketch, J.; Tahri, Z.; De Waele, V.; Mostafavi, M.; Mintova, S.; Bein, T. Colloidal zeolites as host matrix for copper nanoclusters. Chem. Mater. 2006, 18, 3373–3380. [Google Scholar]
- Michalik, J.; Sadlo, J.; Kodaira, T.; Shimomura, S.; Yamada, H. ESR and optical studies of cationic silver clusters in zeolite rho. J. Radioanal. Nucl. Chem. 1998, 232, 135–138. [Google Scholar] [CrossRef]
- Michalik, J.; Kevan, L. Paramagnetic silver clusters in Ag-NAA zeolite—Electron-spin-resonance and diffuse reflectance spectroscopic studies. J. Am. Chem. Soc. 1986, 108, 4247–4253. [Google Scholar] [CrossRef]
- Vijayalakshmi, R.; Kapoor, S.; Kulshreshtha, S.K. Radiolytic preparation of nanosized Pt particles in sodium zeolite A. Solid State Sci. 2002, 4, 489–494. [Google Scholar] [CrossRef]
- Yordanov, I.; Knoerr, R.; De Waele, V.; Mostafavi, M.; Bazin, P.; Thomas, S.; Rivallan, M.; Lakiss, L.; Metzger, T.H.; Mintova, S. Elucidation of Pt clusters in the micropores of zeolite nanoparticles assembled in thin films. J. Phys. Chem. C 2010, 114, 20974–20982. [Google Scholar] [CrossRef]
- Knoerr, R.; Yordanov, I.; De Waele, V.; Mintova, S.; Mostafavi, M. Preparation of colloidal BEA zeolite functionalized with Pd aggregates as a precursor for low dimensionality sensing layer. Sens. Lett. 2010, 8, 497–501. [Google Scholar] [CrossRef]
- Higgins, M.C.M.; Clifford, D.M.; Rojas, J.V. Au@TiO2 nanocomposites synthesized by X-ray radiolysis as potential radiosensitizers. Appl. Surf. Sci. 2018, 47, 702–710. [Google Scholar] [CrossRef]
- Chettibi, S.; Keghouche, N.; Benguedouar, Y.; Bettahar, M.M.; Belloni, J. Structural and catalytic characterization of radiation-induced Ni/TiO2 nanoparticles. Catal. Lett. 2013, 143, 1166–1174. [Google Scholar] [CrossRef]
- Luna, A.L.; Novoseltceva, E.; Louarn, E.; Beaunier, P.; Kowalska, E.; Ohtani, B.; Valenzuela, M.A.; Remita, H.; Colbeau-Justin, C. Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production. Appl. Catal. B Environ. 2016. [Google Scholar] [CrossRef]
- Redjala, T.; Remita, H.; Uzio, D. Bimetallic Au-Pd and Ag-Pd clusters synthesised by γ or electron beam radiolysis and study of the reactivity/structure relationships in the selective hydrogenation of buta-1,3-diene. Oil Gas Sci. Technol. 2006, 61, 789–797. [Google Scholar] [CrossRef]
- Kapoor, S.; Salunke, H.G.; Pande, B.M.; Kulshreshtha, S.K.; Mittal, J.P. Radiolytic preparation of nanophase cubic cobalt metal particles. Mater. Res. Bull. 1998, 33, 1555–1562. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Nguyen, T.A.T.; Dang, V.P.; Nguyen, N.D.; Le, A.Q.; Nguyen, Q.H. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 045004. [Google Scholar] [CrossRef]
- Melvin, A.A.; Joshi, V.S.; Poudyal, D.C.; Khushalani, D.; Haram, S.K. Electrocatalyst on insulating support?: Hollow silica spheres loaded with Pt nanoparticles for methanol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 6590–6595. [Google Scholar] [CrossRef] [PubMed]
- Katoch, A.; Choi, S.-W.; Sun, G.-J.; Kim, S.S. Low temperature sensing properties of Pt nanoparticle-functionalized networked ZnO nanowires. J. Nanosci. Nanotechnol. 2015, 1, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.V.; Molina Higgins, M.C.; Toro Gonzalez, M.; Castano, C.E. Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide. Appl. Surf. Sci. 2015, 357, 2087–2093. [Google Scholar] [CrossRef]
- Ghosh, S.; Holade, Y.; Remita, H.; Servat, K.; Beaunier, P.; Hagège, A.; Kokoh, K.B.; Napporn, T.W. One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation. Electrochim. Acta 2016, 212, 864–875. [Google Scholar] [CrossRef]
- Higgins, M.C.M.; Ghobadi, S.; Rojas, J.V.; Castano, C.E. X-ray synthesis of noble metal nanoparticles onto 2D and 3D graphene oxide supports. Appl. Surf. Sci. 2020, 528, 146313. [Google Scholar] [CrossRef]
- Mackiewicz, N.; Surendran, G.; Remita, H.; Keita, B.; Zhang, G.; Nadjo, L.; Hagege, A.; Doris, E.; Mioskowski, C. Supramolecular self-assembly of amphiphiles on carbon nanotubes: A versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J. Am. Chem. Soc. 2008, 130, 8110–8111. [Google Scholar] [CrossRef]
- Rao, V.M.; Castano, C.H.; Rojas, J.; Abdulghani, A.J. Synthesis of nickel nanoparticles on multi-walled carbon nanotubes by gamma irradiation. Radiat. Phys. Chem. 2013, 89, 51–56. [Google Scholar] [CrossRef]
- Rojas, J.Y.; Castano, C.H. Radiolytic synthesis of iridium nanoparticles onto carbon nanotubes. J. Nanopart. Res. 2014, 16, 2567. [Google Scholar] [CrossRef]
- Belloni, J. Contribution of radiation chemistry to the study of metal clusters. Radiat. Res. 1998, 150, S9–S20. [Google Scholar] [CrossRef]
- Mostafavi, M.; Marignier, J.-L.; Amblard, J.; Belloni, J. Nucleation dynamics of silver aggregates simulation of photographic development processes. Radiat. Phys. Chem. 1989, 34, 605–617. [Google Scholar] [CrossRef]
- Belloni, J.; Treguer, M.; Remita, H.; De Keyser, R. Enhancement yield of photoinduced electrons in doped silver halide crystals. Nature 1999, 402, 865–867. [Google Scholar] [CrossRef]
- Zijlstra, P.; Paulo, P.M.P.; Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnol. 2012, 7, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Biswal, J.; Misra, N.; Borde, L.C.; Sabharwal, S. Synthesis of silver nanoparticles in methacrylic acid solution by gamma radiolysis and their application for estimation of dopamine at low concentrations. Radiat. Phys. Chem. 2013, 83, 67–73. [Google Scholar] [CrossRef]
- Misra, N.; Goel, N.K.; Kumar, V. Radiolytically synthesized noble metal nanoparticles: Sensor application. In Reviews in Plasmonics 2015; Geddes, C., Ed.; Springer: Cham, Switzerland, 2016; Volume 2015, pp. 51–67. [Google Scholar]
- Yu, D.; Sun, X.; Bian, J.; Tong, Z.; Qian, Y. Gamma-radiation synthesis, characterization and nonlinear optical properties of highly stable colloidal silver nanoparticles in suspensions. Phys. E 2004, 23, 50–55. [Google Scholar] [CrossRef]
- François, L.; Mostafavi, M.; Belloni, J.; Delouis, J.-F.; Delaire, J.; Feneyrou, P. Optical limitation induced by gold clusters. 1. Size effect. J. Phys. Chem. B 2000, 104, 6133–6137. [Google Scholar] [CrossRef]
- François, L.; Mostafavi, M.; Belloni, J.; Delaire, J. Optical limitation induced by gold clusters: Mechanism and efficiency. Phys. Chem. Chem. Phys. 2001, 3, 4965–4971. [Google Scholar] [CrossRef]
- Singh, A.; Lehoux, A.; Remita, H.; Zyss, J.; Ledoux-Rak, I. Second harmonic response of gold nanorods: A strong enhancement with the aspect ratio. J. Phys. Chem. Lett. 2013, 4, 3958–3961. [Google Scholar] [CrossRef]
- Adleman, J.R.; Boyd, D.A.; Goodwin, D.G.; Psaltis, D. Heterogeneous catalysis mediated by plasmon heating. Nano Lett. 2009, 9, 4417–4423. [Google Scholar] [CrossRef]
- Sakane, S.; Anji, T.; Yamagishi, I.; Kohara, I.; Tanaka, H. Plasmonic heating of copper nanoparticles with thermoresponsive polymers. Chem. Lett. 2023, 52, 582–585. [Google Scholar] [CrossRef]
- Ali, Z.; Ghazy, O.; Meligi, G.; Saleh, H.; Bekhit, M.J.J.O.I. Copper nanoparticles: Synthesis, characterization and its application as catalyst for p-nitrophenol reduction. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1195–1205. [Google Scholar] [CrossRef]
- Ramnani, S.P.; Sabharwal, S.; Kumar, J.V.; Reddy, K.H.P.; Rao, K.S.R.; Prasad, P.S. Advantage of radiolysis over impregnation method for the synthesis of SiO2 supported nano-Ag catalyst for direct decomposition of N2O. Catal. Commun. 2008, 9, 756–761. [Google Scholar] [CrossRef]
- Kumar, J.V.; Lingaiah, N.; Rao, K.R.; Ramnani, S.P.; Sabharwal, S.; Prasad, P.S. Investigation of palladium species in Pd/Al2O3 catalysts prepared by radiolysis method. Catal. Commun. 2009, 10, 1149–1152. [Google Scholar] [CrossRef]
- Ksar, F.; Sharma, G.K.; Audonnet, F.; Beaunier, P.; Remita, H. Palladium urchin-like nanostructures and their H2 sorption properties. Nanotechnology 2011, 22, 305609. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.E.P.; Madrid, J.F.; Camacho, D.H. Gamma radiation-assisted in situ synthesis of palladium nanoparticles supported on ethylenediamine-functionalized polypropylene fabric as an efficient catalyst for reduction of 4-nitrophenol. New J. Chem. 2020, 44, 19337–19350. [Google Scholar] [CrossRef]
- Sarhid, I.; Abdellah, I.; Martini, C.; Huc, V.; Dragoe, D.; Beaunier, P.; Lampre, I.; Remita, H. Plasmonic catalysis for Suzuki reaction induced by palladium nanosheets. New J. Chem. 2019, 43, 4349–4355. [Google Scholar] [CrossRef]
- Peramo, A.; Dumas, A.; Remita, H.; Benoît, M.; Yen-Nicolay, S.; Corre, R.; Louzada, R.A.; Dupuy, C.; Pecnard, S.; Lambert, B.; et al. Selective modification of a native protein in a patient tissue homogenate using palladium nanoparticles. Chem. Commun. 2019, 55, 15121–15124. [Google Scholar] [CrossRef]
- Doherty, R.P.; Krafft, J.M.; Méthivier, C.; Casale, S.; Remita, H.; Louis, C.; Thomas, C. On the promoting effect of Au on CO oxidation kinetics of Au-Pt bimetallic nanoparticles supported on SiO2: An electronic effect? J. Catal. 2012, 287, 102–113. [Google Scholar] [CrossRef]
- Babu, G.S.; Francis, S.; Padmakar, D.; Rajitha, P.; Subrahamanyam, C.; Lingaiah, N. Utilization of γ-radiation in the synthesis of bimetallic Cu–Ni catalysts for selective vapour phase hydrogenation of levulinic acid to γ-valerolactone. New J. Chem. 2023, 47, 6201–6210. [Google Scholar] [CrossRef]
- Remita, H.; Siril, P.F.; Mbomekalle, I.-M.; Keita, B.; Nadjo, L. Activity evaluation of carbon paste electrodes loaded with Pt nanoparticles prepared in different radiolytic conditions. J. Solid State Electrochem. 2006, 10, 506–511. [Google Scholar] [CrossRef]
- Pan, D.; Wang, X.; Li, J.; Wang, L.; Li, Z.; Liu, Y.; Liao, H.; Feng, C.; Jiao, J.; Wu, M. Radiolysis route to Pt nanodendrites with enhanced comprehensive electrocatalytic performances for methanol oxidation. Catal. Commun. 2015, 62, 14–18. [Google Scholar] [CrossRef]
- Choo, T.-F.; Zali, N.M.; Saidin, N.U.; Kok, K.-Y. Gamma radiolysis-synthesized carbon nanotube–supported palladium as electrocatalyst for oxygen reduction reaction. Electrocatalysis 2023, 14, 418–428. [Google Scholar] [CrossRef]
- Ksar, F.; Ramos, L.; Keita, B.; Nadjo, L.; Beaunier, P.; Remita, H. Bimetallic palladium−gold nanostructures: Application in ethanol oxidation. Chem. Mater. 2009, 21, 3677–3683. [Google Scholar] [CrossRef]
- Soroka, I.L.; Tarakina, N.V.; Hermansson, A.; Bigum, L.; Widerberg, R.; Andersson, M.S.; Mathieu, R.; Paulraj, A.R.; Kiros, Y. Radiation-induced synthesis of nanoscale Co- and Ni-based electro-catalysts on carbon for the oxygen reduction reaction. Dalton Trans. 2017, 46, 9995–10002. [Google Scholar] [CrossRef] [PubMed]
- Holade, Y.; Servat, K.; Tingry, S.; Napporn, T.W.; Remita, H.; Cornu, D.; Kokoh, K.B. Advances in electrocatalysis for energy conversion and synthesis of organic molecules. ChemPhysChem 2017, 17, 2573–2605. [Google Scholar] [CrossRef] [PubMed]
- Tuleushova, N.; Amanova, A.; Abdellah, I.; Benoît, M.; Remita, H.; Cornu, D.; Holade, Y.; Tingry, S. Radiolysis-assisted direct growth of gold-based electrocatalysts for glycerol oxidation. Nanomaterials 2023, 13, 1713. [Google Scholar] [CrossRef]
- Remita, H.; Méndez-Medrano, M.; Colbeau-Justin, C. Effect of modification of TiO2 with metal nanoparticles on its photocatalytic properties studied by time resolved microwave conductivity. In Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications; Ghosh, S., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2017; pp. 129–164. [Google Scholar]
- Thu, N.V.T.; Dinh, K.D. Modification of TiO2 with Ag nanoparticles using gamma irradiation method for photocatalytic degradation of azo dye. J. Aust. Ceram. Soc. 2021, 57, 1563–1570. [Google Scholar] [CrossRef]
- Grabowska, E.; Zaleska, A.; Sorgues, S.; Etcheberry, A.; Colbeau-Justin, C.; Remita, H. Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis. J. Phys. Chem. C 2013, 117, 1955–1962. [Google Scholar] [CrossRef]
- Mendez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Bahena, D.; Briois, V.; Colbeau-Justin, C.; Rodríguez-López, J.L.; Remita, H. Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J. Phys. Chem. C 2016, 120, 5143–5154. [Google Scholar] [CrossRef]
- Luna, A.L.; Dragoe, D.; Wang, K.; Beaunier, P.; Kowalska, E.; Ohtani, B.; Bahena Uribe, D.; Valenzuela, M.A.; Remita, H.; Colbeau-Justin, C. Photocatalytic hydrogen evolution using Ni–Pd/TiO2: Correlation of light absorption, charge-carrier dynamics, and quantum efficiency. J. Phys. Chem. C 2017, 121, 14302–14311. [Google Scholar] [CrossRef]
- Wang, C.; Dragoe, D.; Colbeau-Justin, C.; Haghi-Ashtiani, P.; Ghazzal, M.N.; Remita, H. Highly dispersed Ni−Pt bimetallic cocatalyst: The synergetic effect yields Pt-like activity in photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2023, 15, 42637–42647. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kouamé, N.A.; Ramos, L.; Rémita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P.-H.; Remita, H. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.J.; Dragoe, D.; Beaunier, P.; Bahena Uribe, D.; Ramos, L.; Méndez-Medrano, M.G.; Remita, H. Polypyrrole nanostructures modified with mono- and bimetallic nanoparticles for photocatalytic H2 generation. J. Mater. Chem. A 2020, 8, 268–277. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Applications of gold nanorods for cancer imaging and photothermal therapy. In Cancer Nanotechnology: Methods in Molecular Biology; Grobmyer, S., Moudgil, B., Eds.; Humana Press: Totowa, NJ, USA, 2010; Volume 624, pp. 343–357. [Google Scholar]
- Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Nanoparticles for bioimaging. Adv. Colloid Interface Sci. 2006, 123–126, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Qi, C.; Xu, L.; Gao, Q.; Liu, X. Green synthesis of silver nanoparticles and their antibacterial effects. Front. Chem. Eng. 2022, 4, 941240. [Google Scholar] [CrossRef]
- Micic, M.; Vukasinovic Milic, T.; Mitric, M.; Jokic, B.; Suljovrujic, E. Radiation synthesis, characterisation and antimicrobial application of novel copolymeric silver/poly(2-hydroxyethyl methacrylate/itaconic acid) nanocomposite hydrogels. Polym. Bull. 2013, 70, 3347–3357. [Google Scholar] [CrossRef]
- Alcântara, M.T.S.; Lincopan, N.; Santos, P.M.; Ramirez, P.A.; Brant, A.J.C.; Riella, H.; Lugão, A. Simultaneous hydrogel crosslinking and silver nanoparticle formation by using ionizing radiation to obtain antimicrobial hydrogels. Radiat. Phys. Chem. 2019, 165, 108369. [Google Scholar] [CrossRef]
- Heilman, S.; Silva, L.G.A. Silver and titanium nanoparticles used as coating on polyurethane catheters. J. Nano Res. 2017, 47, 17–23. [Google Scholar] [CrossRef]
- Méndez-Medrano, M.G.; Kowalska, E.; Endo-Kimura, M.; Wang, K.; Ohtani, B.; Bahena Uribe, D.; Rodríguez-López, J.L.; Remita, H. Inhibition of fungal growth using modified TiO2 with core@shell structure of Ag@CuO clusters. ACS Appl. Bio Mater. 2019, 2, 5626–5633. [Google Scholar] [CrossRef]
- Seino, S.; Imoto, Y.; Kitagawa, D.; Kubo, Y.; Kosaka, T.; Kojima, T.; Nitani, H.; Nakagawa, T.; Yamamoto, T.A. Radiochemical synthesis of silver nanoparticles onto textile fabrics and their antibacterial activity. J. Nucl. Sci. Technol. 2015, 53, 1021–1027. [Google Scholar] [CrossRef]
- Hainfield, J.F.; Slatkin, D.N.; Smilowitz, H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 2004, 49, N309–N315. [Google Scholar] [CrossRef] [PubMed]
- Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 2010, 21, 085103. [Google Scholar] [CrossRef]
- Schlathölter, T.; Eustache, P.; Porcel, E.; Salado, D.; Stefanncikova, L.; Tillement, O.; Lux, F.; Mowat, P.; Biegun, A.K.; van Goethem, M.-J.; et al. Improving proton therapy by metal-containing nanoparticles: Nanoscale insights. Int. J. Nanomed. 2016, 11, 1549–1556. [Google Scholar] [CrossRef]
- Penninckx, S.; Martinive, P.; Mirjolet, C. Radiation-activated nanoparticles: Which combination to optimize radiosensitization? Cancer Radiother. 2023, 27, 494–498. [Google Scholar] [CrossRef]
- Yang, X.; Salado-Leza, D.; Porcel, E.; González-Vargas, C.R.; Savina, F.; Dragoe, D.; Remita, H.; Lacombe, S. A facile one-pot synthesis of versatile PEGylated platinum nanoflowers and their application in radiation therapy. Int. J. Mol. Sci. 2020, 21, 1619. [Google Scholar] [CrossRef]
- Salado-Leza, D.; Traore, A.; Porcel, E.; Dragoe, D.; Muñoz, A.; Remita, H.; García, G.; Lacombe, S. Radio-enhancing properties of bimetallic Au:Pt nanoparticles: Experimental and theoretical evidence. Int. J. Mol. Sci. 2019, 20, 5648. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Porcel, E.; Remita, H.; Marco, S.; Réfrégiers, M.; Dutertre, M.; Confalonieri, F.; Lacombe, S. Platinum nanoparticles: An exquisite tool to overcome radioresistance. Cancer Nanotechnol. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Pushpavanam, K.; Inamdar, S.; Dutta, S.; Bista, T.; Sokolowski, T.; Sapareto, S.; Rege, K. Plasmonic gel nanocomposites for detection of high energy electrons. J. Mater. Chem. B 2020, 8, 4930–4939. [Google Scholar] [CrossRef]
- Pushpavanam, K.; Dutta, S.; Inamdar, S.; Bista, T.; Sokolowski, T.; Rapchak, A.; Sadeghi, A.; Sapareto, S.; Rege, K. Versatile detection and monitoring of ionizing radiation treatment using radiation-responsive gel nanosensors. ACS Appl. Mater. Interfaces 2022, 4, 14997–15007. [Google Scholar] [CrossRef] [PubMed]
- Soussi, J.; Volz, S.; Palpant, B.; Chalopin, Y. A detailed microscopic study of the heat transfer at a water gold interface coated with a polymer. Appl. Phys. Lett. 2015, 106, 093113. [Google Scholar] [CrossRef]
G-Values (µmol/J) | •OH | H• | e−aq | H3O+ | H2O2 | H2 |
---|---|---|---|---|---|---|
γ-rays (LET = 0.23 EV/nm) | 0.28 | 0.062 | 0.28 | 0.28 | 0.073 | 0.047 |
α particles (LET of 108 eV/nm) | 0.056 | 0.028 | 0.044 | 0.044 | 0.11 | 0.11 |
Ox/Red | Equation | E° (VSHE) |
---|---|---|
CO2/•COOH | CO2 + e− + H+ ⇄ •COOH | −1.82 |
CH2O/H2C•H(OH) | CH2O + e− + H+ ⇄ H2C•H(OH) | −1.18 |
CH3CHO/CH3C•H(OH) | CH3CHO + e− + H+ ⇄ CH3C•H(OH) | −1.25 |
(CH3)2CO/(CH3)2C•OH | (CH3)2CO + e− + H+ ⇄ (CH3)2C•OH | −1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remita, H.; Lampre, I. Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. Materials 2024, 17, 364. https://doi.org/10.3390/ma17020364
Remita H, Lampre I. Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. Materials. 2024; 17(2):364. https://doi.org/10.3390/ma17020364
Chicago/Turabian StyleRemita, Hynd, and Isabelle Lampre. 2024. "Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications" Materials 17, no. 2: 364. https://doi.org/10.3390/ma17020364
APA StyleRemita, H., & Lampre, I. (2024). Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. Materials, 17(2), 364. https://doi.org/10.3390/ma17020364