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Abstract: Understanding the transient properties of cementitious pastes is crucial for construction
materials engineering. Computational modeling, particularly through Computational Fluid Dynam-
ics (CFD), offers a promising avenue to enhance our understanding of these properties. However,
there are several numerical uncertainties that affect the accuracy of the simulations using CFD. This
study focuses on evaluating the accuracy of CFD simulations in replicating slump flow tests for
cementitious pastes by determining the impact of the numerical setup on the simulation accuracy
and evaluates the transient, viscosity-dependent flows for different viscous pastes. Rheological input
parameters were sourced from rheometric tests and Herschel–Bulkley regression of flow curves.
We assessed spatial and temporal convergence and compared two regularization methods for the
rheological model. Our findings reveal that temporal and spatial refinements significantly affected
the final test results. Adjustments in simulation setups effectively reduced computational errors
to less than four percent compared to experimental outcomes. The Papanastasiou regularization
was found to be more accurate than the bi-viscosity model. Employing a slice geometry, rather
than a full three-dimensional cone mesh, led to accurate results with decreased computational costs.
The analysis of transient flow properties revealed the effect of the paste viscosity on the time- and
shear-dependent flow progress. The study provides an enhanced understanding of transient flow
patterns in cementitious pastes and presents a refined CFD model for simulating slump flow tests.
These advancements contribute to improving the accuracy and efficiency of computational analyses
in the field of cement and concrete flow, offering a benchmark for prospective analysis of transient
flow cases.

Keywords: fresh cement paste flow; CFD; non-Newtonian flow; rheology; regularization; OpenFOAM

1. Introduction

In recent years, computational modeling of concrete casting using Computational
Fluid Dynamics (CFD) has proven to be a suitable tool to estimate the processing properties
(e.g., Wallevik and Wallevik in [1]) or to adjust concrete mixtures depending on the desired
flow behavior without the need of experimental flow tests (e.g., de Schutter et al. in [2]).
Experimental flowability analysis is possible using experimental rheometry (comprehensive
overviews for cement and concrete, e.g., in [3–6]) or workability tests. The most common
workability tests are the spread flow test, the V-funnel test, the slump test, the slump flow
test, and the L-Box test. These tests analyze the workability of cementitious materials fast
and in situ at construction sites and are also standardized to estimate rheological properties;
see, e.g., [7–9]. Empirical formulas correlate flow test results to the yield stress τ0 (in Pa)
and plastic viscosity µ or apparent viscosity η (in Pa ∗ s), as described by Roussel et al.
in [10,11] for the slump flow test or Nguyen et al. in [12] for the L-Box test. All empirical
correlations describe concrete as a viscoplastic fluid with a yield stress, which has to be
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surpassed before the concrete starts to flow. The correlation between the yield stress τ0 and
the final radius of a slump flow measurement after stoppage of flow is [10]:

τ0A,R ≈
225ρpgV2

128π2R5 (1)

where τ0,A.R is the analytical yield stress in Pa, ρp the density of the tested material in kg/m3,
V the tested volume in m3, and R the final slump flow radius in m. Yield stress analysis
with Equation (1) correlates with the rheological analysis from rheometric measurements
for cement pastes with slump flow values > 200 mm; see e.g., [13,14]. The L-Box test
and slump flow test are also commonly used as model setups in computational models.
By comparing the experimental measurements to the numerical result, the accuracy of
the simulation can be estimated (e.g., [15–17]), or different simulation programs can be
compared (e.g., [18]). Replicating the numerical slump flow test from the experimental
test, then, becomes a feasible method to set up CFD models that can be used for the flow
analysis of concrete processing scenarios. However, a closer look reveals drawbacks of
the numerical L-Box or slump flow test case. “Ideal benchmark scenarios” compare fully
resolved analytical solutions, e.g., for the velocity field, with the numerical approximation,
and, thus, optimize the numerical setup toward a defined mathematical result. For certain
geometries, an analytical solution exists, such as pipe flow (see benchmark application
in [19]). In flow processes like debris flow, avalanches, or the slump flow test, calculating
full velocity profiles analytically is, due to the transient flow, impossible. Both the flow field
and material properties change constantly. Consequently, the verification of a numerical
solution for the slump flow test is not straightforward, and a defined verification procedure
does not exist [20]. Therefore, according to Frigaard and Nouar, the slump flow test is a
“worst case scenario” [21]. More specifically, it has following numerical challenges:

(a) Free surface flow: The numerical CFD test case needs to define both suspension and
air properties, as well as boundary conditions between walls/suspension, walls/air,
and air/suspension. A slip condition between concrete and walls can be defined but
affects the solution in a way that is difficult to prove.

(b) Non-defined start-up of flow properties: In an experimental test case, paste is filled into a
cone and the cone is lifted [22]. While the lifting velocity has an effect on suspension
properties, its real value is unknown, and the numerical implementation becomes
complicated.

(c) Spatial-temporally dependent transient flow conditions: An accurate CFD simulation
requires a numerically refined mesh specified according to the transport proper-
ties [23]. Non-dimensional numbers characterize the flow, such as the Courant number
(Co). With time-dependent progressing flow characteristics, optimal mesh conditions
can change.

(d) Transition from flow to stoppage: CFD is defined for flowing processes. A resting case
with the velocity u = 0 is numerically not defined. This yields two difficulties: First, a
numerical regularization needs to be found for the transition toward velocities → 0 .
Secondly, a threshold needs to define the numerical final flow length.

The evaluation of an accurate numerical test setup, however, is of utmost importance
for prospective advancements in the field of computational concrete rheology. With the
constant development of innovative concrete mixtures, such as Self-Compacting Concrete
(SCC), Ultra-High-Performance Concrete (UHPC), concrete for Additive Manufacturing
(AM), or concretes with low clinker amounts for the purpose of more ecological concrete
mixtures, their rheological properties become increasingly complex toward higher vis-
cosity values and strongly non-Newtonian flow behavior. While CFD offers a method
for the precise computation of various processing scenarios without the need of expen-
sive experimental tests, both the numerical setup and the rheological model need to be
verified regarding their accuracy. Research on this topic is yet to be published. In this
study, the effect of spatial-temporal meshing and the numerical regularization is analyzed
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on the model accuracy. Subsequently, the effect of rheological properties of increasingly
viscous cementitious pastes is analyzed on the transient flow in a cementitious slump flow
test setup.

2. Simulating Flow of Cementitious Pastes with Multiphase CFD Modeling

Cementitious pastes are rheologically described as non-Newtonian fluids with a yield
stress. While various phenomenological equations have been proposed (comprehensive
overviews, e.g., in [24–26]), the Bingham model is the most basic formulation [27]:

τ
( .
γ
)
= τ0,B + µ

.
γ (2)

With τ
( .
γ
)

as the shear-rate dependent shear stress in Pa, τ0,B as the Bingham—yield
stress in Pa,

.
γ as the shear rate in 1/s, and µ as the plastic viscosity in Pa ∗ s. The Herschel–

Bulkley model in Equation (3) incorporates a non-linear viscosity [28]:

η
( .
γ
)
=

τ0,H−B
.
γ

+ k
.
γ

n−1 (3)

With η
( .
γ
)

as the shear-rate dependent apparent viscosity in Pa ∗ s, k as the consistency
index in (Pa ∗ s)n, and n as the Herschel–Bulkley index, characterizing shear-thinning flow
in case of n < 1, Bingham flow in case of n = 1, and shear-thickening flow if n > 1.

CFD provides numerical algorithms to approximate the transport equations for viscous
flow over space and time. The Volume-of-Fluid method (VOF) is a numerical technique
to compute the free-surface flow of cementitious pastes. The Navier–Stokes transport
equations, consisting of the equations for the conservation of mass and conservation
of momentum, are extended by a weighting quantity α; see Equations (4) and (5), also
applied in [1]:

δα

δt
+∇·(αu) = 0 (4)

∂(ρu)
∂t

+∇·(ρuu) = ∇p +∇·τ + ρg + fσ (5)

In Equation (5), ρ is the fluid density in kg/m3, u is the velocity vector in m/s, p
is the scalar pressure in Pa, τ is the deviatoric stress tensor in Pa, g is the gravitational
acceleration in m/s2, and fσ is the contribution from surface tension effects between the
two phases [29]. The fluid density ρ is calculated from the contributions of the two phases
ρ1 and ρ2 depending on α:

ρ = αρ1 + (1 − α)ρ2 (6)

The deviatoric stress tensor τ contains the rheological model of the fluid. For materials
with a yield stress τ0 like cement paste and concrete, the Bingham or Herschel–Bulkley
model is commonly implemented. The material remains rigid below τ0 (

.
γ = 0 s−1)

and starts flowing beyond this threshold. However, in computational methods like CFD
modeling, this introduces a mathematical discontinuity, as yield stress models lack a defined
viscosity at shear rates

.
γ = 0 s−1, leading to numerical instabilities. These instabilities

can be regularized through a continuous mathematical definition of the transition from
.
γ = 0 s−1 to

.
γ > 0 s−1. Regularization methods for viscoplastic flow are comprehensively

reviewed in [21] and more recently in [30]. Two frequently applied regularization models
are the Papanastasiou regularization [31]; see Equation (7) (and similarly, the Bercovier and
Engelmann model; see [32]), and the bi-viscous regularization, described by O’Donovan
and Tanner in [33] and given in Equation (8):

η
( .
γ
)
=

τ0

(
1 − e− m

.
γ/ .

γcrit

)
.
γ

+ k
.
γ

n−1 (7)
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η(
.
γ) = min

{
η0

τ0.
γ
+ k

.
γ

n−1 (8)

The Papanastasiou regularization in Equation (7) is an exponential blending function
defined by the regularization parameter m in-and the critical shear rate

.
γcrit in s−1 where

the blending function starts. The bi-viscous model introduced in Equation (8) is defined
by a plateau value for the viscosity η0 in Pa ∗ s. For steady-state flow simulations at high
shear rates, the regularization method is mainly required for mathematical stabilization
but is not decisive for the numerical result. Frigaard and Nouar, however, stated that the
regularization error is the highest close to the yield stress zone [21], which was also shown
by Belblidia et al., who stressed the importance of m and τ0 for the results of contraction or
expansion flow [34].

A clear proof of concept has yet to be defined for cement and concrete CFD modeling.
Both regularization methods have been applied in cement and concrete research, but their
effect on the numerical result has yet to be investigated or explained. Gram modeled the
slump flow test with the Herschel–Bulkley model and the Papanastasiou regularization [15].
On the contrary, Pereira et al. simulated the slump flow test using the bi-viscous regulariza-
tion [22]. Schaer et al. used the Herschel–Bulkley model with bi-viscous regularization to
simulate Carbopol flow [35]. De Schryver et al. implemented the rheological behavior of
thixotropy (time- and shear-dependent viscosity) into the steady-state pipe flow simulation
of concrete using the bi-viscous regularization [36]. Two benchmarks analyzed the applica-
bility of CFD for cement and concrete test cases: In [18], the slump flow was simulated in
various programs using the Bingham approach without defined regularization or boundary
conditions. In [19], both regularization methods were analyzed to simulate steady-state
concrete pipe flow but not a stoppage test, where regularization becomes crucial.

The literature review demonstrates that most CFD simulations for cementitious paste
flow either simplify the rheological material behavior, investigate steady-state conditions
in analytically resolvable geometries, or do not test numerical boundary and regularization
methods on their effect on numerical accuracy. Accurate analysis results are generally
unavailable, especially for transient test cases published (such as slump flow or L-Box).
The effect of spatial-temporal refinements, regularization procedures, boundary condi-
tions, or rheological properties on accuracy and flow patterns needs to be described, and
the simulations concentrate on the flow behavior at high shear rates. Recognizing the
significant impact that an unadjusted numerical setup can have on the test results, this
research addresses this gap by conducting a thorough examination of grid convergence, the
geometrical model, regularization parameters, and the transient behavior of cementitious
pastes with varying viscosities in the context of the slump flow test.

3. Experimental and Numerical Setup
3.1. Concept of Investigation

Babuska et al. stated, “A computational model relates well to the theory if the com-
putational model describes the mathematical model well and the mathematical model
relates to the theory well” [37]. Thus, our approach was three-fold: Experimental flow tests
of non-Newtonian pastes were accompanied by rheological measurements. Flow curves
gained through rheometry were translated into a rheological model. Flow tests with the
slump flow test case were conducted, and the yield stress was analyzed with Equation (1).
The computational model described the slump flow test, and the rheological information
from rheometric tests were implemented into the computational model. The model was
validated computationally by comparison to the experimental flow tests. The whole proce-
dure is illustrated in Figure 1. Definitions as proposed by the AIAA (American Institute of
Aeronautics and Astronautics) standards acc. [38] were applied. Detailed explanations on
the validation and verification process can be found in [39].
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Figure 1. Schematic overview of procedure between experimental flow tests, rheological modeling,
and numerical optimization, freely adapted from [40].

A fully resolved three-dimensional geometrical mesh and a slice geometry using
the wedge condition of OpenFOAM were compared to use the axisymmetric geometry
to save computational cost, but at the same time, with awareness paid to the probable
errors. Following the convergence study, the regularization method with the Papanastasiou
model in Equation (7) and the bi-viscous model in Equation (8) were tested with varying
regularization parameters on the most accurate mesh from the convergence study. Fi-
nally, transient flow properties of cementitious pastes with different rheological properties
were investigated.

3.2. Materials and Experimental Methods

Cement paste was prepared using Ordinary Portland Cement (OPC) CEM I 42.5 R
(Heidelberg Materials AG, Heidelberg, Germany), demineralized water with a temperature
adjusted for a constant paste temperature of 20 ◦C and PCE superplasticizer (Master Builder
Solutions GmbH, Trostberg, Germany). The oxide composition of the cement is presented
in Table 1; physical properties are summarized in Table 2. Further information can be taken
from data in brief in [41]. The PCE superplasticizer was provided in a liquid solution with
a polymer content of 22.6%. The density was 1.06 kg/L. The anionic charge density was
1614 µeq/g with 20 ethylene oxide units. The anionic charge density was analyzed by
Lei et al. using a 0.01 M aqueous NaOH solution at a pH = 12 [42].

Table 1. Oxide composition of CEM I 42.5 R.

Binder CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O

[%] [%] [%] [%] [%] [%] [%]

CEM I 42.5 R (OPC) 62.90 19.63 5.23 2.60 1.54 0.24 0.80

Table 2. Physical and granulometric properties of CEM I 42.5 R.

Binder Specific Gravity ρc Blaine SSA d50 Φmax[
g/cm2] [

cm2/g
]

[m] [−]

CEM I 42.5 R (OPC) 3.11 3499 15.0 0.66

Cement pastes with three different solid volume fractions Φs were analyzed, with

Φs =
Vs

Vs + Vw
(9)



Materials 2024, 17, 532 6 of 23

In Equation (9), Vs is the volume of the solid particles; Vw is the volume of the
liquid phase. PCE was added to obtain a targeted experimental slump flow diameter
250 mm ± 5 mm in the Hägermann cone acc. DIN EN 12350-8 [7]/DIN 1015-3 [43] was
used for all mixture compositions. The cement paste mixtures of CEM I, demineralized
water and PCE, together with the corresponding water-to-cement ratio (w/c) and the
resulting paste density ρp, are collected in Table 3. The values for PCE are specified as the
percentage by weight of cement (bwoc). Table 3 also shows the analytical τ0,A,R for the
application of Roussel’s Equation (1) for a slump flow diameter of 250 mm (and, thus, a
final slump flow radius of R = 0.125 m). The values for τ0, A,R only differ due to different
input parameters for the paste density ρp. Increasing PCE addition affects the yield stress
τ0 and viscosity η [44] and further leads to visco-elastoplastic material behavior rather than
viscoplastic flow [45]. However, for simplification reasons, solely viscoplastic modeling
was applied.

Table 3. Cement paste mixtures.

Mixture ϕs
w/c

Ratio
Slump Flow

Diameter CEM I Demineralized
Water PCE ρp τ0A,R

[−] [−] [mm]
[
kg/m3] [

kg/m3] [% bwoc]
[
kg/m3] [Pa]

OPC-0.45 0.45 0.40 250 ± 5 1399.5 550 0.18 1950 12.0
OPC-0.52 0.52 0.29 250 ± 5 1617.2 480 0.85 2100 14.2
OPC-0.55 0.55 0.26 250 ± 5 1710.5 450 1.40 2160 15.0

For each test series, 0.5 L of paste was prepared by mixing water and dry cement
using a hand mixer with a four-bladed screw for 90 s at 1700 rpm. PCE was dosed 90 s
after mixing had started. The paste was left at rest until 12 : 30 min after water addition.
An external pre-shear of 30 s with the hand mixer led to de-flocculation and erased the
effect of structuration history [46]. Rheometric measurements started directly after external
pre-shear 15 min after water addition. A dynamic steady shear analysis in a rotational
shear rheometric setup was conducted with a parallel plate geometry. Parallel plates with a
diameter of 50 mm and serrated surfaces and a small gap of 1 mm were used. A rotational
decreasing step-rate protocol from

.
γ = 80 s−1 to

.
γ = 0.02 s−1, with each step lasting 6 s,

was chosen to grasp the rheological response of cementitious pastes over an extensive
range of shear rates

.
γ. Before the step-rate sequence, a pre-shear rate of

.
γ = 40 s−1 with a

duration of 30 s took place to erase heterogeneous placement effects into the rheometer. A
further insight into the rheometrical procedure and raw data handling can be found in [45].

3.3. Numerical Setup

The open-source software OpenFOAM (Open-source Field Operation And Manipula-
tion, https://openfoam.org, accessed on 15 December 2023) was used for the solution of the
Navier–Stokes equations, which uses Volume-of-Fluid (VoF) method for multiphase flow
phenomena to solve the partial differential equations of flow for each spatially discretized
volume. In OpenFOAM, air was implemented as first phase and the cementitious paste as
the second phase. For each phase, the rheological transport models were specified. The
corresponding solver was interfoam, which uses the pimple loop for the iterative correction
of pressure and velocity when solving the transport equations.

3.3.1. Geometrical Model

Figure 2 illustrates the geometrical model. The full three-dimensional resolution of a
conical flow (indicated in Figure 2a) depicts the experimental setup. A box was generated
with the dimensions 0.3 m × 0.3 m × 0.08 m that was filled with air (Newtonian rheological
model for gas). A cone model was generated with a lower diameter of 0.1 m, an upper
diameter of 0.05 m, and a height of 0.06 m, which was placed inside the box. The walls of
the Hägermann cone were not modeled. The cone solely represents the cementitious paste.

https://openfoam.org
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Faces of the geometry were defined either as ground wall or as atmosphere. The outer box
was meshed homogeneously in x, y, and z directions.

Materials 2024, 17, x FOR PEER REVIEW 7 of 24 
 

 

with the dimensions 0.3 m × 0.3 m × 0.08 m that was filled with air (Newtonian rheolog-
ical model for gas). A cone model was generated with a lower diameter of 0.1 m, an upper 
diameter of 0.05 m, and a height of 0.06 m, which was placed inside the box. The walls of 
the Hägermann cone were not modeled. The cone solely represents the cementitious 
paste. Faces of the geometry were defined either as ground wall or as atmosphere. The outer 
box was meshed homogeneously in 𝑥, 𝑦, and 𝑧 directions. 

Three series with a mesh refinement value of 2 each were generated to study the mesh 
convergence (see Table 4, C1–C3). The maximum number of cells in the finest mesh re-
finement series is 7.2 Mio cells. In a second geometrical setup and due to the symmetrical 
geometry, only a slice of the whole cone was modeled. OpenFOAM enabled the simula-
tion with a slice geometry using a wedge condition for the plane faces in the swirling direc-
tion for a two-dimensional rotationally symmetric case. In the 𝑧 direction, only one cell 
was specified. Thus, at the inner radius 𝑟 = 0 m, cells possessed triangular shapes, and 
the slice angle was small to delimit the skewness of the cells at the inner and outer radius. 
At 𝑟 > 0 m, cells were prismatic. Hexahedral cells filled the remaining slice, with increas-
ing aspect ratios along the 𝑥 direction. An angle of 3° was set for the slice to keep the 
aspect ratio of cells toward the outer radius close to 1 (see Figure 2b). As the slice setup 
required fewer cells than the cone geometry, four mesh refinements with a maximum 
number of cells of 63,441 (with, in this case, 159 prismatic cells and 63,282 hexahedral cells) 
in the finest mesh setup (see Tables 5 and S1–S4) were chosen. 

 
Figure 2. (a) Three-dimensional geometry in a box; (b) slice geometry in a box. 

Dimensions of Δ𝑥, Δ𝑦, and Δ𝑧, the number of cells and the mesh refinement value 
are presented for the three-dimensional cone model in Table 4 and for the slice in Table 5. 
The aspect ratio of all cone geometries was 1. While the x/y aspect ratio of slice cells was 
also defined as 1, the aspect ratio in the slice varied over the radius. The maximum aspect 
ratio was 2. The effect of the mesh geometry on the simulation result was subsequently 
investigated. 

  

Figure 2. (a) Three-dimensional geometry in a box; (b) slice geometry in a box.

Three series with a mesh refinement value of 2 each were generated to study the
mesh convergence (see Table 4, C1–C3). The maximum number of cells in the finest mesh
refinement series is 7.2 Mio cells. In a second geometrical setup and due to the symmetrical
geometry, only a slice of the whole cone was modeled. OpenFOAM enabled the simulation
with a slice geometry using a wedge condition for the plane faces in the swirling direction
for a two-dimensional rotationally symmetric case. In the z direction, only one cell was
specified. Thus, at the inner radius r = 0 m, cells possessed triangular shapes, and the
slice angle was small to delimit the skewness of the cells at the inner and outer radius. At
r > 0 m, cells were prismatic. Hexahedral cells filled the remaining slice, with increasing
aspect ratios along the x direction. An angle of 3◦ was set for the slice to keep the aspect
ratio of cells toward the outer radius close to 1 (see Figure 2b). As the slice setup required
fewer cells than the cone geometry, four mesh refinements with a maximum number of
cells of 63,441 (with, in this case, 159 prismatic cells and 63,282 hexahedral cells) in the
finest mesh setup (see Table 5 and S1–S4) were chosen.

Table 4. Mesh definition for the 3D cone (C).

Test Series ∆x ∆y ∆z Aspect
Ratio x/y/z ΣCells Mesh Refinement

Value

[m] [m] [m] [−] [−] [−]

C1 0.004 0.004 0.004 1 112,500 1
C2 0.002 0.002 0.002 1 900,000 2
C3 0.001 0.001 0.001 1 7,200,000 4

Table 5. Mesh definition for slice geometry (S).

Test Series ∆x ∆y Slice
Angle

Aspect Ratio
x/y ΣCells Mesh Refinement

Value

[m] [m] [◦] [−] [−] [−]

S1 0.004 0.004 3 1 931 1
S2 0.002 0.002 3 1 3861 2
S3 0.001 0.001 3 1 15,721 4
S4 0.0005 0.0005 3 1 63,441 8
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Dimensions of ∆x, ∆y, and ∆z, the number of cells and the mesh refinement value are
presented for the three-dimensional cone model in Table 4 and for the slice in Table 5. The
aspect ratio of all cone geometries was 1. While the x/y aspect ratio of slice cells was also
defined as 1, the aspect ratio in the slice varied over the radius. The maximum aspect ratio was
2. The effect of the mesh geometry on the simulation result was subsequently investigated.

3.3.2. Boundary Conditions and Numerical Solution Schemes

Boundary conditions for the faces ground wall and atmosphere for u, p, and α are
provided in Table 6. The spatial interpolation was performed with the linear Upwind method.
Temporal integration was performed with the implicit Euler method. Slight under-relaxation
was chosen to prevent instabilities. The convergence tolerance for the solver algorithm was
set to 1 × 10−8. The surface tension between the two phases was defined at σ = 0.072 kg/s2.

Table 6. Numerical boundary conditions.

Field Face Type Definition Value

Fluid α
Ground wall Zero gradient Neumann ∂

∂t = 0
Atmosphere Zero gradient Neumann ∇α = 0

Pressure p Ground wall Fixed flux Neumann ∇p = 0
Atmosphere Total value Dirichlet p = 0

Velocity u Ground wall No slip Dirichlet u = 0
Atmosphere Inletoutlet Neumann ∇·u = 0

3.3.3. Convergence Study

The Courant number Co calculates how far a fluid moves through one cell depending
on the velocity u, the cell size ∆xi, and a defined time step ∆t:

Co =
u∆t
∆xi

(10)

If Co < 1, the fluid information does not propagate through more than one cell within
one time step. If Co > 1, the simulation is inaccurate. Thus, for many simulation cases, Co
was set to a limit value Comax.

In the numerical setup, Comax = 1 was defined to prevent numerical instabilities.
However, as the slump flow case is a transient process where both the velocity and the
slump shape change with every single time step, a characteristic Co does not exist for the
whole test case. Locally varying Co over the shape, along with the effect of ∆x and ∆t, and,
thus, the effect of the actual Coc,max on the simulation result was investigated. Convergence
was studied threefold:

• Grid convergence: The grid convergence study analyzed flow results as a function of
increasing grid refinement at a fixed time step ∆t. For the 3D geometry, three meshes
(∆x = 0.004, 0.002 and 0.001) were tested for convergence. Different fixed time steps
of ∆t = 1 × 10−3 s, 5 × 10−4 s, and 2.5 × 10−4 s were studied. For the slice geometry,
four meshes (∆x = 0.004 m, 0.002 m, 0.001 m, and 0.0005 m) were tested at fixed
∆t = 5 × 10−4 s, 2.5 × 10−4 s, and 1.25 × 10−4 s.

• Temporal convergence: Temporal convergence was tested for each mesh (C1–C3 and
S1–S4) with fixed ∆x for five time steps ∆t, respectively (see the range of ∆t for each
fixed ∆x in Table 7).

• Coupled spatial and temporal convergence: Simulations with coupled spatial and temporal
refinement were tested for convergence. For the 3D geometry, three setups were tested;
for the slice geometry (due to higher possible spatial refinement), five series were
compared (see Table 7: Convergence series in the diagonal with the same color)
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Table 7. Test series and the corresponding time step ∆t and mesh size ∆x.

Test Series/∆t 4×10−3 2×10−3 1×10−3 5×10−4 2.5×10−4 1.25×10−4 6.25×10−5 3.125×10−5

C1 ∆x = 4 × 10−3 x x x x x
C2 ∆x = 2 × 10−3 x x x x x
C3 ∆x = 1 × 10−3 x x x x x
S1 ∆x = 4 × 10−3 x x x x x
S2 ∆x = 2 × 10−3 x x x x x
S3 ∆x = 1 × 10−3 x x x x x
S4 ∆x = 5 × 10−3 x x x x x

The post-processing procedure of the simulated data was conducted using the freeware
PARAVIEW (https://www.paraview.org/, accessed on 15 December 2023) and PYTHON

(https://www.python.org/, accessed on 15 December 2023). The simulations covered a
real flow time between 0 s < to f < 2 s. The time of flow to f in s was defined at a threshold
where the slump flow radius did not deviate more than 5e−3% compared to the flow of
the previous time step. Output data were generated every 0.02 s between 0 s and 0.4 s and
every 0.2 s between 0.4 s and 2.0 s.

Numerical results were compared to the experimental flow test result. The percentage
deviation of the numerical to the experimental slump flow radius rx was calculated as error
ex in %. The convergence study was only conducted with the rheological input data of the
test series OPC-0.45.

3.3.4. Regularization Study

For the slump flow test, the definition of the regularization model becomes crucial:
the slump flow test both starts and ends with no flow (

.
γ = 0), and, thus, a mathematically

undefined state.
The Papanastasiou and bi-viscous regularization were applied to the Herschel–Bulkley

model for non-Newtonian yield stress fluids as introduced in Equations (7) and (8). Follow-
ing the convergence study, the regularization test was solely conducted for the test series
OPC-0.45 and with the most accurate geometrical mesh. The regularization parameters
are presented in Table 8. In the literature, the critical shear rate to be implemented into the
Papanastasiou model is either proposed to be set to a minimum value or is not mentioned
at all (see, e.g., [18]). In a comparative approach, the critical shear rate

.
γcrit was varied to

investigate the effect of the calibration of the model by its defined critical shear rate. In a
first approach,

.
γcrit was defined at a low value, with

.
γcrit = 0.001 s−1. In a second step, the

critical shear rate
.
γcrit was evaluated from the rheological experiment, subsequently elabo-

rated in Section 4.1. For the test series OPC-0.45, this yielded
.
γcrit = 0.16 s−1. Simulations

were conducted with each
.
γcrit, respectively, for each m.

Table 8. Regularization parameters for Papanastasiou and bi-viscous regularization.

Test Series
Papanastasiou Bi-Viscous

m
.
γcrit η0

.
γ0

[−] [1/ s] [ Pa ∗ s] [1/ s]

R1 1 0.001/0.16 1 15.1
R2 10 0.001/0.16 10 1.64
R3 100 0.001/0.16 100 0.16
R4 1000 0.001/0.16 1000 0.016

For the bi-viscosity model, four different zero viscosities η0 were defined, i.e., η0 = 1,
10, 100, and 1000 Pa ∗ s (for more details of rheological calculation and material discontinu-
ities, please refer to the author’s publication [45]). The zero-shear rate

.
γ0 was calculated

https://www.paraview.org/
https://www.python.org/
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depending on the condition in Equation (7). An illustration of the rheological models is
presented in Figure 3.
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4. Results and Discussion
4.1. Rheological Analysis

Experimental raw data and the corresponding rheological flow curves of all test series
are illustrated in Figure 4. Figure 4a shows the average values, incl. standard deviation
(shades) for the measured shear stress as a function of the shear rate

.
γ. Each paste was

analyzed at least three times. The experimental data show an equilibrium stress τ after the
pre-shear at

.
γ = 40 s−1 within the first 30 s. With the exception of the first shear rate step

at
.
γ = 80 s−1, τ reached equilibrium at each

.
γ—step before increasing again at low shear

rates. The minimum stress measured before the stress increase at low
.
γ was defined as

.
γcrit. From each

.
γ—step, the shear stress τ was calculated at equilibrium.
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Figure 4b shows the calculated τ − .
γ flow curves. The log-log illustration was chosen

to highlight both the strong deviation of the stress response at low shear rates while
also clearly depicting the deviating rheological behavior at high shear rates. At higher
shear rates, shear-thickening behavior increases with increasing solid volume fraction.
To calculate rheological parameters, the Herschel–Bulkley regression was chosen for the
experimental data in the range between [

.
γcrit ≤ .

γ ≤ .
γmax], with

.
γcrit as the shear rate at a

minimum shear stress τ. Critical shear rates
.
γcrit increased with increasing solid volume

fractions of the pastes; see Table 9. The Herschel–Bulkley regression parameters,
.
γcrit, and

the corresponding computational kinematic input parameters, which are the rheological
parameters divided by the paste density ρp, are collected in Table 9. While OPC-0.45
showed shear-thinning material behavior, OPC-0.52 was close to a linear viscosity with
n = 1, and OPC-0.55 was strongly shear-thickening with n = 1.41.

Table 9. Rheological parameters from experimental measurements and kinematic input parameters
for computational simulations.

Test Series
Herschel-Bulkley Regression Computational Input

.
γcrit τ0,H−Bexp kexp nexp τ0,H−Bnum knum nnum

[1/ s] [Pa]
[
(Pa ∗ s)n] [−]

[
m2/ s2] [

m2/ s] [−]

OPC-0.45 0.16 11.1 2.86 0.45 5.69 × 10−3 2.56 × 10−3 0.45
OPC-0.52 0.64 15.3 0.83 0.99 7.31 × 10−3 3.95 × 10−4 0.99
OPC-0.55 1.25 16.4 0.29 1.41 7.65 × 10−3 1.34 × 10−4 1.41

The results show that, while the targeted PCE ensured comparable slump flow di-
ameters and, thus, comparable macroscopic flowability, the rheological properties of the
different pastes strongly deviated depending on solid volume fraction ϕs.

4.2. Numerical Model Analysis
4.2.1. Post-Processing Strategy: Transient Flow Data Extraction

Each numerical flow calculation was initially post-processed in PARAVIEW. Figures 5–7
illustrate the post-processing on the example of the test series OPC-0.45.
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Figure 5. Post-processing in PARAVIEW for (a) t = 0 s and (b) t = 1 s of flow, (c) two-dimensional
extracted flow data for t = 0.02 s, 0.2 s and 0.4 s with post-processing in PYTHON.

Figure 5a,b show the three-dimensional slump flow at a time of flow of 0 s and
1 s, respectively.

From the three-dimensional raw data, a two-dimensional slice was extracted. Figure 5c
illustrates the slump flow for three time steps (t = 0.02 s, t = 0.2 s, t = 0.4 s) in PYTHON. In
all subsequent procedures and calculations, considering the symmetry of the flow, only
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one symmetric part was analyzed, illustrated in Figure 6a. The evolution of the flow radius
over time rx(t) is presented in Figure 6b.
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Figure 7. Transient flow information for two-dimensional slice data for (a)
.
γ and (b) Rec.

In addition to the shape information, the slump flow radius rx(t) and height hy(t)),
the cell Reynolds number Rec, and the shear rate

.
γ were extracted and analyzed for each

time step. The Reynolds number Re is a characteristic dimensionless flow number, which
relates the inertial forces to viscous forces:

Re =
ρuL

µ
(11)

With ρ as the fluid density in kg/m3, u as the fluid velocity in m
s , L as the characteristic

length scale in m, and µ as the fluid viscosity in Pa ∗ s. Re requires the definition of a
characteristic length scale L, characteristic velocity u, and characteristic viscosity µ. In
this study, due to a missing characteristic length scale, the cell Reynolds number Rec is
introduced, which calculates Rec according to Equation (11), using the cell velocity u, ∆x
and ∆t, and the paste density ρp.
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Figure 7 shows the two-dimensional data analysis of Rec and
.
γ for t = 0.2 s for the

finest slice mesh S4 with ∆x = 5 × 10−4 m; ∆t = 3.125 × 10−5 s. A color bar illustrates the
variation of rheological properties over the two-dimensional shape. The density distribu-
tions of Rec and

.
γ, respectively, are illustrated in an additional histogram. The histogram

had a bin value of 100, and the number of counts was calculated with regard to their
distribution over the cells of the two-dimensional slice. The illustration shows the locally
different flow patterns over the shape: while after 0.2 s, the flow had already stopped
around xr = 0 m, hy = 0 m, high

.
γ and, thus, high Rec occur toward the maximum xr

and a thin layer close to the bottom of the slump, with the maximum values specified in
Figure 7.

4.2.2. Convergence Study

The convergence and regularization study were conducted on a cement paste with
Φs = 0.45; see Table 3, test series OPC-0.45. After the setup of an accurate geometrical model
and regularization model, the effect of increasing viscosity on transient flow modeling was
investigated with additional cementitious suspensions with Φs = 0.52 and with Φs = 0.55;
see Table 3, test series OPC-0.52 and OPC-0.55, respectively. For the grid convergence study,
Comax was recorded for each time step, as schematically illustrated in Figure 8 with the
depiction of Courant numbers Co for each cell over the two-dimensional shape.

Convergence study results are demonstrated in Figure 9 for the cone geometry and
in Figure 10 for the slice geometry. Each figure shows the experimental flow result as a
dotted line at rx, f in = 0.125 m. In both illustrations, (a) presents the final flow radius rx as
a function of ∆t for different meshes (temporal refinement), (b) presents the slump flow
radius as a function of ∆x for various time step sizes, and (c) shows the slump flow radius
for simulations where both ∆x and ∆t were refined. The simultaneous refinement of ∆x
and ∆t resulted in similar, decreasing maximum Courant numbers Comax = 0.25, 0.15, and
0.085 for the three-dimensional mesh and Comax = 0.4, 0.25, 0.15, 0.08, and 0.04 for the
slice. Figures 9d and 10d illustrate the percentage error ex of the simulated slump flow
radius related to the experimental final slump flow radius rx, f in:

ex =
rx, f in, num

rx, f in, exp
∗ 100 (12)

Figure 9a,b indicate that the simulated final slump flow radius rx, f in converged to-
ward the experimentally measured values as refinement values increased up to a certain
threshold. With further refinement, the error between numerical and experimentally mea-
sured values increased. Figure 9c illustrates the correlation between ∆x and ∆t: if the
ratio between ∆x and ∆t is kept constant, the error decreases with increasing refinement
rate, at least at Co < 0.25. For Comax = 0.25, the simulation error again increased below
∆x = 0.002 m. For the lowest Comax = 0.085, the error was decreased to a minimum of
about ex ≈ 4%; see Figure 9d. Figure 10 presents comparable results for the slice geometry.

Due to a smaller geometry and thus less cells, higher refinement values were possible.
The effect of temporal refinement on a fixed mesh grid, however, was more pronounced
for the slice than for the cone. The finest mesh S4 showed the highest variation of rx in
dependence of ∆t. Figure 10c shows, similarly to the cone geometry, that mesh convergence
was only reached at Comax ≤ 0.08. The results reveal the strong dependency of both
temporal and spatial refinement on the numerical result.

4.2.3. Comparison between Cone and Slice Simulations

Shapes for the flow times 0.02 s, 0.2 s, and 0.4 s for the finest cone mesh C3 and the
finest slice mesh S4 are illustrated in Figure 11a, and the slump flow radius rx in dependence
of t is given in Figure 11b. Slight variations were visible during the time of flow, as the cone
geometry flowed faster and thus had a larger rx (and lower height hy) during the same
time step. The final slump flow radius, however, was the same. Figure 11a illustrates a
clear shape difference between the cone and the slice model at the time step 0.2 s. This
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result can be correlated to the mesh conditions: At r = 0, the cone geometry possessed
hexahedral cells, while the slice geometry consisted of prisms. The aspect ratio between
the cone cells (aspect ratio = 1) and the slice cells at r = 0 (aspect ratio = 2) differed. A
computational effect on the flow therefore was inevitable. A further analysis of numerical
effects of the aspect ratio on the numerical result is beyond the scope of this research but
must be considered for the further investigations.
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∆x = 5 × 10−4 m; ∆t = 3.125 × 10−5 s for 9 selected time steps is shown.



Materials 2024, 17, 532 15 of 23

(a) (b)

(c) (d)

1 × 10−3 1 × 10−3

1 × 10−3
1 × 10−3

1 × 10−3

dt_1 × 10−3

dt_2.5 × 10−4

dt_5 × 10−4

Figure 9. Convergence analysis results for 3D cone geometry for (a) temporal refinement, (b) spatial
refinement, (c) aligned ∆x and ∆t with refined Courant numbers, and (d) error plot for all simulations
at different pairs ∆x, ∆t.

The mesh comparison shows that slight deviations existed between the three-
dimensional cone and a slice geometry with the wedge condition provided by OpenFOAM.
However, the wedge geometry was used for further analysis due to reduced computa-
tional costs.

4.3. Effect of Regularization Parameters on Numerical Simulation

Figure 12 shows the flow over time for varying regularization parameters. Figure 12a,b
show the Papanastasiou model with (a)

.
γcrit = 0.001 s−1 and (b)

.
γcrit = 0.16 s−1. Once

a minimum shear rate of
.
γcrit = 0.001 s−1 was chosen, the regularization parameter m
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did not affect the slump flow radius at all, no difference between the simulation results
is observable, see Figure 12a. At higher

.
γcrit, m can slightly affect the flow progress, as

visible in Figure 12b: At low m = 1, the flow progressed faster than at higher m values.
In Figure 12c, the flow with the bi-viscous regularization is illustrated. With decreasing
η0, the flow velocity (slope of the curve rx(t)) was higher, and the final slump flow radius
increased. The parameters η0 = 1 and η0 = 10 did not show a flow stoppage. With
increasing η0, the error to the experimental result decreased.

(a)

(c) (d)

(b)

1 × 10−3
1 × 10−3

1 × 10−3

1 × 10−3

dt_1 × 10−3

dt_2.5 × 10−4

dt_5 × 10−4

1 × 10−3

Figure 10. Convergence analysis results for slice geometry for (a) temporal refinement, (b) spatial
refinement, (c) aligned ∆x and ∆t for refined Comax, and (d) error plot for all simulations at different
pairs ∆x, ∆t.

The results of the regularization study prove the applicability of the Papanastasiou
regularization method for a transient flow simulation that includes the start of flow and
flow stoppage. However, also when using the Papanastasiou regularization method, the
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parameters
.
γcrit and m affect the numerical result. While m displays the mathematical

regularization, which cannot be connected to real rheological flow behavior,
.
γcrit has a

rheological meaning. Therefore, the choice of which
.
γcrit to use for an accurate flow

simulation becomes more crucial with increasing
.
γcrit.
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γ = 0.001 s−1, (b) the Papanastasiou regularization with

.
γ = 0.16 s−1, and (c) the bi-viscosity model.

4.4. Numerical Flow of Different Viscous Cementitious Pastes
4.4.1. Regularization and Flow over Time

Finally, the flow of different cementitious pastes with increasing ΦS was investigated
numerically. The calculated critical shear rates

.
γcrit from the rheometric experiments were

.
γcrit = 0.64 s−1 for OPC-0.52 and

.
γcrit = 1.25 s−1 for OPC-0.55.

For the Papanastasiou regularization, they were implemented as
.
γcrit. Comparatively,

also
.
γcrit = 0.001 s−1 was tested; see Table 10. The regularization parameter m was fixed

at m = 1000 for all simulations. Figure 13a illustrates the flow simulations specified in
Table 10. No variation was visible for different

.
γcrit as m was chosen to be high. Thus,

results for OPC-0.52 and OPC-0.55 (here with the experimental
.
γcrit) were compared to

the flow results of OPC-0.45. The flow over time rx(t) for all test series is presented in
Figure 13b.
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Table 10. Regularization parameters for the Papanastasiou regularization.

Test Series
Papanastasiou

m
.
γcrit

[-] [1 / s]

OPC-0.52-R1 1000 0.001
OPC-0.52-R2 1000 0.640
OPC-0.55-R1 1000 0.001
OPC-0.55-R2 1000 1.250
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The analysis reveals that the rheological behavior, specified by the Herschel–Bulkley
model, strongly affected the time-dependent flow. OPC-0.45 approached its final slump
value after 0.5 s of flow, while the flow velocity decreased with the increasing solid volume
fraction. Interestingly, OPC-0.52 proceeded faster in the beginning of the test, which can
be attributed to a higher paste density ρs and, thus, a higher hydrostatic stress tensor.
However, due to a higher viscosity, the flow proceeded slower compared to OPC-0.45. Test
series OPC-0.55 with the highest viscosity and shear-thickening flow behavior showed the
slowest flow progress. The simulation time of 2.0 s was not sufficient to analyze the flow
stoppage. The numerical results are provided in Table 11. In addition to the final slump
flow radius rx and the time of flow, the maximum cell values for the shear rate

.
γmax,c,

the cell Reynolds number Remax,c and Courant number Comax are specified. For a deeper
understanding of transient flow differences depending on the paste’s viscosity, the cell
Reynolds number Rec and the shear rate

.
γ were analyzed over the two-dimensional shape.

Table 11. Specified flow data.

Series rx Time of Flow
.
γmax,c Rec,max Comax

[m] [s] [1 / s] [-] [-]

OPC-0.45 0.129 0.5 863.9 1.65 0.04
OPC-0.52 0.127 0.8 175.7 0.43 0.04
OPC-0.55 0.122 >2.0 64.5 0.27 0.035
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4.4.2. Transient Flow Patterns

Figure 14 illustrates the shear rate distribution
.
γ for all pastes OPC-0.45, OPC-0.52,

and OPC-0.55 for a time step of t = 0.02 s. Table 11 and Figure 14 clearly show a paste-
dependent difference of

.
γmax and the

.
γ-distribution over the slump’s shape: The highest

shear rate value for OPC-0.45 was 791.5 s−1. The number of high shear rates was higher than
for the other pastes. OPC-0.52 had a highest

.
γ-value of 163.08 s−1, while most shear rates

at t = 0.02 s were between 0 s−1 <
.
γ < 50 s−1. OPC-0.55 had the highest

.
γmax = 63.26 s−1.

(a) (b)

(c)

8 × 10²

2.5 × 10²

2 × 10²

1 × 10²

5 × 101

0

2 × 10²

1 × 10²

9 × 101

5 × 101

0

6 × 101

5 × 101

3 × 101

2 × 101

0

Figure 14. Comparative shear rate distribution for (a) OPC-0.45, (b) OPC-0.52, and (c) OPC-0.55 for
0.2 s of flow time.

Figure 14c further shows that the shear rate distribution within one time step, here
exemplarily for t = 0.02 s, was much more diverse. Instead of a strongly skewed log-
normal distribution for a fast-flowing, low-packed cement paste, the shear rate distribution
became chaotic once a cementitious paste was tested that diverged from low, shear-thinning
viscosities. In Figure 15, the same comparison is given for the cell Reynolds number Rec.
With increasing Φs, Rec decreased strongly as the cell velocity decreased. Again, OPC-0.52
and OPC-0.55 possessed a wider density distribution of Rec compared to OPC-0.45.

The shape plots and density distribution provide insights into the transient flow prop-
erties during the flow of different viscous pastes. Cementitious pastes with low viscosity
quickly approached the final slump flow radius, with the velocity gradient predominantly
directed toward the outermost region of the paste. In contrast, the flow occurred more
slowly in pastes with a higher solid volume fraction Φs, and consequently, a higher ap-
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parent viscosity η. In such cases, a wide range of flow states became apparent across the
flow body.

(a) (b)

(c)

2 × 100

1 × 100

8 × 10−1

4 × 10−1

0

4 × 10−1

3 × 10−1

2 × 10−1

9 × 10−2

0

3 × 10−1

2 × 10−1

1 × 10−1

7 × 10−2

0

Figure 15. Comparative distribution of the cell Reynolds number for (a) OPC-0.45, (b) OPC-0.52, and
(c) OPC-0.55 for 0.2 s of flow.

5. Conclusions

The study reveals critical insights into the influence of the numerical setup on the ac-
curacy of simulating viscous cementitious paste slump flow, and followed by this, transient
flow phenomena of different viscous pastes. The main conclusions are:

• The convergence study showed a significant combined spatial and temporal discretiza-
tion effect on the final flow result. Co < 0.1 provided numerical errors at around 4%
compared to real-life scenarios.

• The slice model provided a high numerical accuracy at Co ≤ 0.08 with errors ex < 4%.
The spatial-temporal refinement, however, affected the numerical result more than the
cone geometry.

• Regularization affected the numerical slump flow radius. The bi-viscous regulariza-
tion led to varying numerical results depending on η0. The Papanastasiou regular-
ization led to a decreased effect of numerical regularization on the final flow result
at m ≥ 1000. A final question is posed: Is it meaningful for all cementitious pastes
to fix regularization parameters at a high value to decrease their effect on the final
slump flow radius? Or could the regularization parameters present the real rheologi-
cal behavior approaching resting conditions? The choice of high η0 or high m seems
feasible to not manipulate the Herschel–Bulkley model. However, adapted rheological
models that specify rheological paste properties at slow flow, in combination with
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mathematical regularization methods, could lead to simulation results that depict flow
phenomena that are physically correct.

• The analysis of transient flow patterns in the two-dimensional slump shape revealed
the wide range of rheological properties during a single time step. This aids in
understanding the non-Newtonian flow behavior of cementitious pastes and enables
the analysis of time-dependent rheological phenomena.

To summarize, the findings serve as a basis for further rheological parameter studies
and to investigate the slow flow phenomena of cementitious pastes more closely. Since the
apparent viscosity is affected by the shear rate, cementitious paste exhibits varying viscosity
values across its shape. This aspect becomes significant when investigating time-dependent
flow cases and the impact of rheological parameters on the evolution of transient flow.

Further studies could develop distinct characteristic numbers to describe the non-
Newtonian flow evolution. The time-dependent shape analysis could relate low Reynolds
numbers to viscous flow effects. While the experimental slump flow test has been an
efficient method to characterize the rheological properties of cementitious pastes, the
presented CFD setup also provides a numerical slump flow test that supports the eval-
uation of transient paste properties. This method of investigation can be upscaled to
real cement and concrete flow processing computations, such as the time-dependent flow
of Self-Compacting concrete (SCC), the analysis of highly viscous flow of Ultra-High-
Performance Concrete (UHPC) and the investigation of transient properties of various
concretes with strongly differing non-Newtonian behavior during mixing and pumping.
Computational modeling then can help to target flow properties and optimize the process-
ing setup. Prospectively, the effect of time- and shear-rate-dependent thixotropy and other
rheological models on the flow evolution of cementitious paste and building materials will
be investigated. Accurate CFD modeling, incorporating extended rheological models, will
finally enhance our understanding of the transient non-Newtonian flow of cementitious
building materials beyond what was previously possible.
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