SLM Magnesium Alloy Micro-Arc Oxidation Coating
Abstract
:1. Introduction
2. Experiment
2.1. Sample Preparation
2.2. Characterization and Performance Testing of the Micro-Arc Oxidation (MAO) Coating
3. Results and Discussion
3.1. SLM Sample Analysis
3.2. Analysis of the Surface Micromorphology of the Film
3.3. Surface Micromorphology Analysis of the Film Layer
3.4. Phase Composition of the Film
3.5. Analysis of Wetting Angle of Micro-Arc Oxide Film Layer
3.6. Analysis of Corrosion Resistance of Micro-Arc Oxide Coating
3.7. AFM Analysis of Micro-Arc Oxide Coatings
4. Summary
- (1)
- The SLM magnesium alloy exhibits surface porosity defects ranging from 2% to 3.2%, which significantly influence the morphology and functionality of the resulting film layer formed during the micro-arc oxidation process. These defects manifest as pores on the surface, leading to an uneven distribution of micropores with varying sizes across the layer. The surface roughness of the micro-arc oxidation (MAO) film layer on the 3D-printed magnesium alloy exhibits a higher roughness of 180 nanometers. The presence of unfused pores and unmelted powder particles on the SLM magnesium alloy’s surface results in the formation of small discharge channels on the powder particles, consequently producing micro-pores with reduced diameters. This phenomenon results in an uneven distribution of micro-pores and a variation in pore sizes within the MAO film layer of the SLM magnesium alloy.
- (2)
- The film’s composition is predominantly magnesium oxide (MgO) and magnesium phosphate (Mg3(PO4)2). The film’s higher concentration of magnesium (Mg) and oxygen (O) elements, in contrast with the lower phosphorus (P) content, indicates that MgO is the predominant phase. The increased P content on the film’s surface relative to its interior implies that Mg3(PO4)2 formation predominantly occurs on the film’s surface.
- (3)
- The application of the micro-arc oxidation technique enhances the hydrophilicity of SLM-fabricated magnesium alloys, thereby potentially conferring bioactivity. Post-MAO treatment, both the corrosion resistance and surface roughness of the SLM magnesium alloy are significantly improved. Nonetheless, the existence of certain defects within the SLM magnesium alloy samples adversely affects the enhancement of corrosion resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, D.H.; Dean, D.; Luo, A.A. Mechanical and corrosion properties of full liquid phase sintered WE43 magnesium alloy specimens fabricated via binder jetting additive manufacturing. J. Magnes. Alloys 2024, 12, 2711–2724. [Google Scholar] [CrossRef]
- Chen, F.; Cai, X.; Dong, B.; Lin, S. Effect of gas protection on form and microstructure of wire arc additive manufactured WE43 magnesium alloy. Mater. Lett. 2024, 367, 136639. [Google Scholar] [CrossRef]
- Wehmöller, M.; Warnke, P.H.; Zilian, C.; Eufinger, H. Implant design and production—A new approach by selective laser melting. Int. Congr. Ser. 2005, 1281, 690–695. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Smurov, I. Surface Morphology in Selective Laser Melting of Metal Powders. Phys. Procedia 2011, 12, 264–270. [Google Scholar] [CrossRef]
- Liang, J.; Lei, Z.; Chen, Y.; Wu, S.; Chen, X.; Jiang, M.; Cao, S. Formability, microstructure, and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy. Mater. Sci. Eng. A 2022, 839, 142858. [Google Scholar] [CrossRef]
- Wang, H. Laser Additive Manufacturing of High-Performance Large Metal Components: Some Material Fundamental Problems. J. Aeronaut. Astronaut. 2014, 35, 2690–2698. [Google Scholar]
- Yuan, G.; Zhang, X.; Niu, G.; Tao, H.; Cheng, D.; He, Y.; Jiang, Y.; Ding, W. Research Progress of Novel Degradable Biomedical Magnesium Alloy JDBM. Chin. J. Nonferrous Met. 2011, 21, 2476–2488. [Google Scholar]
- Sezer, N.; Evis, Z.; Kayhan, S.M.; Tahmasebifar, A.; Koç, M. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloys 2018, 6, 23–43. [Google Scholar] [CrossRef]
- Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 948–963. [Google Scholar] [CrossRef]
- Yue, X.; Shang, J.; Zhang, M.; Hur, B.; Ma, X. Additive manufacturing of high porosity magnesium scaffolds with lattice structure and random structure. Mater. Sci. Eng. A 2022, 859, 144167. [Google Scholar] [CrossRef]
- Yao, W.; Wu, L.; Wang, J.; Jiang, B.; Zhang, D.; Serdechnova, M.; Shulha, T.; Blawert, C.; Zheludkevich, M.L.; Pan, F. Micro-arc oxidation of magnesium alloys: A review. J. Mater. Sci. Technol. 2022, 118, 158–180. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, W.; Huang, H.; Chang, W.; Zhang, S.; Zhang, R.; Zhao, R.; Zhang, Y. Investigation of corrosion resistance and formation mechanism of calcium-containing coatings on AZ31B magnesium alloy. Appl. Surf. Sci. 2019, 487, 581–592. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, H.; Hou, P.; Ni, J.; Han, P.; Zhang, X. Enhanced corrosion resistance and antibacterial property of Zn doped DCPD coating on biodegradable Mg. Mater. Lett. 2016, 180, 42–46. [Google Scholar] [CrossRef]
- Amaravathy, P.; Kumar, T.S.S. Bioactivity enhancement by Sr doped Zn-Ca-P coatings on biomedical magnesium alloy. J. Magnes. Alloys 2019, 7, 584–596. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Deng, Z.; Chen, Y.; Yu, Q.; Tang, W.; Sun, T.L.; Zhang, Y.S.; Yue, K. Tough Bonding, On-Demand Debonding, and Facile Rebonding between Hydrogels and Diverse Metal Surfaces. Adv. Mater. 2019, 31, e1904732. [Google Scholar] [CrossRef]
- Tang, H.; Han, Y.; Wu, T.; Tao, W.; Jian, X.; Wu, Y.; Xu, F. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation. Appl. Surf. Sci. 2017, 400, 391–404. [Google Scholar] [CrossRef]
- Ghafarzadeh, M.; Kharaziha, M.; Atapour, M. Bilayer micro-arc oxidation-poly (glycerol sebacate) coating on AZ91 for improved corrosion resistance and biological activity. Prog. Org. Coat. 2021, 161, 106495. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Ibrahim, M.; Etim, I.P.; Tan, L.; Yang, K. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy. Colloids Surf. B Biointerfaces 2019, 179, 77–86. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, Y.; Fan, Z.; Zhang, J.; Yin, Y.; Zhang, M.X. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy. J. Mater. Sci. Technol. 2020, 58, 34–45. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Wei, K.; Wang, Z.; Zeng, X. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Mater. Lett. 2015, 156, 187–190. [Google Scholar] [CrossRef]
- Liu, S.; Qi, Y.; Peng, Z.; Liang, J. Growth process and corrosion protection properties of micro-arc oxide film of magnesium alloy in different electrolytes. J. Chin. Ceram. Soc. 2021, 49, 1213–1221. [Google Scholar]
- van Hengel, I.A.; Riool, M.; Fratila-Apachitei, L.E.; Witte-Bouma, J.; Farrell, E.; Zadpoor, A.A.; Zaat, S.A.J.; Apachitei, I. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation. Data Brief 2017, 13, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Raja, V.S.; Blawert, C.; Dietzel, W.; Kainer, K.U. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings. Surf. Coat. Technol. 2010, 204, 1469–1478. [Google Scholar] [CrossRef]
- Chen, H.; Lv, G.; Zhang, G.; Pang, H.; Wang, X.; Lee, H.; Yang, S. Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives. Surf. Coat. Technol. 2010, 205, S32–S35. [Google Scholar] [CrossRef]
- Ma, X. Preparation and Characterization of Micro-Arc Electrophoresis Corrosion Resistant Layer and Silver-Loaded Antibacterial Layer on the Surface of Magnesium Alloy; Zhengzhou University: Zhengzhou, China, 2014. [Google Scholar]
Numbering | Reagent | Content | Purity |
---|---|---|---|
1 | NaCl | 8.035 g | 99.5% |
2 | NaHCO3 | 0.355 g | 99.5% |
3 | KCl | 0.225 g | 99.5% |
4 | K2HPO4·3H2O | 0.231 g | 99.0% |
5 | MgCl2·6H2O | 0.311 g | 98.0% |
6 | HCl | 39.0 mL | — |
7 | CaCl2 | 0.292 g | 95.0% |
8 | Na2SO4 | 0.072 g | 99.0% |
9 | Tris | 6.118 g | 99.0% |
10 | HCl | 0~5 mL | — |
Sample | /V | /(A·cm2) | /(Ω·cm2) |
---|---|---|---|
SLM | −1.37 | 4.08 × 10−4 | 3.80 × 102 |
SLM-MAO | −1.25 | 1.61 × 10−4 | 6.09 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Xu, K.; Wang, S.; Liu, H.; Guo, S.; Zhao, R.; Xu, G.; Wang, H.; Yue, X. SLM Magnesium Alloy Micro-Arc Oxidation Coating. Materials 2024, 17, 4988. https://doi.org/10.3390/ma17204988
Yue X, Xu K, Wang S, Liu H, Guo S, Zhao R, Xu G, Wang H, Yue X. SLM Magnesium Alloy Micro-Arc Oxidation Coating. Materials. 2024; 17(20):4988. https://doi.org/10.3390/ma17204988
Chicago/Turabian StyleYue, Xuejie, Kangning Xu, Shuyi Wang, Hengyan Liu, Shiyue Guo, Rusheng Zhao, Gaopeng Xu, Hao Wang, and Xuezheng Yue. 2024. "SLM Magnesium Alloy Micro-Arc Oxidation Coating" Materials 17, no. 20: 4988. https://doi.org/10.3390/ma17204988
APA StyleYue, X., Xu, K., Wang, S., Liu, H., Guo, S., Zhao, R., Xu, G., Wang, H., & Yue, X. (2024). SLM Magnesium Alloy Micro-Arc Oxidation Coating. Materials, 17(20), 4988. https://doi.org/10.3390/ma17204988