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Abstract: We propose a nonlinear stress–strain law to describe nonlinear elastic properties of bi-
ological tissues using an analogy with the derivation of nonlinear constitutive laws for cracked
rocks. The derivation of such a constitutive equation has been stimulated by the recently developed
experimental technique—quasistatic Compression Optical Coherence Elastography (C-OCE). C-OCE
enables obtaining nonlinear stress–strain dependences relating the applied uniaxial compressive
stress and the axial component of the resultant strain in the tissue. To adequately describe nonlinear
stress–strain dependences obtained with C-OCE for various tissues, the central idea is that, by analogy
with geophysics, nonlinear elastic response of tissues is mostly determined by the histologically
confirmed presence of interstitial gaps/pores resembling cracks in rocks. For the latter, the nonlinear
elastic response is mostly determined by elastic properties of narrow cracks that are highly compli-
ant and can easily be closed by applied compressing stress. The smaller the aspect ratio of such a
gap/crack, the smaller the stress required to close it. Upon reaching sufficiently high compressive
stress, almost all such gaps become closed, so that with further increase in the compressive stress, the
elastic response of the tissue becomes nearly linear and is determined by the Young’s modulus of
the host tissue. The form of such a nonlinear dependence is determined by the distribution of the
cracks/gaps over closing pressures; for describing this process, an analogy with geophysics is also
used. After presenting the derivation of the proposed nonlinear law, we demonstrate that it enables
surprisingly good fitting of experimental stress–strain curves obtained with C-OCE for a broad range
of various tissues. Unlike empirical fitting, each of the fitting parameters in the proposed law has a
clear physical meaning. The linear and nonlinear elastic parameters extracted using this law have
already demonstrated high diagnostic value, e.g., for differentiating various types of cancerous and
noncancerous tissues.

Keywords: optical coherence elastography; nonlinear elasticity; stress–strain law; biomechanics

1. Introduction

The high diagnostic value of mechanical properties of biological tissues has become
widely appreciated and confirmed by numerous experimental demonstrations. The experi-
mental techniques for studying tissue biomechanics use various principles and allow for
studying a broad range of spatial scales starting from subcellular level to entire macroscopic
organs. Some of these methods may be better suited for highly controllable laboratory
measurements. For example, Atomic Force Microscopy (AFM) enables a very high subcel-
lular resolution to study the mechanical properties of individual cells and organelles [1,2].
However, AFM is not suitable for studying elastic properties of tissue areas on scales
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corresponding to groups of cells and, moreover, on larger scales. There is a family of
macroscopic methods, for example, indentation-based ones [3], which give information
about tissue elasticity on a scale of several millimeters and even larger. Similar and even
greater macroscopic scales are characterized in tensile mechanical tests, e.g., [4,5] which
usually require rather special preparation procedures (e.g., fabrication of samples with a
special “dog-bone” shape).

There are also known macroscopic elastographic techniques based on ultrasound (US)
and magnetic resonance imaging (MRI), which enable spatially resolved characterization of
tissue elasticity [6,7]. In contrast to these indentation-based methods and tensile tests, the
US-based and MRI-based elastographic techniques are mostly intended for in vivo applica-
tions. Presently, US elastography (USE) has become routinely used in clinic applications
and has proven its high utility for detection and visualization of tumors, most notably for
breast cancer diagnostics in patients [8–10].

In view of this, USE methods are probably the most widely known and are presently
implemented in various medical ultrasound platforms. Two main approaches utilizing es-
sentially different principles can be pointed out among USE methods. One approach [11,12]
comprises wave-based methods in which the shear modulus G is estimated by measuring
the velocity of fairly slow shear/surface waves. The shear waves are excited using auxiliary
focused beams of ultrasound characterized by much greater propagation velocity and the
shear-wave propagation is also visualized ultrasonically. This approach, for example, has
found widespread application in the diagnosis of chronic liver diseases [13,14]. Another
group of USE methods utilizes the so-called compression principle proposed even earlier
than the wave-based USE [8]. Compression USE is based on visualization of quasistatic
strains produced in the tissue by approximately uniaxial stress that occurs in the vicinity
of the ultrasound probe surface acting as a compressing piston. In the framework of the
linear elasticity paradigm, the strains produced by such compression should be inversely
proportional to the Young modulus E. For soft biological tissues with the Poisson’s ratio
ν close to the “liquid” limit ν = 0.5, there is a simple relationship: E = 3G [15]. Thus, for
soft biotissues, moduli E and G give equivalent diagnostic information. However, unlike
quantified shear modulus G enabled by measuring the shear-wave speed in the wave-based
USE, conventional compression USE gives only the relative distribution of modulus E in the
visualized region, which significantly limits the clinical use of qualitative (not quantitative)
compression USE; when assessing the mechanical properties of the lesion, it is necessary to
compare with reference regions of normal tissues [16].

In what follows, we focus on another elastographic technique, termed Optical Coher-
ence Elastography (OCE), which emerged during the recent years. Basic structural scans
in Optical Coherence Tomography (OCT) [17] resemble US scans but enable significantly
higher resolution—several micrometers—although, correspondingly, accompanied by a
smaller visualization depth (up to 1–2 mm) and lateral scan size (typically, several mm).
Presently OCT has become the “gold standard” in ophthalmic visualization because the
resolution of structural OCT fills the gap between high-resolution microscopy and US
visualization [18]. For elasticity characterization, OCE similarly fills the niche between
high-resolution AFM and macroscopic US elastography in terms of the visualized region
size and resolution.

By analogy with USE, OCE methods also develop in two main directions. One is wave-
based OCE in which OCT is applied to visualize auxiliary shear or surface elastic waves,
velocities of which are used to estimate shear modulus G [19]. Another main direction is
compression OCE (C-OCE) in which, similar to compression USE, compression-induced
strains are visualized by analyzing OCT scans. However, instead of correlational tracking
of displacements widely used in compression USE, C-OCE mostly utilizes phase-resolved
strain estimation [20,21]. Furthermore, C-OCE enables quantitative estimation of elasticity
(Young’s modulus) due to utilization of precalibrated linearly elastic reference silicone
layers placed on the sample surface to play the role of optical stress sensors without the
need of additional force sensors [20,22].
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C-OCE also demonstrated its ability to directly obtain nonlinear stress–strain depen-
dences for compressed samples [22,23]. Then, by estimating slopes of the stress–strain
curves, the tangent Young’s modulus can be estimated for a pre-chosen applied stress level,
as described in [24] and demonstrated for nonlinear-elastic tumor tissues [25,26]. Moreover,
even the nonlinearity parameter can be estimated for various levels of applied stress and
strain in the tissue and used for diagnostics [27,28]. These studies demonstrated that the
additional information about tissue nonlinearity may significantly improve differentiation
of tissue types/states, which attracts increasing attention in USE as well [29–33].

Although C-OCE does not reach cellular resolution typical of histological images,
using the revealed differences in the linear and nonlinear elastic properties among var-
ious histological structures, C-OCE enables automated morphological segmentation of
heterogeneous cancerous tissues with a spatial resolution of several tens of microns. The
results of such C-OCE-based segmentation are highly consistent with conventional manual
segmentation of histological slides [25–27,34].

In these C-OCE-based diagnostic procedures, a very important issue is adequate fitting
of initial stress–strain curves reconstructed using C-OCE. To perform fitting of experimental
nonlinear dependences, various nonlinear laws are known from the literature and are
widely used to interpret elastic behavior of various tissues [5]. The form of such empirically
proposed models is often supported by symmetry/invariance considerations, so that
such models are fairly universal, which is simultaneously their strength and weakness.
Indeed, usually these models do not directly reflect microstructural features of tissues,
although this microstructure often is of primary interest for diagnostic conclusions. This
explains why attempts are made to construct models relating elastographic data with
tissue structure [35,36]. However, creation of models based on detailed considerations of
microstructure usually limits their applicability to a rather narrow class of tissues.

Actually, a similar problem of reasonable balance between universality of empirical
models and narrower applicability of particular microstructure-based models arises in
other areas of physics. For example, in rock physics, it has been broadly accepted for
decades (e.g., [37–40]) that the nonlinear elasticity of rocks is essentially determined by
their microstructure, first of all, the presence of narrow, highly compliant cracks in the host
material. Such cracks cause a pronounced decrease in the elastic modulus of rocks. At
the same time, narrow cracks also lead to pronounced elastic nonlinearity of the material
because applied compression gradually closes cracks starting from the most narrow and
simultaneously most compliant ones. As a result, the elastic modulus may pronouncedly
increase with increasing compressive stress and tend toward the value typical for the
homogeneous host material. It is important that, for cracked materials, this pronounced
increase in the modulus value occurs for quite small strains, often on a scale of several
percent and even smaller. Such small strains may seem negligibly small in comparison with
elongations of soft biological tissues in tensile tests, which are often used to understand
nonlinear biomechanical properties. In the models used for interpretation of tensile tests,
the deformation is usually characterized in terms of tissue elongation with respect to its
initial state and, for soft biotissues studied in such experiments, the elongations often
reach tens of percent and greater (e.g., [5,41]). Correspondingly, at such large deformations,
even purely geometrical factors (unrelated to tissue microstructure) give an important
contribution to the observed tissue nonlinearity (see, e.g., classical book of Fung [42]).

At the same time, results of independent indentation/compression experiments re-
lated to studying nonlinear behavior of biotissues (e.g., [3,22,23,27]) indicate that many
tissues demonstrate a pronounced (up to several times and greater) increase in the elastic
modulus for quite moderate compressive strains, 1–10%, whereas soft polymers often
used as biotissue phantoms do not exhibit similar pronounced nonlinearity in this strain
range. The abovementioned results for biotissues qualitatively are very similar to the
compression dependence of elastic moduli for cracked rocks. This fact suggests that such
similarity of nonlinear-elastic behaviors of rocks and biotissues may be caused by similar
structural features.
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In what follows, we first recall the principles of quantitative C-OCE. Up until now,
this technique has been discussed exclusively in publications related to the development
of biophotonics techniques and their applications to biomedical diagnostics, for which
C-OCE-based assessment of nonlinear elasticity has proven its very high usefulness. Then,
we present experimentally supported arguments that, using analogies with rock physics,
the nonlinear elastic properties of biotissues observed by C-OCE in compression tests can
be explained by compression-produced closing of narrow interstitial gaps/pores. Using
this idea, we propose a formulation of nonlinear stress–strain law by analogy with models
of cracked rocks and demonstrate that the derived stress–strain relationship enables very
good fitting of data for quite diverse tissues. Furthermore, we demonstrate that the
proposed stress–strain law allows for obtaining some quantified conclusions about tissue
microstructure that is not directly resolved in OCT images, but in certain cases reasonably
agrees with the high-resolution histological images. The proposed stress–strain law has
already proven to be very useful for fitting experimental data. The subsequent analysis of
the fitted stress–strain curves allows for formulation of efficient diagnostic criteria in terms
of linear and nonlinear elastic parameters of biotissues, which in turn enables automated
segmentation of C-OCE scans that demonstrates a striking similarity with conventional
segmentation of histological images.

Thus, in Section 2.1 that follows, we first briefly recall the principles of obtaining
nonlinear stress–strain curves in the recently developed phase-sensitive compression OCE.
Then, in Section 2.2, we present as background some experimentally supported arguments,
in which we derive a nonlinear stress–strain law for biotissues by analogy with models of
cracked rocks in geophysics. Finally, in Section 3, the efficiency of the proposed law for
fitting C-OCE-based experimental data obtained for a broad range of various biological
tissues is demonstrated.

2. Materials and Methods
2.1. Acquiring Experimental Nonlinear Stress–Strain Curves Using C-OCE

Unlike correlational displacement tracking widely used in USE for subsequent strain
estimation, in C-OCE, phase-resolved analysis of initial complex-valued structural OCT
scans is mostly used. Details of formation of OCT signals based on principles of low-
coherence interferometry can be found in review [43]. For the present consideration, it
is sufficient to point out that each pixel in the structural OCT scan is characterized by its
amplitude and phase. The typical distance between neighboring pixel centers in the axial
and lateral direction is several micrometers. Schematically, the typical configuration of an
OCT probe contacting with the studied tissue through the reference layer of translucent
silicone required for elasticity quantification is shown in Figure 1a. The other images
correspond to an actual breast cancer sample similar to those characterized by C-OCE in
studies [25,27] with histological confirmation. An example of a typical 2D OCT scan is
shown in Figure 1b (as an intensity image in dB scale). Figure 1c shows the color-coded
phase difference between the subsequently acquired OCT scans of the tissue compressed
by the output glass of the OCT probe.

Axial displacements U of scattering particles in a medium with fairly uniform distri-
bution of the refractive index n are connected with the interscan phase variations Φ by a
well-known relationship:

U =
λ0Φ
4πn

(1)

where λ0 is the central optical wavelength of the OCT source in vacuum. Therefore, the
interscan axial strain s = dU/dz is readily found as the axial gradient of the interscan
phase variation:

s =
λ0

4πn
∂Φ
∂z

(2)

The axial strain distribution corresponding to the interscan phase difference in Figure 1c
is shown in Figure 1d. In practice, the numerical differentiation in Equation (2) can be
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performed, e.g., using the least-square estimation of Φ(z)-slope [44], which requires phase
unwrapping for wrapped phase-variation maps similar to the one shown in Figure 1c.
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Figure 1. Principle of OCT-based strain visualization and utilization of reference layers of elastically
linear silicone for obtaining stress–strain dependences of biological tissues: (a)—measurement config-
uration; (b)—structural OCT scan; (c)—color-coded interframe phase difference; (d)—reconstructed
axial-strain map; (e)—stress–strain curves for regions marked 1 and 2 in panel (d) (dashed lines for
experiment and solid ones for fitting); (f,g)—derived dependences of the Young’s modulus on strain
and stress, respectively; (h–j)—distributions of the tangent Young’s modulus plotted for three differ-
ent pre-chosen levels of applied stress to demonstrate significant modification of stiffness distribution
caused by the tissue nonlinearity. The strong difference between the stress–strain curves obtained for
a breast cancer sample in locations 1 and 2, shown in (d), is due to the fact that point 1 is close to the
center of a stiff and strongly nonlinear agglomerate of cancer cells, whereas point 2 belongs to the
peritumoral zone that has significantly lower stiffness and weaker elastic nonlinearity.

Alternatively to the least-square fitting, the so-called “vector” approach can be applied,
which does not need phase unwrapping [45,46]. The name “vector” reflects the fact that this
method operates with complex-valued quantities as vectors in the complex plane without
singling out the phase until the very last stage. An important advantage of this method is
that it enables estimation of local phase-variation gradients, for which the wrapping-related
ambiguity of total phase variation is not important.

It should be noted that the applicability of Equation (2) based on pixel-to-pixel com-
parison of two OCT scans is limited to interframe strain below ~1–2% (since larger strains
cause excessive decorrelation of the compared scans). Nevertheless, the phase approach
enables estimation of much larger cumulative strains S up to several tens of percent.
Such strains can be evaluated via summation of incremental interframe strains found via
Equation (2) [47]:

S = ∑
i

si (3)

When the strain-induced displacements reach suprapixel magnitudes, tracking of
displaced particles may be required for correct estimation of local stiffness [48]. In such a
way, quantitative strain can be correctly mapped in both homogeneous reference silicone
and mechanically inhomogeneous tissue.

The next key step in the described C-OCE technique is acquiring stress–strain curves
using the reconstructed interscan strain distributions and their summation. In this context,
it is of key importance to emphasize that the reference silicone is elastically highly linear.
More specifically, the term “linear” means that if the silicone layer is strained by a small
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incremental strain ds, the developed incremental stress dσ is given by dσ = Esilds, where
Young’s modulus Esil of the silicone remains invariable (Esil = const.) independent of
the current cumulative strain of the silicone layer. This linearity can readily be verified
experimentally by compressing a sandwich of silicones with strongly different Young’s
moduli. The sandwich layers experience the same applied stress, but the resulting cumula-
tive strain given by Equation (3) is very different for these layers. If the layers are elastically
linear, i.e., their Young’s moduli are invariable, the cumulative strain in one layer and
another layer with a strongly different modulus should remain linearly proportional. The
performed experiments confirmed this expectation for such silicone layers with contrasting
stiffness. With good accuracy, the two cumulative strains exhibited linear proportionality
up to S ∼ 50–70% in one layer, whereas in the other layer the strain was much smaller, for
example, S ∼ 5–10% [22,47].

Consequently, the current stress in silicone (applied to the underlying tissue) can be
readily estimated via cumulative strain in the reference silicone:

σ = ∑
i

dσi = Esil∑
i

si = Esil · S (4)

Then, plotting cumulative strain in the pre-calibrated silicone recalculated to stress via
Equation (4) against cumulative strain in the underlying tissue, one obtains the stress–strain
relationship for the tissue. Examples of the stress–strain curves determined for an actual
breast cancer sample are shown in Figure 1e as the dashed curves. The latter correspond
to regions marked by labels 1 and 2 in the strain map shown in Figure 1d. Although
formally such stress–strain curves can be plotted for every pixel in the tissue, for improving
the signal-to-noise ratio, the strains are estimated with averaging over rectangular areas
of ~80–100 µm in size, which determines the resolution in elastographic maps similar to
Figure 1d.

It is clear that the stress–strain curves in Figure 1e exhibit pronounced nonlinearity,
which is a rule for most biotissues rather than an exception. The tangent Young’s modulus
Etg = dσ/ds for the tissue, i.e., the slope of the stress–strain curve is, therefore, pro-
nouncedly dependent on current stress and strain in the tissue. The solid lines in Figure 1e
show the fitting curves, which can be readily differentiated to evaluate the tangent Young’s
modulus Etg as a function of the current stress and corresponding strain in the tissue. The
Young’s modulus also demonstrates pronounced dependence on stress and strain. The
next derivative β = dEtg/dσ is dimensionless and has the meaning of a local quadratic
nonlinear parameter corresponding to the current stress (or strain). These curves for the
nonlinearity parameter β are shown in Figure 1g. Finally, Figure 1h–j show the spatially
resolved maps for the tangent modulus Etg in the tissue estimated for three “standardized”
stress levels: 1 kPa, 5 kPa and 10 kPa.

We point out that initial strain maps (as shown in Figure 1d) are characterized by
pronounced spatial inhomogeneity of stress within the visualized area. This stress inhomo-
geneity is caused by combined influence of nonideally uniform thickness of the silicone,
nonideally planar surface of the tissue and inhomogeneity of its mechanical properties.
This inhomogeneity causes uncontrollable variability of the tangent modulus for the exam-
ined nonlinear tissues, so that for meaningful and reproducible comparison of the tangent
Young’s modulus Etg = E(σ), the latter should be estimated for a “standardized” stress σ
using a series of OCT scans of the compressed tissue (see details in [24]). These maps of
Etg in Figure 1h–j clearly demonstrate that the tissue nonlinearity causes strong variations
in the Young’s modulus values and strongly affects the geometrical shape of the stiffest
region corresponding to the tumorous tissue. Consequently, to differentiate morphological
components of the tissue, the threshold values Eth(σ) of the Young’s modulus should be
determined for a specific “standardized” stress level using comparison of C-OCE maps
with the corresponding histological images [25,27,28]. After determining the characteristic
ranges of Eth, the C-OCE images can be automatically segmented, demonstrating a very
high correlation with manually performed morphological segmentation of histological
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images [26]. However, it was found that in some cases the use of tangent Young’s moduli
may be insufficient to reliably differentiate various tissue components. In such cases, the
simultaneous usage of the Young’s modulus and nonlinearity parameter can be helpful
(see details in refs. [27,28]).

The description of C-OCE principles and examples of their application to real biotis-
sues presented above clearly demonstrate that utilization of the linear-elasticity paradigm
is strongly insufficient. Even for apparently small compressive strains, about a few percent,
the tangent (current) Young’s modulus may vary several times. This is not typical of
tensile tests, where comparably strong manifestations of nonlinearity are often observed
for elongations of tens and even hundreds of percent. The examples presented above also
demonstrate that estimations of slopes of experimental dependences are very important, so
that utilization of adequate fitting laws can be very helpful. In the next section, we describe
such a dependence, the formulation of which was initially inspired by the C-OCE results
obtained for a special case of tissue containing narrow, crack-like pores, but afterward the
derived stress–strain law demonstrated a surprisingly good quality of fitting for a rather
broad range of various biotissues.

2.2. Derivation of Stress–Strain Law Describing Elastic Nonlinearity of Tissues Containing Highly
Compliant Gaps/Pores

Despite quite a broad range of earlier proposed constitutive laws for biotissues, e.g.,
those used in [5,23], it was not easy to choose a variant, in which several features typical
of nonlinear responses observed with C-OCE would be clearly caught, allowing for a
physically meaningful interpretation of the fitting parameters. In particular, this relates to
C-OCE examinations of such samples as corneal tissues characterized by the clear presence
of collagenous layers with a rather high Young’s modulus in the MPa range typical of
collagen fibrils and bundles (which is known from AFM results, e.g., [49–51]). At the same
time, corneal tissue examined using C-OCE demonstrated the macroscopic modulus in the
order of tens of kPa at the very beginning of compression and rapid increase toward MPa
range for quite moderate compressive strains, ~5–7% [48]. These observations suggested
that narrow gaps/pores occurring between stiff collagen layers could be closed by the
applied compressive stress, leading to a strong increase in the elastic modulus.

Geophysicists long ago realized that even a fairly small volume content of narrow
pores/cracks may strongly reduce the elastic modulus of rocks, and may cause its pro-
nounced dependence on the applied stress. Indeed, a crack with diameter D and opening h
with a small aspect ratio

α ∼ h/D << 1 (5)

occupies the actual volume ~D2h; however, such a crack releases the elastic energy of a
strained material in the much larger volume ~D3. Thus, their influence on the material
modulus may be very pronounced, comparable with the influence of spheroidal pores of
the same diameter D. Each of these pores occupies volume ∼ D3 that is much larger than
the volume of narrow cracks with the same D.

For the uniaxial stress considered typical for C-OCE examinations, it is important that
such narrow pores are easily closed by the normal component of the applied compres-
sive stress

σclos ∼ αEm (6)

where Em is the elastic modulus of the matrix material [38]. Consequently, to completely
close such a pore, it is sufficient to create in the material an average strain

sclos ∼ α << 1 (7)

Here, possible factors near the order of unity are omitted, so that independent of the
fine geometric details of thin cracks, this statement can be considered as a rule of thumb [52].
For cracks in rigid rocks, aspect ratios are very small (often < 10−3. . . 10−4, [53]). Although
the criteria for crack-closing strains and stress were reliably formulated theoretically long
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ago [38,52], to the best of our knowledge, there has not been direct visualization of crack
closure during material straining.

In this context, it is interesting that the OCT visualization described in the previous
section opens the possibility to directly visualize stress-produced closing of crack-like
delaminations in soft biotissues. Such an example is demonstrated in Figure 2 for a
pericardium sample (pericardium samples are discussed in more detail in Section 3.2).
The sample discussed here was dried and then again impregnated by saline solution. The
drying evidently induced crack-like delaminations between pericardium layers visible in
the OCT images. One of these crack-like defects is shown in Figure 2. It is worth noting
that during the applied quasistatic loading, the saturated liquid was easily squeezed out
from the crack to the surrounding tissue and did not impede closing of the crack as if it
were a dry crack.

In the initial state (Figure 2a), the crack-like defect is open with aspect ratio α ∼ 0.1.
During compression loading, the defect demonstrated gradual closing down to virtually
complete closure, as shown in Figure 2b. By reaching this state, the closing strain sclos esti-
mated in the host material within the rectangle area indicated in Figure 2a,b corresponded
to the value sclos ∼ α ∼ 0.1, in agreement with Equation (7).
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Figure 2. OCT visualization of closing of a narrow crack-like defect (with the position marked by
ellipse) in a sample of pericardium. Panel (a) is the structural image in the initial open state of
a crack-like defect with α ∼ 0.1; (b) is the image corresponding to the moment when the defect
becomes visually closed and when the strain in the tissue estimated within the white rectangle
attains sclos ∼ α ∼ 0.1; (c) is the map of cumulative strain up to the moment of the defect closure,
demonstrating that in the vicinity of the crack interface the tissue remained uncompressed until the
closure; (d) stress–strain dependence obtained aside the defect (region marked by the rectangle), the
slope of which indicates that Em ∼ 200 kPa. The visual closure of the crack shown in (b) occurs for
σclos ∼ 20 kPa, in agreement with Equation (6) for α ∼ 0.1.

Comparison with strain in the pre-calibrated reference silicone indicated that the
Young’s modulus Em in the matrix (host) pericardium was Em ∼ 200 kPa, whereas the
crack became closed already for applied stress σclos ∼ 20 kPa, corresponding to the strain
in the matrix tissue sclos ∼ 0.1 (which agrees with Equations (6) and (7), bearing in mind
that α ∼ 0.1). Indeed, the stress–strain curve in Figure 2d is obtained outside the crack-like
defect for the sample region marked by the rectangle in Figure 1a–c, where the material is
fairly homogeneous and linear. The measured tissue strain in this region for the moment of
closing is sclos ∼ 0.1. For the crack with initial aspect ratio α ∼ 0.1, this strain agrees the
theoretical expectation (Equation (7)). At the same time, the slope of the stress–strain curve
in Figure 2d indicates that the Young’s modulus of the matrix is Em ∼ 200 kPa, whereas
much smaller stress σclos ∼ 20 kPa causes the crack to close, which is in agreement with
Equation (6).

In other words, one can say that narrow crack-like gaps with α << 1 act as high
compliant (soft) inclusions that experience 100% straining when the compressed host
material experiences only fairly small strain s ∼ α << 1. In view of this, such cracks
can also be considered as effective soft inclusions with a strongly reduced effective elastic
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modulus Eincl = ςEm << Em, for which comparison with Equations (1) and (3) indicates
that the compliance parameter ς for such inclusions is

ς ∼ α ∼ sclos (8)

Considering an elastic matrix with modulus Em containing arbitrary (but identical)
soft inclusions characterized by reduced modulus Eincl = ςEm with the total volumetric
content υt per unit volume, very simple considerations of accumulated elastic energy yield
the following expression for the effective reduced modulus Ee f f for such a heterogeneous
material [54]:

Em

Ee f f
= 1 +

υt

ς
(9)

For example, if the role of such soft inclusions is played by conventionally discussed
narrow cracks, then according to Equations (5) and (6) the compliance parameter is ς ∼
h/D, whereas the volume of one crack is approximately hD2. Thus, for crack concentration
ncr, their volumetric content per unit volume in Equation (9) is υt ∼ ncrhD2. Equation (9)
then yields

Em

Ee f f
∼ 1 + ncrD3 (10)

With an accuracy by a factor near the order of unity before ncrD3, this expression
agrees with the results of many authors for elasticity of cracked materials (e.g., [37,55,56]).
Such accuracy is sufficient for the following consideration.

Certainly, in real material (either rocks or biological tissues), narrow pores/cracks
are not identical in their parameters. They are characterized by a distribution υ(ς) over
their compliance parameters and aspect ratios α ∼ ς and, correspondingly, over closure
stresses σclos, which is related to α by Equation (6). Bearing this in mind, in the case of
inclusions characterized by a distribution υ(ς) over their compliance parameters instead of
Equation (9), one can write

Em

Ee f f
= 1 +

∫ ςmax

ςmin

υ(ς)

ς
dς (11)

Here, function υ(ς) is dimensionless with normalization to the total volumetric content
per unit volume υt of all crack-like defects:∫

υ(ς)dς =υt (12)

In terms of υt given by Equation (12) for nonidentical inclusions and the corresponding
average (characteristic) value of the aspect ratio αav and compliance parameter ςav of the
crack-like defects (with αav ∼ ςav according to Equation (8)), Equation (11) can be rewritten
in the following form similar to Equation (9) for identical defects:

Em

Ee f f
= 1 +

υt

ςav
(13)

In Equation (13), according to Equations (11) and (12), the average compliance param-
eter ςav is defined as 1/ςav = υ−1

t ·
∫ ςmax

ςmin
[υ(ς)/ς]dς.

The utility of Equation (9) and its counterpart (13) for real nonidentical defects was
demonstrated in study [57] for estimating the characteristic (average) aspect ratio αav ∼ ςav
of narrow crack-like pores (gaps) arising among collagen layers in samples of collagenous
tissues—rabbit cornea and costal porcine cartilage. These samples were subjected to mod-
erate pulse-periodic heating (up to 55–65 ◦C) by infrared laser irradiation, which caused
breaking of some intermolecular links and formation of narrow interstitial gaps that could
be histologically visualized. Such laser heating is used in emerging biologically nonde-
structive methods for reshaping cartilage samples used in the fabrication of cartilaginous
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implants and corneal refraction correction [58–60]. The visualization of thermal strains
caused by laser heating in study [57] was monitored using the OCE method described in
Section 2.1. The layers of collagen in the corneal and cartilaginous samples were oriented
orthogonally to the OCT beam. Thus, the OCE monitoring made it possible to estimate the
heating-induced axial cumulative strain caused by the formation of interlayer gaps. In other
words, it was possible to evaluate specific content υt of post-heating laser-induced narrow
pores (interstitial gaps) that were induced among the collagenous layers. This estimation of
υt was then combined with C-OCE estimation of the complementary post-heating modulus
reduction in the irradiated area in comparison with the modulus in the surrounding nonir-
radiated regions. In these modulus estimations, delicate compression was applied to the
samples through the reference silicone layer. The compression-induced strains in the tissue
were <1%. Thus, the ratio Em/Ee f f of the moduli was estimated for nonirradiated (Em)
and irradiated areas (Ee f f ). The ratio Em/Ee f f corresponding to the modulus reduction
induced by the appearance of the soft crack-like pores was quite significant, up to 2–3 times
for fairly small υt, in the order of several percent [57]. The two independently estimated
parameters υt and Em/Ee f f could be substituted in Equation (13) to estimate the average
compliance parameter and aspect ratio of the laser-induced narrow pores αav ∼ ςav. Thus,
it was found that αav ∼ ςav ∼ 1/30 . . . 1/20. The structural OCT images did not allow
for direct verification of these conclusions because the laser-induced pores were not yet
resolved, unlike the fairly large crack-like pore shown in Figure 2. However, the OCE-
based conclusions in study [57] were corroborated by high-resolution histological images
of corneal samples The histology directly demonstrated the appearance of such crack-like
pores in irradiated samples and their absence in nonirradiated samples.

Now, after demonstrating utility of the idea about the role of narrow pores in biotissues
in the elastic-modulus reduction observed in the small strain range (i.e., a fairly linear
regime for the matrix material), one may derive the expected form of nonlinear stress–
strain dependences. Recall that narrow cracks should be gradually closed by increasing
compression strain. It is clear that such increasing tissue compression initially affects the
most compliant narrowest pores. In other words, with increasing compression the lower
limit ςmin in Integral (11) shifts toward larger values. In contrast, the stiffest pores are not
yet affected. Therefore, the upper limit in Integral (11) remains unaffected (and formally
can be set to infinity). Recalling that the compliance parameter and the aspect ratio of
narrow pores are approximately equal, α ∼ ς, Integral (11) can also be represented via
pore distribution υ(α) over their aspect ratios (also with normalization

∫
υ(α)dα =υt):

Em

Ee f f
= 1 +

∫ ∞

αmin

υ(α)

α
dα (14)

Now, we point out that in Equation (14), the lower limit αmin corresponds to the current
stress σ, for which all compliant defects with α < αmin are already closed, as schematically
illustrated in Figure 3.

For direct experimental comparison, it is more convenient to reformulate Integrals (11)
and (14) via the distribution υ(σ) of the compliant inclusions over the closing stress:

Em

Ee f f
= 1 + Em

∫ ∞

σ

υ(σ′)
σ′ dσ′ (15)

To obtain Equation (15) from Equation (4), we accounted for Equation (6), which
relates the closing stress with aspect ratio. This explains the appearance of an additional
dimensional factor Em before the integral in Equation (15). Indeed, unlike dimensionless
distributions υ(ς) and υ(α), the distribution υ(σ) over the closing stress has the dimension-
ality of inverse stress to enable correct normalization condition

∫
υ(σ′)dσ′ =υt. Thus, due

to factor Em before the integral in Equation (15), both sides of this equation have correct
dimensionless form.
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Figure 3. Schematic illustration of gradual closing of highly compliant crack-like defects with
increasing stress (panels (a-1)–(a-3)): (b) is the complementary nonlinear stress–strain dependence
σ(s) and (c) is bell-shape distribution υ(σ) of the defects over closing stress values. In state 1, almost
all compliant defects are open and the effective modulus Ee f f = dσ/ds is minimal; in state 2, near
υ(σ) maximum dependence σ(s) exhibits pronounced curvature; in state 3, almost all defects are
closed, so that σ(s) tends toward a linear asymptotic behavior, whereas the modulus tends toward
the matrix value Em.

Equation (15) indicates that with increasing stress σ, the current (tangent) elastic mod-
ulus Ee f f increases and tends toward value Em of the matrix material because of gradual
closing of the narrow pores, as illustrated in Figure 3. It is clear from Equation (15) that if
the stress dependence of the Young’s modulus Ee f f (σ) is experimentally determined, then
differentiation of Equation (15) with respect to σ allows for reconstructing distribution υ(σ):

d
dσ

(
1

Ee f f

)
= −υ(σ)/σ (16)

According to Equation (6), bearing in mind that the closing stress σclos is determined by
the aspect ratio of compliant defects, and the distribution υ(σ) obtained from Equation (16)
is proportional to distribution υ(α) of the defects over their aspect ratios. Similar procedures
in using experimentally measured stress dependences of elastic moduli were proposed in
rock physics for obtaining crack distributions over their aspect ratios, e.g., [38].

In principle, relationship (16) does not require any a priori assumptions about the
reconstructed distribution υ(σ). However, numerical differentiation of experimentally
found dependences in actual noisy conditions is rather error prone, so that it would be
advantageous to use procedures that are more robust to measurement errors. For the
utilization of C-OCE technique described in Section 2, such procedures can be based on
proper fitting of the experimentally reconstructed stress–strain curves σ(s).

In view of the abovementioned analogy with rock physics, one may recall that pres-
sure dependences of elastic moduli for rocks usually can be well fitted by exponential
functions, e.g., [39]. It is clear from the structure of Equation (15) that the right-hand side
of Equation (15) exhibits exponential behavior if the distribution υ(σ) has the following
bell-shape form:

υ(σ) = (υt/B2)σ exp(−σ/B) (17)

where, as before, υt =
∫ ∞

0 υ(σ)dσ and maximum of υ(σ) corresponds to the characteristic
stress σ = B.
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Next, we recall that the tangent modulus corresponds to the slope of stress–strain
dependence Ee f f = dσ/ds. Then, combining the latter relation with Equations (15)–(17),
one obtains

Emds = [1 + Em
υt

B
exp(−σ/B)]dσ (18)

Bearing in mind that s = 0 for σ = 0, integration of Equation (18) yields the following
stress–strain relationship, written as s = s(σ):

s =
σ

Em
+ υt[1 − exp(−σ/B)] (19)

Again, recalling that Ee f f (σ) = dσ/ds and performing differentiation of Equation (19),
one readily obtains the following expression for the tangent Young’s modulus Ee f f :

Ee f f (σ) =
Em

1 + (υtEm/B) exp(−σ/B)
(20)

Equation (20) means that for increasing stress, which gradually closes highly compliant
crack-like pores/gaps, the tissue modulus tends toward the modulus Em of the matrix
material. For small pressures, modulus Ee f f (σ) may be significantly reduced compared to
the matrix value Em. This strongly resembles the elasticity behavior of cracked rocks [38].
Next, one can point out that derivative β = dEe f f (σ)/dσ is dimensionless and in the
vicinity of any current stress σ it takes the form

β ≡
dEe f f (σ)

dσ
=

Em

B
(υtEm/B) exp(−σ/B)

[1 + (υtEm/B) exp(−σ/B)]2
(21)

Expression (21) has the meaning of a dimensionless parameter of quadratic nonlin-
earity (since β determines local parabolic approximation of the nonlinear stress–strain
dependence (19) in the vicinity of stress σ). According to Equation (21), the nonlinearity
parameter β(σ) may either monotonically decrease with increasing stress σ or may have an
intermediate maximum. Indeed, denoting (υtEm/B) exp(−σ/B) = y, Equation (13) takes
the form

β =
Em

B
y

[1 + y]2
(22)

with the maximum β = (Em/4B) corresponding to y = 1. It is clear that quantity y
decreases with increasing σ, so that β(σ) may have an intermediate maximum at a non-zero
stress if for zero stress σ = 0

υtEm/B > 1 (23)

Typically, the total content of narrow pores υt << 1, the condition in (23) requires
that the ratio (Em/B) is sufficiently large. Recalling Equation (20), we conclude that
the existence of intermediate maximum of nonlinearity parameter β(σ) requires that
Ee f f (σ = 0) < Em/2. In other words, initially for σ = 0, the presence of narrow pores
reduces the tissue modulus more than twice in comparison with the matrix modulus.

We recall that the bell-shape distribution given by Equation (17) is written through
an analogy with rock physics and is not supported by arguments specifically related to
biological tissues. Nevertheless, it is demonstrated in Section 3 that Equation (19), based on
the assumed Equation (17), enables surprisingly good fitting of experimental stress–strain
relationships obtained using the C-OCE technique for compressive loading of rather diverse
biological tissues.

3. Results of Applying the Proposed Stress–Strain Law for Description of Nonlinear
Response of Various Biotissues

In this section, we present several examples demonstrating the usefulness of the
discussed analogy with rock physics and the assumption that for biological tissues their
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nonlinear stress–stress behavior under compressive loading is caused by gradual closing
of soft porosity initially existing in the tissue. In this regard, our basic assumptions are
also strongly supported by results of study [61], in which high-resolution histological
examinations revealed unrecognized interstitium in various human tissues (corresponding
to the system of pores/gaps in the argumentation presented in the previous sections).
In the following sections, we present results for seven rather diverse tissue types with
3–7 subtypes and/or states in each category. Where possible, along with C-OCE-enabled
stress–strain curves and results of their fitting by the proposed stress–strain law, results of
histological examinations are also presented.

3.1. Nonlinearity of Eye Cornea under Uniaxial Compression

The first example relates to rabbit’s corneal tissue that was characterized in OCE-based
studies [57,62,63]. These studies were stimulated by the discussed in the literature prospects
of nonsurgical correction of corneal shape using moderate (up to 55–60 ◦C) pulse-periodic
heating by an infrared laser [64]. It were just the results of cornea-related studies [47,57,62],
which initially stimulated us to search an appropriate stress–strain law for interpretation
of stress–strain curves for corneal tissue. These curves were obtained for laser-irradiated
corneal samples reconstructed using the C-OCE principles described in Section 2.1.

Recall that corneal tissue consists of a stack of nearly plane-parallel sheets of collage-
nous fibers. In the discussed experiments, these collagen layers were oriented orthogonally
to the optical beam of the heating laser and the probing OCT beam during C-OCE exami-
nations. Figure 4a shows schematically the experimental configuration typically used in
these studies, and a representative structural OCT scan of a corneal region subjected to
pulse-periodic laser heating; details are provided in [57,62,63].

Even with an unaided eye, an area with increased thickness is visible in the heated-
zone center shown in Figure 4a. Figure 4c shows two histological images (reproduced
from [62]) of a nonheated cornea sample and a sample subjected to heating in a similar
regime. For the heated sample, one can clearly see in the histological image fairly large
elongated crack-like pores/delaminations parallel to the direction of collagenous layers,
whereas in the nonheated sample such pores are not visible. The appearance of such stable
pores explains why the heated zone remains dilated after heating.

Next, by analogy with cracked rocks, it could be expected that the presence of such
crack-like pores in the heated region should reduce the Young’s modulus of the tissue. This
expectation was confirmed in [57], where this modulus reduction was clearly observed
using the C-OCE principle. Furthermore, by applying gradually increasing compressive
stress through the layer of pre-calibrated silicone to the post-heating sample, it was possible
to obtain spatially resolved stress–strain curves. By analyzing the fitting curves defined by
Equation (19), the tangent Young’s modulus could be estimated for a desired stress level.
The spatial map of the tangent Young’s modulus (stiffness) in Figure 4b is plotted for 4 kPa
stress. The initially reconstructed stress–strain dependences together with the fitting curves
for the representative zones 1, 2 and 3 are shown in Figure 4(d-1).

Zone 1 is located fairly far from the heated zone 3 and had almost unaffected properties,
whereas in the central heated region 3 the tissue exhibited clear post-heating dilatation.
Zone 2 is located at the periphery of the heating zone. Estimation of cumulative strain
during the entire heating procedure and subsequent cooling indicated that, after heating,
in contrast to the expanded region 3, region 2 clearly experienced shrinkage. The latter
was evidently caused by compression in this region, produced by the thermally dilated
tissue in the central zone 3. Figure 4b clearly demonstrates that, as a result of these
processes, the post-heating stiffness distribution in the initially fairly spatially uniform
cornea becomes inhomogeneous. Namely, the dilated corneal tissue in the heated zone 3
becomes pronouncedly softer than in the nonheated zone 1, whereas in the shrinkage zone
2, on the contrary, the tissue becomes stiffer.
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Figure 4. Example of C-COE-based and histological characterization of corneal tissue: (a) is the
schematic of experimental configuration and a typical structural OCT scan of a corneal sample placed
between two layers of reference silicone used for quantification of corneal stiffness; (b) shows the
tangent Young’s modulus distribution (for 4 kPa stress) in silicone and cornea after heating with a
laser beam passing through region 3; (c) are representative histological images of a nonheated corneal
sample (upper image) and laser-heated one (lower image) in which a system of laser-induced narrow
pores are visible; (d-1) shows the post-heating stress–strain curves selectively obtained in the center of
heating zone 3, adjacent zone 2 and fairly distant nonheated zone 1 (dashed lines are experimental and
solid lines are results of fitting using Equation (19)). Panels (d-2) and (d-3) show the tangent Young’s
modulus versus strain and stress, respectively. Panel (e-1) shows the reconstructed pore distribution
υ(σ) described by Equation (17); (e-2) is the nonlinearity parameter β(σ) given by Equation (21). In
panel (e-3), the nonlinearity parameter β is plotted against the tangent Young’s modulus.

The individual stress–strain curves obtained for zones 1, 2 and 3 are shown in
Figure 4(d-1) and in agreement with the stiffness map shown in Figure 4b, which demon-
strates that the slope for curve 1 (tangent Young’s modulus for the nonheated zone) is
noticeably greater than for the central heated zone 3, but smaller than for the shrunken
zone 2. All three curves are very well fitted by Equation (19). Curve 2 for the shrunken zone
in Figure 4(d-1) has a narrow nonlinear region for strains <1%, in which the slope of the
stress–strain curve rapidly increases, and then tends toward a near-constant value. Curves
1 and 3 also are initially nonlinear (with lower slopes than for curve 2), but with increasing
strain their slopes also become nearly invariable and close to the asymptotic slope value
for curve 2. This behavior is naturally explained by gradual closing of interstitial soft
(micro)pores with increasing applied stress. More specifically, in Figure 4(d-1) for zone
1 in the nonheated tissue, the fitting parameters in stress–strain Equation (19) are: the
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matrix-tissue stiffness Em = 736 kPa; the characteristic closing stress B = 4.1 kPa; and the
initial specific volume content of soft features υt = 0.026. For intermediate zone 2, which
experienced moderate heating accompanied by compression from the dilated heated zone 3,
the matrix-tissue stiffness moderately increased, Em = 839 kPa; whereas the characteristic
closing stress B = 0.66 kPa decreased ~7 times and simultaneously the volume content of
soft features decreased ~3.8 times, υt = 0.0068. Finally, the heated zone 3 demonstrated a
slight increase in the matrix-tissue stiffness, Em = 747 kPa; the characteristic closing stress
moderately increased ~1.8 times, B = 7.36 kPa, whereas the soft-feature content υt = 0.069
pronouncedly increased (~2.7 times) in comparison with nonheated zone 1.

These moderate variations in the asymptotic values Em are clearly seen in Figure 4(d-2)
for the Young’s modulus dependence on strain and stress. The magnitudes of parameters
B and υt can also be readily understood from the soft-pore distributions υ(σ) over closing
stresses, as shown in Figure 4(e-1). We recall that the total content υt corresponds to the area
under the curve υ(σ), whereas the maximum of υ(σ) occurs exactly for σ = B according
to Equation (17). In particular, Figure 4(d-1), based on the analysis of the stress–strain
curves, clearly shows that in the heated zone, the strong broadening toward higher closing
stresses and a general increase in magnitude for distribution υ(σ) suggests that in zone 1
one should expect the appearance of heating-induced pores with larger aspect ratios (larger
opening) according to Equations (6) and (7).

For the discussed case of heated corneal tissue, this expectation for the development of
additional interstitial pores with larger aspect ratios (and possibly larger sizes) was possible
to confirm histologically. These larger interstitial pores may be visible in histology (see the
lower image in Figure 4c). However, even if such pores are not resolved (as in the upper
histological image of nonirradiated cornea in Figure 4c), they clearly manifest themselves
via the nonlinear elastic response of the tissue.

The other plots in Figure 4 are based on the analysis of the fitting curves from
Figure 4(d-1). In addition to Figure 4(d-2),(d-3) for the dependences of the tangent Young’s
moduli as functions of strain and stress, respectively, and Figure 4(e-1) for the reconstructed
distribution υ(σ) of pores defined by Equation (17), Figure 4(e-2) shows the nonlinearity
parameter β(σ) as a function of stress defined by Equation (21). Figure 4(e-3) shows a
parametrical plot demonstrating the complementary evolution of parameters β(σ) and
Ee f f (σ) on the plane (Ee f f ,β).

For the corneal tissue composed of collagenous layers, the existence of interlayer
pores/gaps was quite expected, so that the usefulness of the geophysics-inspired
stress–strain Equation (19) for fitting experimental stress–strain was not surprising. Less
expected was the ability of Equation (19) to enable good-quality fitting for a broad variety
of other tissues. In the following sections, we demonstrate that stress–strain curves for
six other essentially different tissue types can also be well described by the proposed
geophysics-inspired equation of state. Totally, we demonstrate 30 examples of the initially
measured stress–strain curves for very diverse tissues. In view of the limited article length,
in the other 29 cases we do not provide a detailed discussion of the fitting parameters Em,
B and υt as in this section for cornea. However, as pointed out above, their characteristic
values and inter-relations can readily be seen from the plots similar to those in Figure 4 for
corneal tissue.

3.2. Nonlinearity of Pericardium Tissue

The next example relates to another tissue type, namely, human pericardium studied
in [65]. This mostly collagenous elastic shell surrounds the hearts of mammalian animals.
It has a fairly small thickness (for humans, <1 mm and smaller). The interest in studying
the biomechanics of pericardium is stimulated by the fact that it is rather widely used
in cardiosurgery for fabrication of leaflets during surgical replacement of aortic valves.
In some cases, leaflets are made of specially prepared decellularized bovine pericardium.
However, of special interest is the use of patients’ own pericardium, in view of minimizing
the rejection risk. For such operations, the excised pericardium is prepared according to
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the Ozaki protocol [66] comprising its chemical processing (cross-linking) in glutaralde-
hyde solution and simultaneous application of moderate tensile loading, which affects
the tissue biomechanics. Conventionally, pericardium samples were studied in tensile
tests [4,67,68], the result of which were not always consistent. Recently, in view of the
positive experience with C-COE characterization of corneal samples having comparable
with pericardium thickness, C-OCE was applied to compare human pericardium elasticity
in several states [65].

It was shown in [65] that C-OCE made it possible to clearly distinguish elastic prop-
erties of human pericardium samples in four different states: (1) native-state samples;
(2) chemically cross-linked without simultaneous stretching; (3) chemically processed with
normal stretching; and (4) chemically processed samples subjected to excessive stretching,
which could somewhat damage the tissue. Figure 5(a-1)–(a-4) show structural OCT images
corresponding to those samples and Figure 5(b-1)–(b-4) present the corresponding stiff-
ness maps reconstructed with C-OCE. The initially obtained stress–strain dependences are
shown is Figure 5(c-1) by dashed lines, and the solid lines show the fitting curves. Despite
clearly different forms of the stress–strain dependences, in all four cases they are well fitted
using the nonlinear stress–strain dependence (19). The smallest slope (lowest Young’s
modulus) is observed for pericardium in the native state.
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Figure 5. Results of C-OCE characterization of human pericardium in various states based on
reprocessed data of [65]: ((a-1)–(a-4)) are structural OCT images; ((b-1)–(b-4)) show the spatial
distribution of the Young’s modulus for 5 kPa applied stress; (c-1) shows the experimentally measured
(dashed lines) stress–strain curves and solid lines are the results of fitting using Equation (19). The
other plots (c-2),(c-3) and (d-1)–(d-3) are derived from the fitting curves in (c-1) like the similar plots
in Figure 4. Decrease in thickness can be clearly seen for samples subjected to different tensile loading
from nonstretched to overstretched during the chemical processing. For clarity, the upper reference
silicone layer is removed from the images in panels (a-1)–(a-4) and (b-1)–(b-4).

The other panels in Figure 5 are based on the analysis of the fitted stress–strain
curves similarly shown in Figure 4. The derived values of the tangent Young’s moduli are
plotted against compressive strain in Figure 5(c-2) and against the applied compressive
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stress in Figure 5(c-3). The reconstructed distributions υ(σ) and nonlinearity parameters
β are shown in Figure 5(d-1),(d-2). It is clear from Figure 5(d-1) that the largest volume
content of gaps/pores (the largest area under υ(σ) curve) occurs for the native state of
pericardium. For the samples subjected to cross-linking in glutaraldehyde according to
the Ozaki procedure, the content of compliant pores becomes strongly reduced, especially
for the correctly prepared sample 3. This sample exhibits maximal stress sensitivity at
fairly low stress level with the fastest trend of the Young’s modulus to the matrix value
Em. Correspondingly, the nonlinearity parameter β is largest for this sample with its
maximum around 5 kPa stress. Then, it rapidly tends toward zero for stress > 10 kPa,
where E(σ) → Em . Qualitatively similar behavior demonstrates chemically processed,
but nonstretched sample 2 (in which the matrix value Em is ~4 times lower) and, in
comparison with the correctly prepared sample, the aspect ratio of pores/gaps is larger
because larger stresses are required to close the gaps. The overstretched sample 4 evidently
experienced some damage (rupturing). In comparison with the correctly prepared sample
3, the overstretching evidently induced the appearance of additional breaks/gaps, which
are clearly evident in the reconstructed broad distribution υ(σ) for this sample. Thus, it is
not surprising that, except for the narrow region < 1 kPa, through most of the investigated
stress range from ~1 kPa to 20 kPa, the overstretched sample 4 demonstrated a significantly
lower Young’s modulus than the normally stretched sample. Qualitatively, pericardium
and corneal samples demonstrate similar elastic behavior, which seems expectable bearing
in mind that these tissue types are composed of stacks of collagenous layers.

3.3. Nonlinearity of Murine Tumor Samples

Certainly, along with such layered collagenous tissues as cornea and pericardium, for
which the presence of interlayer gaps/pores was expected, it was interesting to apply the
derived geophysics-inspired stress–strain law to other tissue types, for which microstruc-
tural features may significantly differ. In particular, from the very beginning of C-OCE
development, much attention has been given to oncology-related problems, initially to the
characterization of breast cancer samples [25,69,70]. It was not evident at all that the same
fitting-stress dependences as for collagenous corneal and pericardium tissues would also
give adequate results for tumors with a rather different microstructure.

Here, we consider an example based on reprocessing data obtained in study [26]
related to the C-OCE characterization of experimental murine tumors. Figure 6 shows the
results of the C-OCE characterization of tumorous tissue in different states of tumors 4T1
inoculated at mice’s ears and subjected to chemotherapy (4T1 cell line is used as an animal
model of mammary carcinoma). The meaning of panels (d-1)–(e-3) in Figure 6 is similar to
those in Figure 4 for corneal tissue. The initially obtained stress–strain curves shown by
dashed lines in Figure 6(d-1) again demonstrate that Equation (19) enables excellent fitting
results shown by solid lines. In comparison with the viable tumor zones, the tumor regions
with edema and especially necrotic tumor cells demonstrate strongly decreased stiffness.
This is clear from the spatial stiffness maps in Figure 6(b-1)–(b-3), as well as from the slopes
of the stress–strain curves shown in Figure 6(d-1) and the derived Figure 6(d-2),(d-3).

It is interesting to note that similar to pores in the heated cornea in Figure 4(e-1), the
reconstructed pore distribution υ(σ) in Figure 6(e-1) for necrotic tumor cells also has a
maximum around 10 kPa. However, in Figure 6(e-1) for the necrotic tumor cells, the pores
are not resolved, unlike that shown in the histological image for the heated cornea (see
Figure 4c, lower image). In this regard, it should be pointed out that the properties of pores
in terms of closing stress and strains are determined by their aspect ratios rather than the
absolute sizes. Therefore, the mechanical response may be similar for either big or small
pores if their distributions υ(σ) are similar.
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Figure 6. Results of C-OCE characterization of animal tumorous tissue in various states (based
on reprocessed data from [26]: ((a-1)–(a-3)) are structural OCT images; ((b-1)–(b-3)) are the spatial
distribution of the Young’s modulus for 4 kPa applied stress; ((c-1)–(c-3)) are the corresponding
histological images; (d-1) shows the experimentally measured (dashed lines) stress–strain curves and
solid lines are the results of fitting using Equation (19). The other plots (d-2),(d-3) and (e-1)–(e-3) are
derived from the fitted curves in (d-1) like similar plots shown in Figures 4–6. The highest stiffness is
for viable tumor and the lowest for nectrotic tumor cells.

3.4. Nonlinearity of Patients’ Breast Cancer Samples

Breast tissues are very heterogeneous, some of them being composed mostly of colla-
gen (like fibrous stroma), whereas other components of tumors are composed of cancer-cell
agglomerates, in which collagenous fibers are almost absent, as directly confirmed by
second-harmonic-generation optical microscopy [34]. Nevertheless, it was found that the
stress–strain curves for breast cancer tissues also demonstrate surprisingly good results of
fitting using the derived Equation (19). Detailed discussions on the usage of C-OCE-based
nonlinear stress–strain dependences to differentiate various morphological components of
breast cancer tissues can be found in ref. [27].

Although usually regions of tumor cells exhibit a higher Young’s modulus, more
detailed studies indicated that the characteristic ranges of the tangent Young’s modulus
values may exhibit significant overlap for different morphological components of breast
tissues. In view of this, for more accurate diagnostics, one may perform differentiation
on the plane of two parameters: Young’s modulus defined by Equation (20) and the non-
linearity parameter defined by Equation (21). It was shown in [27] that on such a plane
it was possible to differentiate up to seven morphological components. At the same time
the utilization of the differences in either Young’s modulus or the nonlinearity parame-
ter taken separately was insufficient for discrimination of those components. Figure 7
shows histological images (panels 7(b-1)–7(b-6)) of these seven morphological components
of human breast cancer tissues, whereas all other panels present results of their C-OCE-
based characterization. In Figure 7 these morphological components are marked by num-
bers: 1—peritumoral adipose; 2—benign fibrous stroma; 3—invasive lobular carcinoma;
4—invasive ductal carcinova of scirrhous structure; 5—invasive ductal carcinoma (IDC)
with solid-scirrhous structure; 6—zone of scattered individual tumor cells in dense fibrous
stroma with hyalinosis of collagen fibers; and 7—stroma with pronounced hyalinosis. The
zones, for which the stress–strain curves were obtained, are marked by rectangles in both
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stiffness maps (7(a-1)–7(a-6) and the corresponding histological images. Like in the pre-
vious examples in Figures 4–6, structural OCT images of the discussed zones 1–7 did not
demonstrate appreciable differences. In contrast, stiffness maps (plotted for 4 kPa stress)
and presented in panels 7(a-1)–7(a-6) already demonstrate rather clear differences among
these zones. In particular, zones of tumor cells can be very clearly distinguished in the
C-OCE images from adipose and fibrous stroma. Detailed discussions related to medical
aspects can be found in [27], so we do not reproduce them.
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Figure 7. Results of C-OCE characterization of human breast cancer tissues (based on reprocessed data
of [27]: ((a-1)–(a-6)) are the spatial distribution of the Young’s modulus for 4 kPa applied stress and
((b-1)–(b-6)) are the corresponding histological images, where rectangles indicate zones, for which
seven stress–strain curves shown in (c-1) are obtained; in (b-5), the red rectangle indicates the fairly
pure IDC tumor zone and the green rectangle indicates the zone with scattered individual tumor cells
in dense fibrous stroma with hyalinosis of collagen fibers. The experimental stress–strain curves are
shown in (c-1) by dashed lines and solid lines are the results of fitting using Equation (19). The other
plots (c-2,c-3,d-1,d-2,d-3) are based on the analysis of fitted curves like the similar plots in Figures 4–6.
The highest stiffness is observed in hyalinosis zones and the lowest for adipose/connective tissue.
Notice that the colors of the rectangles indicating zones 1–7 in the elastographic and histological
images correspond to colors of the curves in plots (c-1)–(c-3) and (d-1)–(d-3). In panel (c-1) these
curves are additionally numbered, but in the other panels the curves are marked only by colors,
whereas numbering is omitted to avoid overloading of notations in the plots.

For the present discussion, it is important to emphasize again that although the seven
stress–strain curves in Figure 7(c-1) have visually very different forms, all of them are
very well fitted by Equation (19). The other derived dependences are similar to those in
Figures 4–7 and show significant differences in terms of the reconstructed porosity distribu-
tion υ(σ), Young’s modulus E(σ), and nonlinearity parameter β. Despite the overlap in the
individual parameters E(σ) and β for samples belonging to different tissue types, it was
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shown in [27] that on the (E, β) plane, it was possible to differentiate and automatically
segment in C-OCE images all seven tissue types presented in Figure 7. In comparison to
conventional time-consuming histology (requiring several days) and even significantly
faster histology of frozen tissue, C-COE examination is carried out using freshly excised tis-
sue samples and can be performed intraoperatively. In this regard, the possibility to obtain
high-quality fitting for diverse a priori unknown tissue types using the fitting function of
the same functional form is obviously important for the interpretation of elastographic data.

3.5. Nonlinearity of Human Lymphatic Nodes

The next examples shown in Figure 8 are based on study [28] related to clarifica-
tion of C-OCE possibilities to differentiate metastatic and nonmetastatic human lympatic
nodes (LN) excised during breast cancer surgical operations. Without providing details
of the medical aspects, Figure 8 presents results for the following LN types: 1—normal
LN; 2—nonmetastatic LN with follicular hyperplasia; 3—nonmetastatic LN with sinus
hytiocytosis; and 4—metastatic LN. In plots (d-1)–(d3) and (c-1)–(c-3) in Figure 8, the
curves corresponding to these LN types are marked by numbers 1–4 and are shown in
different colors.

Unlike the study reported in [28], where averaged curves for each group of LNs were
shown, Figure 8 shows examples of such curves for individual LNs from each of the groups.
Referring to [28] for a more detailed discussion of medical issues, here we point out that
structural OCT scans shown in Figure 8(a-1)–(a-4) do not demonstrate strong differences,
much like the structural scans for the other tissues. In contrast, the stiffness maps (plotted
for 4 kPa stress) in Figure 8(a-1)–(a-4) exhibit rather clear differences that are similar to the
previous examples of OCE maps provided in Figures 4–8.
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Figure 8. Results of C-OCE characterization of human LN excised during breast cancer-related
surgeries (based on reprocessed data from [28]): ((a-1)–(a-4)) are structural OCT images for lymphatic
nodes in normal state, LN with follicular hyperplasia (nonmetastatic), LN with sinus hytiocytosis
(nonmetastatic), and metastatic LN; ((b-1)–(b-4)) are the corresponding stiffness maps for 4 kPa
stress; ((c-1)–(c-4)) are the corresponding histological images, in which FC denotes fibrous capsule,
CFl—cortical follicules, C—cortex of LN with follicular hyperplasia, SH—sinus histiocytosis and
T—trabecules. The experimental stress–strain curves are shown in (d-1) by dashed lines, and solid
lines are the results of fitting using Equation (19). The other plots (d-2),(d-3) and (e-1)–(e-3) are based
on the analysis of fitted curves like the similar plots in Figures 4–7. The highest stiffness is observed
for metastatic LNs and the lowest for adipose/connective tissue.
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The differences revealed in C-OCE-based stiffness maps are confirmed by histological
images. Figure 8(d-1) shows the stress–strain curves for the discussed four types of LN
(dashed lines). For all four LN types, Equation (19) again demonstrates very good fitting
results (solid lines in Figure 8(d-1)). The other panels are derived from the fitted stress–
strain curves similar to that shown in Figures 4–7. Although the stiffness of LN in the
normal state is clearly lower than for the other three LN types, for the latter LN-groups,
an appreciable overlap of stiffness values was found. In view of this, for differentiation of
reactive nonmetastatic and metastatic LNs, the Young’s modulus was used in combination
with the nonlinearity parameter β [28]. For estimating the latter, the proposed stress–strain
law (19) played the key role.

3.6. Elastic Nonlinearity of Small Intestine Tissues

In this section, we again present several examples related to nononcological tissues.
These data were obtained in the course of C-OCE-based characterization of small intestine
tissues in mini-pigs, which are often used in various biomedical studies because the
structure of the intestine and many other organs is very similar to that in humans. The
results of those studies were presented partially in [71], where C-OCE was used for the
detection of emergence of tissue rupturing during procedures imitating intestine-wall
distraction. It is known that the intestine wall structure is essentially heterogeneous,
comprising the layers of muscular tissue, submucosa and mucosa. All of the layers may be
in normal and pathological states and, to the best of our knowledge, the application of C-
OCE for the first time made it possible to selectively characterize biomechanical properties
of various layers in the studied intestine-wall layers. For the purpose of the present study,
we focus exclusively on discussing the stress–strain dependences and the results of their
fitting using the stress–strain law (19) derived in Section 2.1, rather than on the medical
aspects of various states of the intestine.

Representative results of the combined C-OCE and histological characterization of the
intestine wall are presented in Figure 9. Column 1 shows the reconstructed C-OCE maps of
the tangent Young’s modulus for the applied compressive stress 2 kPa. The corresponding
histological images in approximately the same scale together with the names of the four
tissue types 1–4 are shown in Figure 9 in column 2. Column 3 shows zoomed fragments of
those histological images. Notice that the network of interconnected pores/gaps visible in
these zoomed fragments is very similar to the images of interstitium discussed in ref. [61].

Figure 9(c-1) shows four stress–strain curves obtained using C-OCE for the muscular
layer of the intestine wall (muscularis interna, label 1) and three different states of the inner
mucous layer (labels 2–4). The dashed lines in panel 9(d-1) are experimental curves and the
solid lines of different colors correspond to the fitting law given by Equation (19). All four
stress–strain curves are pronouncedly nonlinear, including the curve for muscularis interna,
for which even the zoomed histological image does not yet resolve visible pores/gaps,
unlike the histological images of mucosa. Nevertheless, all four rather differently appearing
curves in Figure 9(d-1) are very well fitted by Equation (19).

The other panels in Figure 9, similar to the previous examples, demonstrate the
stiffness–strain (d-2) and stiffness–stress (d-3) curves; (d-4) shows the reconstructed pore
distribution υ(σ) described by Equation (17) and (e-2) is the nonlinearity parameter β(σ)
given by Equation (21). In Figure 9(e-3), the nonlinearity parameter β(σ) given by Equa-
tion (21) is plotted against the tangent Young’s modulus given by Equation (20). The
main message from Figure 9 is that rather different forms of experimentally obtained
stress–strain curves shown in panel (d-1) are very well fitted by the proposed stress–strain
relation (19). It also worth noting that for all states of the mucosa layer, the histological
images demonstrate existence of some interstitium very similar to that reported in [61].
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Figure 9. C-COE-based and histological characterization of small intestine wall comprising several
layers in various states: ((a-1)–(c-1)) muscularis externa; ((a-2)–(c-2)) normal mucosa; ((a-3)–(c-3))
mucosa characterized by inflammation with edema, thickened villi with partially desquamated
epithelium; ((a-4)–(c-4)) mucosa characterized by inflammation with edema, thickened villi with
totally desquamated epithelium. Column (a) shows the corresponding maps of the tangent Young’s
modulus for 2 kPa applied stress. Column (b) shows the corresponding histological images and
column (c) presents zoomed fragments of images (b). Panel (d-1) shows the experimentally obtained
stress–strain curves (dashed lines) and results of their fitting using Equation (19). The other plots
(d-2), (d-3) and (e-1)–(e-3) are derived from the fitting curves shown in panel (d-1) like in Figures 4–8.

3.7. Nonlinear Elastic Properties of Plaques

The last example of application of Equation (19) is also unrelated to oncology and
presents the results of C-OCE characterization of various types of plaques developed inside
patients’ blood vessels. The excised samples of such vessels were subjected to C-OCE
characterization. The structure in Figure 10 is based on reprocessing of data from study [72]
and is similar to Figures 8 and 9. Namely, columns (a-1)–(a-5), (b-1)–(b-5) and (c-1)–(c-5)
show structural OCT images, the derived Young’s modulus maps plotted for 4 kPa stress
and corresponding histological images, respectively. Row (a-1), (b-1) and (c-1) relates to
the normal vessel tissue. The other examples are for four types of plaques indicated in the
caption of Figure 10.

The initially obtained stress–strain dependences and fitting curves are shown in
Figure 10(d-1) by the dashed and solid lines, respectively. The meaning of the other panels
derived from Figure 10(d-1) is similar to those in Figures 4–9. These examples again
demonstrate that the stress–strain curves for various types of cholesterol plaques and
normal vessel wall can also be well fitted using Equation (19), although visually the forms
of the corresponding dependences are very different.
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Figure 10. Results of C-OCE characterization of cholesterol plaques in excised fragments of human
vessels (based on reprocessed data from [72]). Panels ((a-1)–(a-5)) show structural OCT images,
((b-1)–(b-5)) the corresponding stiffness maps (at 4 kPa stress) and ((c-1)–(c-5)) the corresponding
histology: 1—for a vessel wall in normal state; 2—the wall with a lipid plaque; 3—sample with an
unstable (and fairly soft at initial straining) cholesterol plaque; 4 and 5 are two examples with stiff
cholesterol plaques with visible cholesterol crystals in histology, especially for 5. The experimental
stress–strain curves for regions marked by rectangles in the stiffness maps are shown in (d-1) by
dashed lines and solid lines are the results of fitting using Equation (19). The other plots (d-2)–(d-3)
and (e-1)–(e-3) are based on the analysis of the fitted curves like the similar plots in Figures 4–9. The
sample numbers are indicated near the corresponding curves in panel (d-1)–(d-3) and (e-1)–(e-3).

4. Discussion and Conclusions

We recall that initially the idea to utilize the analogy with description of elasticity of
cracked rocks was stimulated by the results of C-OCE characterization of corneal tissue with
clear layered structure. It was reasonable to attribute the observed pronounced stiffening
at rather moderate compressive strains (~several percent) to stress-induced closing of
some high-compliance structural features in the collagenous corneal tissue. In this strain
range, the tangent Young’s modulus of cornea could strongly increase by a factor of 10–20
from a few tens of kPa up to ~one MPa. This strong modulus increase could be naturally
explained by gradual closing of residual gaps (narrow pores) among collagen, which
acted as high-compliance inclusions. The experiments performed on the modification of
corneal microstructure with laser irradiation [57,62] made it possible to directly confirm
the appearance of larger pores in histological images of irradiated corneas, for which the
Young’s modulus decreased after laser heating. Furthermore, in [57], reasonably good
agreement was obtained between the aspect ratios of pores visible in the histological images
and estimations based on C-OCE data.

The C-OCE examinations were always performed in the direction orthogonal to the
orientation of corneal layers, so that the probing optical beam was aligned with the applied
approximately uniaxial compression. The reaction of the crack-like gaps to this compression
could be described in a simple 1D approximation. Analogous arguments also similarly
appear reasonable for pericardium composed of collagenous layers. Thus, the similarity in
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the stress–strain curves for corneal tissue and pericardium and the possibility to closely fit
those curves using the analogy with cracked rocks appeared quite reasonable.

Next, we recall that for rocks, the stress dependence of elasticity is studied using both
hydrostatic (“all-round”) compression, when all cracks are compressed normally to their
planes independent of orientation, as well as applying uniaxial stress (e.g., using samples in
the form of bars/rods and compressed axially). An important point is that while dry cracks
are highly compliant with respect to either uniaxial or hydrostatic compression, in saturated
materials the presence of water inside cracks drastically reduces their compressibility for
hydrostatic compression. In contrast, for uniaxial compression, compliance of saturated
cracks remains comparable with the dry case because the liquid can be squeezed out of
the cracks. In this regard, in the examples considered above, biotissues certainly were satu-
rated with water, but for the uniaxial compressive loading applied, even water-saturated
structural features retained their high compliance.

Another point worth mentioning is that in contrast to hydrostatic loading, for uniaxial
compression, variously oriented crack-like defects experience different loading, comprising
normal and tangential/shear components; furthermore, compliance of different types of
actual cracks may comprise normal and shear compliance in different proportions [73].
Nevertheless, for given crack properties and moderately high crack density, the reduction in
the different-type elastic moduli Me f f /Mm can be written in a form qualitatively similar to
Equations (11) or (13): Me f f /Mm = 1/(1 + Amnc). Here, nc is some effective concentration
of cracks, and parameters Am differ somewhat for various types of the moduli but have
the same order of magnitude [55]. Therefore, it was reasonable to expect that even for
tissues that are unlike corneal tissue and not composed of a stack of parallel collagenous
layers, the stress–strain curves functionally may also correspond to Equation (15) and
probably even to Equation (19), if in the uncompressed state there are high-compliance
features in the tissue structure. Indeed, the data presented in Sections 3.4–3.7 confirmed
that stress–strain curves for breast cancer tissues, lymphatic nodes, intestine tissues and
plaques could be satisfactorily fitted by Equation (19), and thus qualitatively similar to the
cases of collagenous cornea and pericardium.

Concerning Equation (19), we recall that it was derived from Equations (15) and (16)
assuming the distribution υ(σ) of compliant inclusions over the closing pressure given
by Equation (17). The form of that equation was also chosen by analogy with geophysics,
where the exponential trend in Young’s modulus for compressed cracked rocks is often
observed. Certainly, even if the elastic modulus is indeed reduced due to the presence of
high-compliant inclusions, in principle, the distribution υ(σ) of the inclusions over closing
pressures may differ from υ(σ) assumed in Equation (17). However, for other distribu-
tions of interstitial gaps/pores, one may also observe that the slope of the experimental
stress–strain relationship σ(s) becomes steeper with increasing compression. In such a case,
the stress dependence of Ee f f (σ) can also be obtained by differentiating the stress–strain
relation, Ee f f (σ) = dσ/ds. Equation (16) can then give the actual distribution υ(σ) of the
interstitial gaps/pores that, in principle, may differ from Equation (17).

Nevertheless, the examination of a broad range of strongly contrasting tissue types
discussed in Section 4 demonstrates that Equation (19), based on the distribution υ(σ)
described by Equation (17), gives very good results of fitting. The additional advantage
is that the three fitting parameters in Equation (19) have a clear physical interpretation.
Namely, parameter Em characterizes the Young’s modulus of the homogeneous matrix
(host) tissue; dimensionless parameter υt corresponds to total specific volume content of
the soft microstructural features; and finally, parameter B with the dimensionality of stress
characterizes the stress sensitivity of the soft features. For the latter, the distribution υ(σ)
over closing stresses is expected to obey Equation (17).

The proposed model is not totally phenomenological because is reflects the tissue mi-
crostructure, although the supposed soft features are described semi-phenomenologically,
in terms of their compliance parameter ς, characteristic aspect ratio α and characteristic
closing stress σclos ∼ αEm and strain sclos that are inter-related by Equations (6)–(8). In
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some cases, e.g., for corneal samples, in which the narrow crack-like pores were directly
visualized, even the aspect ratios visible in the histological images reasonably agreed with
the characteristic values inferred from the measured complementary modulus reduction
and tissue dilatation caused by the laser-induced pores [57]. It can also be pointed out
that our C-OCE observations of tissue elasticity response to compression, which indicates
the existence of compliant pores in diverse tissues, agrees very well with the independent
results reported in ref. [61]. In that study, microscopically examined frozen biopsy samples
with well-preserved microstructure clearly exhibited the presence of numerous interstitial
fluid-filled pores in rather diverse tissue types.

It worth noting that the compression applied to the tissue penetrated by liquid-filled
pores is quasistatic, whereas the pores are not isolated from the surrounding tissue. Thus,
during slow compression in C-OCE examinations the liquid rather freely squeezes from
the pores into the surrounding tissue. Thus, the weak compressibility of the filling liquid
does not appreciably affect the elastic response of the compressed pores, which remain
highly compliant. A similar situation occurs in rocks when the sufficiently slowly com-
pressed pores/cracks are interconnected and the saturating liquid is squeezed out of the
crack-like pores and does not appreciably reduce their high compliance with respect to
uniaxial compression.

For conditions of slow compression typical of C-OCE examinations, the results pre-
sented above demonstrate that the proposed approach is very well suited for fitting and
interpretation of nonlinear stress–strain curves. It was also demonstrated for various
tissues that the C-OCE method enables spatially resolved visualization of the Young’s
modulus (as indicated in Figures 4–10), allowing for automated segmentation of various
morphological tissue components based on the differences in their elastic properties. These
C-OCE capabilities are well corroborated by parallel histological examinations [25–27,34].

Further, using the ability of the C-OCE technique to obtain spatially resolved nonlinear
stress–strain relations, one may simultaneously analyze the tangent Young’s modulus and
nonlinearity parameter on the 2D plane to improve the accuracy of elasticity-based diag-
nostics. Similar prospects for tissue nonlinearity utilization also attract much attention in
ultrasound elastography [29–33]. However, the C-OCE technique opens especially conve-
nient possibilities in this regard and allows for improved spatially resolved differentiation
of several morphological components or tissue types that are not reliably distinguished if
their linear and nonlinear elastic parameters are analyzed separately [27,28].

We also emphasize that the examples of stress–strain curves and stiffness maps shown
in Section 4 or discussed in studies [25–28] related to diagnostic applications of C-OCE; the
examination of tissues was performed in the regime of quasistatic deformation, in which
the influence of viscosity could be neglected. However, studying of tissue viscoelasticity
also attracts significant attention in the literature, so that various rheological models are
widely discussed. Qualitatively it is clear that, generally speaking, squeezing of saturating
liquids from crack-like pores accounted for in the proposed model should have viscous
character. Consequently, for higher rates of straining, viscoelasticity effects should give
non-negligible contribution, so that the next possible direction in the development of the
model presented above may be incorporation of viscoelasticity. In this regard, analogies
with physics of fluid-saturated rocks may also be useful.

It can also be noted that although narrow crack-like structural features can be viewed
as a special case of porosity, it has been clearly understood in geophysics that mechani-
cally the behavior of high-compliance pores with small aspect ratios is very different from
the so-called “equant” pores (i.e., various channels with geometry close to cylinders or
spheroidal voids). In view of this difference, geophysical models describing mechanics
of rocks containing “soft” crack-like porosity were considered essentially independently
from other poroelasticity models that mostly accounted for the presence of equant pores,
which constitute “rigid” porosity. Since many biotissues are often penetrated by vari-
ous channels (blood vessels and lymphatic vessels), importance of poroelasticity-based
models in biomechanics certainly has been understood for years [35,42]. However, fairly
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“rigid” equant pores do not induce the pronounced small-strain nonlinearity under unified
compression in contrast to demonstrations given in Section 4 for rather diverse tissues.
Thus, by analogy with separate consideration of crack-containing rocks and other poroe-
lastic models in geophysics, in biomechanics the “soft” and “rigid” pores should also be
clearly distinguished.

Another important remark concerning alternative constitutive laws widely discussed
in the pertinent literature is that they are mostly applied to interpretation of tensile tests
of biotissues, like in [5], where even more complex combinations of straining types may
be used, e.g., biaxial stretching. In such tests, at least sufficiently far from the damage
threshold, biotissues often also exhibit stiffening. In contrast to the uniaxial compression
in C-OCE, the role of various pores for tension-induced stiffening is less evident. How-
ever, it is reasonable to consider that properties of collagenous fiber/bundle networks
are important for the modulus variation in tensile tests. In particular, such collagenous
fibers/bundles usually exhibit pronounced wavy and even spiral structure, which is gradu-
ally unbended/straightened by increasing tensile loading. Mechanical modeling confirms
that unbending/untangling of such initially curly/wavy structures under tension leads to
pronounced stiffening of the material [35,41,74]. Similar remarks relate to the geometry of
large biomolecules, which in the absence of loading also often appear as curled structures
rather than straight chains of elastic elements. However, the tension-induced stiffening
caused by straightening of such geometrical structures is very different from the tissue
stiffening due to compression-induced closing of interstitial narrow pores considered in
this study. In this regard, the constitutive equation proposed here for biotissues obtained
by analogy with rock physics does not compete with earlier proposed models intended for
the interpretation of biotissue response in tensile tests (like the influence of straightening of
elastic fiber with initially wavy geometry [35,41,74]). In addition to the abovementioned
difference between compression and tension, in many widely discussed biomechanical
models, special attention was given to accounting of rather arbitrary types of tissue de-
formations. For example, in models based on Mooney–Rivlin or Ogden potentials and
similar ones, the elastic energy is represented in terms of invariants of strain tensors. On
the one hand, the invariant-based formulations make such models rather general in terms
of accounted types of deformations. This universality is due to the fact that such models
are essentially phenomenological and do not explicitly relate the nonlinearity of a material
with its microstructure. In contrast, particular microstructural features usually demonstrate
rather deformation-specific behavior. For example, the abovementioned presence of wavy
fibers is obviously important for tissue nonlinearity under stretching, but cannot explain
the pronounced small-strain nonlinearity under uniaxial compression demonstrated for
many of the tissues described in Section 4.

It is quite evident that models accounting for specific microstructural features cannot
be as universal as phenomenological descriptions based on general symmetry properties,
or requirements of invariance. In this regard, the proposed model represents a reasonable
compromise since it is essentially based on accounting of high-compliance microstructural
features in the matrix tissue, but at the same time these features are described without
geometrical details that are too specific. Namely, they are characterized by compliance
parameters, overall volume content and distribution over closing pressures, which already
allows one to describe the pronounced nonlinearity of many rather different tissues sub-
jected to small-strain uniaxial compression. This type of tissue loading is an important case,
as it is often used in indentation tests and especially in the compression OCE technique
developed in recent years.

Concerning the interpretation of C-OCE data, the proposed model Equations (15)–(19)
have already proven to be highly efficient for high-quality fitting of experimental
stress–strain dependences. This is very useful for the subsequent analysis of elastographic
data to improve the accuracy of diagnostic conclusions. Evidently, such equations account-
ing for compression-induced closing of high-compliance structures may also be very useful
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for interpreting results obtained by nonoptical indentation methods, as described in [3],
and similar techniques.
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