A Review on Research Progress of Corrosion Resistance of Alkali-Activated Slag Cement Concrete
Abstract
:1. Introduction
2. Hydration Mechanism of Alkali-Activated Slag Cement
3. Acid Corrosion Resistance of Alkali-Activated Slag Cement Concrete
3.1. Mechanism of Acid Corrosion
3.2. Effect of Acid Corrosion on Concrete Properties
4. Sulfate Corrosion Resistance of Alkali-Activated Slag Cement Concrete
4.1. Destruction Mechanism of Sulfate Corrosion
4.1.1. Sodium Sulfate Corrosion Damage Mechanism
4.1.2. Magnesium Sulfate Corrosion Damage Mechanism
4.2. Effect of Sulfate on the Properties of AAS Concrete
5. Alkali-Inspired Slag Cement Concrete for Seawater Corrosion Resistance
6. Conclusions and Outlook
- (1)
- Under the action of alkaline activators, the slag is activated and generates hydration products such as C-S-H, C-A-S-H, C-A-H, and N-A-S-H. The hydration reaction process includes the disintegration of slag, the fracture and bonding of functional groups, and the polymerization reaction.
- (2)
- The mechanism of acid corrosion is primarily due to the changes in the gel structure caused by H+, leading to the decalcification of the gel and the subsequent formation of expansive substances. In the case of both chemical and biological sulfuric acid erosion, the destruction of AAS concrete is attributed to the formation of gypsum. Regardless of whether it is chemical action or diffusion, different types of acids have varying degrees of corrosion on AAS cement concrete, with stronger acids causing more severe corrosion. Additionally, a lower alkali equivalent can enhance the acid resistance of AAS concrete.
- (3)
- Sulfate corrosion mainly includes sodium sulfate and magnesium sulfate corrosion. While sodium sulfate corrosion may produce a small amount of gypsum and calcium alumina, magnesium sulfate is more complex compared to sodium sulfate, resulting in hydromagnesite, M-S-H, M-A-S-H, and gypsum, so that the destruction of AAS cement concrete is serious; therefore, AAS cement concrete resistance to sodium sulfate corrosion is better than magnesium sulfate, and compared with the ordinary silicate cement concrete durability, is also more excellent.
- (4)
- AAS cement concrete exhibits good resistance to seawater corrosion. When AAS concrete is immersed in a solution rich in chloride ions, it promotes the development of strength. Furthermore, preparing AAS cement concrete with seawater and sea sand can enhance its mechanical properties to a certain extent. The use of seawater as mixing water has potential feasibility. This conclusion contrasts with that of OPC concrete, making AAS concrete more suitable than OPC concrete for use in coastal environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Li, K.; Yao, X.; Zhu, B.; Wang, J.; Dong, Q.; Wang, X. Molecular interfacial properties and engineering performance of conductive fillers in cementitious composites. J. Mater. Res. Technol. 2022, 19, 591–604. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Liu, S.; Dehghani, A.; Xiang, X.; Wei, J.; Wang, X. Mechanical, chemical and hydrothermal activation for waste glass reinforced cement. Constr. Build. Mater. 2021, 301, 124361. [Google Scholar] [CrossRef]
- Sun, J.; Lin, S.; Zhang, G.; Sun, Y.; Zhang, J.; Chen, C.; Morsy, A.; Wang, X. The effect of graphite and slag on electrical and mechanical properties of electrically conductive cementitious composites. Constr. Build. Mater. 2021, 281, 122606. [Google Scholar] [CrossRef]
- Baščarevć, Z. 14—The resistance of alkali-activated cement-based binders to chemical attack. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Sawston, UK, 2015; pp. 373–396. [Google Scholar]
- Ren, Z.; Sun, J.; Zeng, X.; Chen, X.; Wang, Y.; Tang, W.; Wang, X. Research on the electrical conductivity and mechanical properties of copper slag multiphase nano-modified electrically conductive cementitious composite. Constr. Build. Mater. 2022, 339, 127650. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, J.; Tang, W.; Zeng, X.; Zeng, H.; Wang, Y.; Wang, X. Mechanical and electrical properties investigation for electrically conductive cementitious composite containing nano-graphite activated magnetite. J. Build. Eng. 2022, 57, 104847. [Google Scholar] [CrossRef]
- Valencia-Saavedra, W.G.; Mejía de Gutiérrez, R. Resistance to Chemical Attack of Hybrid Fly Ash-Based Alkali-Activated Concretes. Molecules 2020, 25, 3389. [Google Scholar] [CrossRef] [PubMed]
- Rostami, M.; Behfarnia, K. The effect of silica fume on durability of alkali activated slag concrete. Constr. Build. Mater. 2017, 134, 262–268. [Google Scholar] [CrossRef]
- Bernal, S.A.; San Nicolas, R.; Provis, J.L.; Gutiérrez, R.M.; Deventer, J.S. Natural carbonation of aged alkali-activated slag concretes. Mater. Struct. 2013, 47, 693–707. [Google Scholar] [CrossRef]
- Salehi, H.; Mazloom, M. Opposite effects of ground granulated blast-furnace slag and silica fume on the fracture behavior of self-compacting lightweight concrete. Constr. Build. Mater. 2019, 222, 622–632. [Google Scholar] [CrossRef]
- Chol, H.; Lee, J.; Lee, B.; Nam, J. Shrinkage properties of concretes using blast furnace slag and frost-resistant accelerator. Constr. Build. Mater. 2019, 220, 1–9. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, W.; Chen, Z.; Nong, Y.; Guan, S.; Sun, J. Fracture behavior of a sustainable material: Recycled concrete with waste crumb rubber subjected to elevated temperatures. J. Clean. Prod. 2021, 318, 128553. [Google Scholar] [CrossRef]
- Aslani, F.; Sun, J.; Huang, G. Mechanical Behavior of Fiber-Reinforced Self-Compacting Rubberized Concrete Exposed to Elevated Temperatures. J. Mater. Civ. Eng. 2019, 31, 04019302. [Google Scholar] [CrossRef]
- Shi, M.; Ke, G.; Zou, P.; Song, B.; Tang, X.; Jin, D. Progress of hydration, mechanical and shrinkage properties of alkali-slag cement. Bull. Chin. Ceram. Soc. 2022, 41, 162–173. [Google Scholar]
- Jiang, F. Research on the Composition Structure and Performance of Alkali-Activated Slag Micro-Powder Cementitious Materials. Ph.D. Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2008. [Google Scholar]
- Yang, N. Physicochemical basis for the formation of alkali cementitious materials (Ⅱ). J. Chin. Ceram. Soc. 1996, 24, 459–465. [Google Scholar]
- Guo, Y. Research on the Reaction Process of Alkali-Activated Slag Cementitious Material and Its Modification. Ph.D. Thesis, Shenzhen University, Shenzhen, China, 2018. [Google Scholar]
- Zhang, T.; Yu, Q.; Wei, J.; Gong, C.; Zhang, P. Hydration of Granulated Blast Furnace Slag in Different Environments. In Proceedings of the First Annual Meeting of the Cement Branch of the China Silicate Society, Jiaozuo, China, 22 August 2009. [Google Scholar]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Mohammadi Firouz, R.; Illikainen, M. Drying shrinkage in alkali-activated binders—A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Li, Z.; Gao, M.; Lei, Z.; Tong, L.; Sun, J.; Wang, Y.; Wang, X.; Jiang, X. Ternary cementless composite based on red mud, ultra-fine fly ash, and GGBS: Synergistic utilization and geopolymerization mechanism. Case Stud. Constr. Mater. 2023, 19, e02410. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. 1—Introduction to Handbook of Alkali-activated Cements, Mortars and Concretes. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Oxford, UK, 2015; pp. 1–16. [Google Scholar]
- Jiang, N.; Du, Y.; Liu, K. Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack. Appl. Clay Sci. 2018, 161, 70–75. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Shah, K.W.; Dong, Z.; Wu, J. Performance evaluation and microstructure characterization of seawater and coral/sea sand alkali-activated mortars. Constr. Build. Mater. 2020, 259, 120403. [Google Scholar] [CrossRef]
- Ma, Q.; Huang, L.; Niu, Z.; Guo, R.; Yan, F.; Lin, Z.; Du, H. Study on the effects of alkali activator concentration and modulus on compressive properties and hydration products of alkali slag cementitious materials. Bull. Chin. Ceram. Soc. 2018, 37, 2002–2007. [Google Scholar]
- Shi, C.; Krivenko, P.V.; Roy, D. Alkali-Activated Cement and Concrete; Chemical Industry Press: Beijing, China, 2008. [Google Scholar]
- Hu, X.; Shen, F.; Zheng, H.; Guo, Y.; Jiang, X.; Gao, Q. Effect of melt structure property on Al2O3 activity in CaO-SiO2-Al2O3-MgO system for blast furnace slag with different Al2O3 content. Metall. Res. Technol. 2021, 118, 515. [Google Scholar] [CrossRef]
- Adesanya, E.; Perumal, P.; Luukkonen, T.; Yliniemi, J.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Opportunities to improve sustainability of alkali-activated materials: A review of side-stream based activators. J. Clean. Prod. 2021, 286, 125558. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Y. Research on acid corrosion mechanism of concrete. Sci. Technol. Inf. 2010, 35, 1085–1095. [Google Scholar]
- Ling, J.; Ping, S.; Min, P.; Yan, Z.; Dong, J.; Tian, X.; Sun, J. Acid corrosion damage phenomenon of cementitious materials and measures to improve acid corrosion resistance. China Concr. 2020, 4, 44–52. [Google Scholar]
- Abdel-Gawwad, H.A.; Abd El-Aleem, S. Effect of reactive magnesium oxide on properties of alkali activated slag geopolymer cement pastes. Ceramics 2015, 59, 37–47. [Google Scholar]
- Allahverdi, A.; Škvára, F. Nitric acid attack on hardened paste of geopolymeric cements. Ceram.—Silik. 2001, 45, 143–149. [Google Scholar]
- El Idrissi, A.C.; Rozière, E.; Darson-Balleur, S.; Loukili, A. Resistance of alkali-activated grouts to acid leaching. Constr. Build. Mater. 2019, 228, 116681. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; García-Lodeiro, I.; Palomo, A. Durability of alkali-activated fly ashcementitious matcrials. J. Mater. Sci. 2007, 9, 3055–3065. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, X.; Yang, T.; Zhang, Z. The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid. Constr. Build. Mater. 2018, 186, 1177–1187. [Google Scholar] [CrossRef]
- Aliques-Granero, J.; Tognonvi, T.M.; Tagnit-Hamou, A. Durability test methods and their application to AAMs: Case of sulfuric-acid resistance. Mater. Struct. 2016, 50, 36. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; San Nicolas, R. Degradation process of alkali-activated slag/fly ash and Portland cement-based pastes exposed to phosphoric acid. Constr. Build. Mater. 2020, 232, 117209. [Google Scholar] [CrossRef]
- Xie, Y.; Lin, X.; Pan, W.; Ji, T.; Liang, Y.; Zhang, H. Study on corrosion mechanism of alkali-activated concrete with biogenic sulfuric acid. Constr. Build. Mater. 2018, 188, 9–16. [Google Scholar] [CrossRef]
- Xie, Y.; Lin, X.; Ji, T.; Liang, Y.; Pan, W. Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Constr. Build. Mater. 2019, 228, 117071. [Google Scholar] [CrossRef]
- Zhang, L. Research on the Properties of Alkali-Activated Composite Cinder (AAW) Concrete. Ph.D. Thesis, Chongqing University, Chongqing, China, 2006. [Google Scholar]
- Asaad, M.A.; Huseien, G.F.; Memon, R.P.; Ghoshal, S.K.; Mohammadhosseini, H.; Alyousef, R. Enduring performance of alkali-activated mortars with metakaolin as granulated blast furnace slag replacement. Case Stud. Constr. Mater. 2022, 16, e845. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cem. Concr. Compos. 2016, 72, 168–179. [Google Scholar] [CrossRef]
- Sturm, P.; Gluth, G.J.G.; Jäger, C.; Brouwers, H.J.H.; Kühne, H.-C. Sulfuric acid resistance of one-part alkali-activated mortars. Cem. Concr. Res. 2018, 109, 54–63. [Google Scholar] [CrossRef]
- Huseien, G.F.; Shah, K.W. Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation. Constr. Build. Mater. 2020, 235, 117458. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Kuri, J.C.; Sarker, P.K. Sustainable use of waste glass in alkali activated materials against H2SO4 and HCl acid attacks. Clean. Eng. Technol. 2022, 6, 100354. [Google Scholar] [CrossRef]
- Mithun, B.M.; Narasimhan, M.C. Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. J. Clean. Prod. 2016, 112, 837–844. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; San Nicolas, R. Degradation of Alkali-Activated Slag and Fly Ash Mortars under Different Aggressive Acid Conditions. J. Mater. Civil. Eng. 2021, 33, 04021140. [Google Scholar] [CrossRef]
- Alexander, M.G.; Fourie, C. Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. Mater. Struct. 2011, 44, 313–330. [Google Scholar] [CrossRef]
- Zhao, W.; Fan, Z.; Li, X.; Kong, L.; Zhang, L. Characterization and Comparison of Corrosion Layer Microstructure between Cement Mortar and Alkali-Activated Fly Ash/Slag Mortar Exposed to Sulfuric Acid and Acetic Acid. Materials 2022, 15, 1527. [Google Scholar] [CrossRef] [PubMed]
- Afridi, S.; Sikandar, M.A.; Waseem, M.; Nasir, H.; Naseer, A. Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs). Constr. Build. Mater. 2019, 217, 530–542. [Google Scholar] [CrossRef]
- Pandit, P.; Prashanth, S.; Katpady, D.N. Durability of alkali-activated fly ash-slag concrete- state of art. Innov. Infrastruct. Solut. 2024, 9, 222. [Google Scholar]
- Lloyd, R.R.; Provis, J.L.; van Deventer, J.S.J. Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater. Struct. 2011, 45, 1–14. [Google Scholar] [CrossRef]
- Mellado, A.; Pérez-Ramos, M.I.; Monzó, J.; Borrachero, M.V.; Payá, J. Resistance to acid attack of alkali-activated binders: Simple new techniques to measure susceptibility. Constr. Build. Mater. 2017, 150, 355–366. [Google Scholar] [CrossRef]
- Teymouri, M.; Behfarnia, K.; Shabani, A. Mix Design Effects on the Durability of Alkali-Activated Slag Concrete in a Hydrochloric Acid Environment. Sustainability 2021, 13, 8096. [Google Scholar] [CrossRef]
- Thunuguntla, C.S.; Rao, T.G. Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 2018, 193, 173–188. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Gutiérrez, R.M.; Provis, J.L. Performance of alkali-activated slag mortars exposed to acids. J. Sustain. Cem.-Based Mater. 2012, 1, 138–151. [Google Scholar] [CrossRef]
- Li, T.; Sun, Z.; Ding, K. Research progress on mechanical properties and erosion products of sulfate-eroded concrete. China Concr. Cem. Prod. 2019, 1, 1–5. [Google Scholar]
- Ogawa, S.; Nozaki, T.; Yamada, K.; Hirao, H.; Hooton, R.D. Improvement on sulfate resistance of blended cement with high alumina slag. Cem. Concr. Res. 2012, 42, 244–251. [Google Scholar] [CrossRef]
- Li, J.; Qin, Q.; Sun, J.; Ma, Y.; Li, Q. Mechanical and conductive performance of electrically conductive cementitious composite using graphite, steel slag, and GGBS. Struct. Concr. 2020, 23, 533–547. [Google Scholar] [CrossRef]
- Jin, Y.; Dong, Z.; Stephan, D.; Li, M. Experimental study on the durability of alkali-stimulated slag concrete under the action of erosive media. Concrete 2021, 9, 82–85. [Google Scholar]
- Ye, H.; Chen, Z.; Huang, L. Mechanism of sulfate attack on alkali-activated slag: The role of activator composition. Cem. Concr. Res. 2019, 125, 105868. [Google Scholar] [CrossRef]
- de Oliveira, L.B.; de Azevedo, A.R.G.; Marvila, M.T.; Elaine, C.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of geopolymers with industrial waste. Case Stud. Constr. Mater. 2022, 16, e839. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator. J. Am. Ceram. Soc. 2003, 86, 1389–1394. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; Deventer, V. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 2013, 46, 361–373. [Google Scholar] [CrossRef]
- Zheng, R.; Yang, C.; Chen, Y. Discussion on the mechanism of alkali-inspired cementitious materials against sulfate erosion. J. Zhengzhou Univ. 2012, 33, 1–4. [Google Scholar]
- Xiang, J.; Liu, L.; He, Y.; Zhang, N.; Cui, X. Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to karst water. Cem. Concr. Compos. 2019, 99, 140–150. [Google Scholar] [CrossRef]
- Rashad, A.M.; Bai, Y.; Basheer, P.A.M.; Milestone, N.B.; Collier, N.C. Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 2013, 37, 20–29. [Google Scholar] [CrossRef]
- Binici, H.; Kapur, S.; Arocena, J.; Kaplan, H. The sulphate resistance of cements containing red brick dust and ground basaltic pumice with sub-microscopic evidence of intra-pore gypsum and ettringite as strengtheners. Cem. Concr. Compos. 2012, 34, 279–287. [Google Scholar] [CrossRef]
- Wang, X. Study on the microstructure of hydrated C-A-S-H gel of alkali-activated slag cement. Silic. Bull. 2019, 38, 1062–1067. [Google Scholar]
- Provis, J.L.; Myers, R.J.; White, C.E.; Rose, V.; Deventer, J.S.J.V. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 2012, 42, 855–864. [Google Scholar] [CrossRef]
- Coppola, L.; Coffetti, D.; Crotti, E.; Gazzaniga, G.; Pastore, T. The Durability of One-Part Alkali-Activated Slag-Based Mortars in Different Environments. Sustainability 2020, 12, 3561. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Zhang, Z.; Hu, X. Reaction mechanism of sulfate attack on alkali-activated slag/fly ash cements. Constr. Build. Mater. 2022, 318, 126052. [Google Scholar] [CrossRef]
- Aydın, S.; Baradan, B. Sulfate resistance of alkali-activated slag and Portland cement based reactive powder concrete. J. Build. Eng. 2021, 43, 103205. [Google Scholar] [CrossRef]
- Zhang, J. Carbonation, Chloride Binding and Sulfate Erosion Resistance of Alkali Slag/Fly Ash Cement; Hunan University: Changsha, China, 2019. [Google Scholar]
- Wang, A.; Zheng, Y.; Zhang, Z.; Liu, K.; Li, Y.; Shi, L.; Sun, D. The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review. Engineering 2020, 6, 695–706. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Shah, S.F.A. Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Constr. Build. Mater. 2020, 265, 120320. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Yang, K.; Zhu, X.; Gevaudan, J.P.; Yang, C.; Basheer, M. The long-term failure mechanisms of alkali-activated slag mortar exposed to wet-dry cycles of sodium sulphate. Cem. Concr. Compos. 2021, 116, 103893. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [Google Scholar] [CrossRef]
- Sun, S.; Ye, Z.; Liu, K.; Wang, A.; Guan, Y.; Chen, D. Sand consolidation characteristics and sulfate erosion resistance of alkali slag cementitious materials. Mater. Rep. 2020, 34, 10061–10067. [Google Scholar]
- Wang, G. Sand consolidation characteristics and sulfate erosion resistance of alkali slag cementitious materials. Chem. Eng. Manag. 2020, 33, 64–65. [Google Scholar]
- Cheng, Y. Research on Service Performance Mechanism and Pore Solution of Alkali-Activated Slag Concrete under Sulfate Dry and Wet Cycles; Qingdao University of Technology: Qingdao, China, 2018. [Google Scholar]
- Zhu, H.; Liang, G.; Li, H.; Wu, Q.; Zhang, C.; Yin, Z.; Hua, S. Insights to the sulfate resistance and microstructures of alkali-activated metakaolin/slag pastes. Appl. Clay Sci. 2021, 202, 105968. [Google Scholar] [CrossRef]
- Heikal, M.; Nassar, M.Y.; El-Sayed, G.; Ibrahim, S.M. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Constr. Build. Mater. 2014, 69, 60–72. [Google Scholar] [CrossRef]
- Karakoç, M.B.; Türkmen, İ.; Maraş, M.M.; Kantarci, F.; Demirboğa, R. Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram. Int. 2016, 42 Pt B, 1254–1260. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, S.; Chen, W. Research on sulfate erosion resistance of alkali slag concrete. Concrete 2019, 9, 43–46. [Google Scholar]
- Huang, Z.; Yu, X. Study on sulfate erosion resistance of alkali slag concrete and cement concrete. Concr. Cem. Prod. 2021, 9, 21–24. [Google Scholar]
- Gong, K.; White, C.E. Nanoscale Chemical Degradation Mechanisms of Sulfate Attack in Alkali-activated Slag. J. Phys. Chem. 2018, 122, 5992–6004. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002, 32, 211–216. [Google Scholar] [CrossRef]
- Komljenovic, M.; Bascarevic, Z.; Marjanovic, N.; Nikolić, V. External sulfate attack on alkali-activated slag. Constr. Build. Mater. 2013, 49, 31–39. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Sanne, M.; Robert, J.N.; Daniel, L.; Jochen, H. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Monteiro, P. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Publishing: New York, NY, USA, 2005. [Google Scholar]
- Aslani, F.; Sun, J.; Bromley, D.; Ma, G. Fiber-reinforced lightweight self-compacting concrete incorporating scoria aggregates at elevated temperatures. Struct. Concr. 2019, 20, 1022–1035. [Google Scholar] [CrossRef]
- Oh, B.H.; Jang, S.Y. Effects of material and environmental parameters on chloride penetration profiles in concrete structures. Cem. Concr. Res. 2007, 37, 47–53. [Google Scholar] [CrossRef]
- Shi, J.; Wu, M.; Ming, J. Long-term corrosion resistance of reinforcing steel in alkali-activated slag mortar after exposure to marine environments. Corros. Sci. 2021, 179, 109175. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, X. Experiment on the effect of chloride salt on the strength of alkali-activated slag paste. J. Beijing Univ. Aeronaut. Astronaut. 2015, 41, 693–700. [Google Scholar]
- Babaee, M.; Castel, A. Chloride diffusivity, chloride threshold, and corrosion initiation in reinforced alkali-activated mortars: Role of calcium, alkali, and silicate content. Cem. Concr. Res. 2018, 111, 56–71. [Google Scholar] [CrossRef]
- Jun, Y.; Yoon, S.; Oh, J. A Comparison Study for Chloride-Binding Capacity between Alkali-Activated Fly Ash and Slag in the Use of Seawater. Appl. Sci. 2017, 7, 971. [Google Scholar] [CrossRef]
- Mengasini, L.; Mavroulidou, M.; Gunn, M.J. Alkali-activated concrete mixes with ground granulated blast furnace slag and paper sludge ash in seawater environments. Sustain. Chem. Pharm. 2021, 20, 100380. [Google Scholar] [CrossRef]
- Nikolic, I.; Tadic, M.; Jankovic-Castvan, I.; Radmilović, V.V.; Radmilović, V.R. Durability of alkali activated slag in a marine environment: Influence of alkali ion. J. Serbian Chem. Soc. 2018, 83, 1143–1156. [Google Scholar] [CrossRef]
- Li, Y.-L.; Zhao, X.-L.; Raman, R.K.S.; Al-Saadi, S. Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand. Constr. Build. Mater. 2018, 159, 704–724. [Google Scholar] [CrossRef]
- Yang, S.; Xu, J.; Zang, C.; Li, R.; Yang, Q.; Sun, S. Mechanical properties of alkali-activated slag concrete mixed by seawater and sea sand. Constr. Build. Mater. 2019, 196, 395–410. [Google Scholar] [CrossRef]
- Dasar, A.; Patah, D.; Hamada, H.; Sagawa, Y.; Yamamoto, D. Applicability of seawater as a mixing and curing agent in 4-year-old concrete. Constr. Build. Mater. 2020, 259, 119692. [Google Scholar] [CrossRef]
- Melchers, R. Pitting Corrosion of Mild Steel in Marine Immersion Environment--Part 2: Variability of Maximum Pit Depth. Corros. J. Sci. Eng. 2004, 60, 937–944. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Y.; Liu, Z.; Cui, Z. Effects of seawater corrosion on compression-induced buckling performance of FRP-CFST columns. Eng. Fail. Anal. 2024, 162, 108441. [Google Scholar] [CrossRef]
- Mohammed, T.; Hamada, H.; Yamaji, T. Performance of seawater-mixed concrete in the tidal environment. Cem. Concr. Res. 2004, 34, 593–601. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Mi, T.; Ding, X.; Tang, L.; Xing, F. Durability study of seawater and sea-sand concrete under the combined effects of carbonation and chloride redistribution. J. Build. Eng. 2024, 89, 109294. [Google Scholar] [CrossRef]
- Chalee, W.; Jaturapitakkul, C.; Chindaprasirt, P. Predicting the chloride penetration of fly ash concrete in seawater. Mar. Struct. 2008, 22, 341–353. [Google Scholar] [CrossRef]
- Ting, M.Z.Y.; Yi, Y. Durability of cementitious materials in seawater environment: A review on chemical interactions, hardened-state properties and environmental factors. Constr. Build. Mater. 2023, 367, 130224. [Google Scholar] [CrossRef]
- Cai, Y.; Tao, Y.; Xuan, D.; Sun, Y.; Poon, C.S. Effect of seawater on the morphology, structure, and properties of synthetic ettringite. Cem. Concr. Res. 2023, 163, 107034. [Google Scholar] [CrossRef]
- Rashad, A.M.; Sadek, D.M. An Exploratory Study on Alkali-Activated Slag Blended with Microsize Metakaolin Particles Under the Effect of Seawater Attack and Tidal Zone. Arab. J. Sci. Eng. 2022, 47, 4499–4510. [Google Scholar] [CrossRef]
Types of Acids | Condition | Result | Ref. |
---|---|---|---|
Sulfuric acid solution | - | Bubbles are generated on the surface of AAS concrete, accompanied by the smell of rotten eggs; The higher the concentration of sulfuric acid, the more severe the corrosion. | Lanfang [34] |
- | The higher the slag content, the more severe the corrosion. | Lee [36] | |
Soak in a 3% concentration solution for 90 days | All specimens showed a significant decrease in compressive strength, but AAS concrete had less strength loss than OPC concrete. | Newaz [45] | |
Soak in pH = 1 solution for 120 days | The strength loss of OPC concrete is 71%, and the strength loss of AAS concrete is 21%. | Mithun [46] | |
Soak in a 5% concentration solution for 100 days and 365 days | OPC concrete loses 103% of its quality within 100 days, while AASC only loses 10% within 365 days. | Mithun [46] | |
Phosphoric acid solution, mixed solution of phosphoric acid and sulfuric acid | - | The corrosion effect of phosphoric acid solution is most obvious, while sulfuric acid solution is the least. | Ren [31] Jie [41] |
Acetic acid, sulfuric acid solution | Soak at the same pH | The smaller the pH value, the rougher the surface of the sample, and the corrosion effect of acetic acid is the most obvious. | Zhao [43] |
Hydrochloric acid solution | - | As the soaking time increases, the quality loss of AAS can reach 4.5–5.5%. | Afridi [50] Hamsashree [51] |
AAS concrete excited by different activators | Low alkali equivalent makes AAS concrete have good acid resistance. | ||
Sulfuric acid and nitric acid solutions | - | Sulfuric acid has the slowest corrosion effect on AAS cement, while nitric acid has a deeper corrosion depth on AAS than sulfuric acid. | Lloyd [46] |
Sulfuric acid, hydrochloric acid, nitric acid solution | Soak at the same concentration of 5% | The compressive strength loss of AAS concrete is highest in sulfuric acid, followed by hydrochloric acid and nitric acid. | Thunuguntla [55] |
Types of Sulfate | Results | Refs. |
---|---|---|
Na2SO4 solution | The surface edge of the mortar sample has no obvious damage, and the strength has been lost. | Ahmad [70] |
The soaking and drying cycle was carried out without the formation of gypsum. | Li [71] | |
The compressive strength increases while the quality remains basically unchanged. | Guo Jun [72] | |
With the continuous extension of erosion time, the compressive strength will still decrease. | Zhu [73,74] | |
The surface of the AAS sample remains unchanged. | Ying Hua [78] | |
The strength of slag Portland cement first increases slightly and then decreases, while the strength of AAS cement continues to increase during the experimental aging period. | Komljenovic [79] | |
MgSO4 solution | White Mg(OH)2 precipitate adheres to the surface of the test specimen. | Ying Hua [78] |
Low concentrations have a relatively small impact on AAS; 5–10% magnesium sulfate can lead to complete disintegration of the gel. | Gong [81] | |
The strength loss of AAS concrete is greater than that of OPC concrete. | Komljenovic [80] |
Conditions | Results | Refs. |
---|---|---|
Mixing with seawater | The strength of AAS cement mixed with NaCl increases as the amount of NaCl increases, while the strength of AAS cement mixed with CaCl2 does not change significantly. | Jun [89] |
Replacing freshwater with seawater can improve the compressive strength of concrete. | Mengasini [18,90] | |
Different ambient temperatures. | The higher the ambient temperature, the more pronounced the cracks in the AAS concrete mixed with seawater become. | Li [91] |
Using sea sand and seawater for mixing | The hydration product morphology of AAS concrete is influenced; there is a slight increase in drying shrinkage; and the resistance to chloride ion penetration is enhanced. | Yang [100] |
When using water mixed with OPC concrete, initial strength increases, but later strength decreases significantly, and a large amount of corrosion occurs in the steel bars, resulting in corrosion pits. | Dasar [102] Melchers [103] Mohammed [105] | |
Simulated tidal effect | The samples exposed to simulated tidal zones are more severely damaged than those fully immersed in seawater. | Rashad [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Huang, X.; Zhang, L.; Yang, H. A Review on Research Progress of Corrosion Resistance of Alkali-Activated Slag Cement Concrete. Materials 2024, 17, 5065. https://doi.org/10.3390/ma17205065
Liang Q, Huang X, Zhang L, Yang H. A Review on Research Progress of Corrosion Resistance of Alkali-Activated Slag Cement Concrete. Materials. 2024; 17(20):5065. https://doi.org/10.3390/ma17205065
Chicago/Turabian StyleLiang, Qiushuang, Xinlu Huang, Lanfang Zhang, and Haiyan Yang. 2024. "A Review on Research Progress of Corrosion Resistance of Alkali-Activated Slag Cement Concrete" Materials 17, no. 20: 5065. https://doi.org/10.3390/ma17205065
APA StyleLiang, Q., Huang, X., Zhang, L., & Yang, H. (2024). A Review on Research Progress of Corrosion Resistance of Alkali-Activated Slag Cement Concrete. Materials, 17(20), 5065. https://doi.org/10.3390/ma17205065