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Abstract: China is the largest producer and user of Ordinary Silicate Cement (OPC), and rapid
infrastructure development requires more sustainable building materials for concrete structures.
Portland cement emits large amounts of CO2 in production. Given proposals for “carbon peaking
and carbon neutralization”, it is extremely important to study alternative low-carbon cementitious
materials to reduce emissions. Alkali-activated slag (AAS) cement, a new green cementitious material,
has high application potential. The chemical corrosion resistance of AAS concrete is important for
ensuring durability and prolonging service life. This paper reviews the hydration mechanism of AAS
concrete and discusses the composition of hydration products on this basis, examines the corrosion
mechanism of AAS concrete in acid, sulfate, and seawater environments, and reviews the impact
of its performance due to the corrosion of AAS concrete in different solutions. Further in-depth
understanding of its impact on the performance of concrete can provide an important theoretical basis
for its use in different environments and provides an important theoretical basis for the application
of AAS concrete, so that we can have a certain understanding of the durability of AAS concrete.

Keywords: alkali-activated slag cement; acid; sulfate; seawater; chemical corrosion mechanism

1. Introduction

Cement production consumes about 5% of the world’s industrial energy, while each
tonne of silicate cement (OPC) requires about 1.5 tonnes of raw materials. The production
of 1 tonne of cement emits approximately 0.94 tonnes of carbon dioxide into the atmo-
sphere, mainly from the decarbonisation of calcite in the cement clinker, the combustion
process, and the electricity required [1]. Sun et al. investigated the incorporation of blast
furnace slag into cementitious materials and found that the mineral composition of blast
furnace slag, especially Al2O3 and SiO2, resulted in stronger interfacial bonding with the
cement [2–4], which could resist the erosion of the material to a certain extent when the
interfacial bonding ability of the cement was better. Alkali-activated slag (AAS) cement is a
water-hard cementitious material produced by using a strong alkali as the activator and
granulated blast furnace slag as the activating material. Concrete is commonly found in
a variety of conditions, such as industrial areas, sewers, and marine environments. AAS
cements have excellent durability properties in the produced concrete due to the absence
of calcium hydroxide, which generally does not produce the expansion-type hydration
product calcite [5]. Recently, there has also been research into the use of copper slag in
multiphase nano-modified electrically conductive cementitious composites, exploring their
electrical conductivity and mechanical properties [6,7]. At present, there are more studies
on the basic properties of AAS cement concrete at home and abroad, and there are some
studies on its durability aspects, which mainly focus on chemical corrosion resistance,
permeability resistance, carbonation resistance, etc. [8–10]. This paper reviews the chemical
corrosion resistance of AAS cement concrete. Since the corrosion of AAS cement concrete
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is closely related to its hydration products, the focus is on summarizing the hydration
mechanism, acid and sulfate corrosion mechanism and its performance effects, and the
effect of seawater on the performance of AAS cement concrete. This review provides
key information for further research on the development and application of AAS cement
concrete under different conditions.

2. Hydration Mechanism of Alkali-Activated Slag Cement

Granulated blastfurnace slag is a calcium-rich reactive material, and its main chemical
composition includes 35–50% CaO, 30–35% SiO2, 8–15% Al2O3, and it contains a large
amount of FeO, MgO, and TiO [11,12]. Slag has potential water hardness but is difficult to
hydrate at room temperature and requires an activator to stimulate its activity and produce
gelling properties. Currently, the most commonly used activators are water glass, NaOH,
Na2SiO3, Na2SO4, Na2CO30, and their composites. Slag has lower Ca/Si and higher Al/Si
than OPC, so there are differences in AAS hydration products. In addition to their unique
properties, slag-based materials are also being studied in the context of sustainability, as
evidenced in research on the fracture behavior of recycled concrete with waste crumb
rubber subjected to elevated temperatures [13,14].

The hydration process of AAS (Alkali-Activated Slag) is a complex physicochemical
process that encompasses multiple stages, including the dissolution of slag particles, ion
exchange, precipitation, and crystallization. Under the action of the activator, the protective
layer of silicon oxygen is damaged. The Mg-O bond and Ca-O bond in the slag break
first due to their weak bond energy, the calcium-rich phase is decomposed, the silica-rich
phase is exposed, the activator enters the interior, the slag starts to decompose, and the
process of slag fractional phase structural destruction occurs [15,16], as shown in Figure 1.
Si-O-Si in the slag glass then decomposes to form the transition compounds -Si-OH and
-Si-O- (as shown in Figure 2), but -Si-O- is negatively charged and will combine with
positively charged metal cations [17] to form calcium silicate hydrate (C-S-H) gels [18]. As
hydration progresses, the C-S-H gel gradually regularises, effective interparticle bonding is
achieved, and the slurry structure becomes denser [19]. -Si-O-Al-O bonds and Si-O-Si bonds
share the same reaction process to produce [Al(OH)4]−, [Al(OH)5]2−, and [Al(OH)6]3−

to form calcium aluminate hydrate (C-A-H) [17]. As the hydration reaction progresses,
the hydration products gradually increase in number and come into contact with each
other, forming flocculent structures. These flocculent structures undergo polycondensation
reactions, resulting in the hydration products becoming more compact and stable. Alkali-
activation also involves the dissolution of aluminum and silicon substances on the surface
of the aluminosilicate, and the polymerization of reactive surface groups and soluble
substances to form a gel (i.e., gel 1 with high aluminum content is converted to gel 2 with
more silicon content), which then continues to develop to form a sodium aluminum silicate
hydrate (N-A-S-H) gel [20], and exhibits similar mechanisms to those observed in ternary
cementless composites based on red mud, ultra-fine fly ash, and GGBS [21]. As shown
in Figure 3, a relatively low Ca/Si (C/S = 0.9–1.2) of calcium aluminum silicate hydrate
(C-A-S-H) gel is then produced [22].

In summary, the major hydration products of AAS cement include C-S-H, C-A-S-H,
C-A-S, and N-A-S-H [23–25]. The minor products change with the type of slag and type of
activator [26] and may include hydrotalcite [Mg6Al2CO3(OH)16-4H2O], C4AH13, CASH8,
C4ACH11, C8AC2H24, etc. [22]. As the hydration product does not produce Ca(OH)2,
a direct reaction among some chemical substances to produce expansive substances is
avoided, and the formation of calcite in the hydration process is also blocked. The C-S-H
structure is relatively regular, which can fill the pores well, and with the formation of
C-S-H structure being gradually dense, this reduces potential channels through which
erosive substances can enter. The formation of the C-A-S-H structure is also more stable
and less likely to be damaged, providing the possibility of better chemical corrosion
resistance. Based on the polycondensation reaction, the hydration products undergo further
crystallization, forming compounds with definite crystalline structures. The formation
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of these compounds signifies the completion of the hydration reaction and the ultimate
hardening of the alkali-activated slag. The hydration mechanism of activated slag is
a complex process involving multiple stages such as dissolution of alkali metal ions,
hydration reactions of slag, formation and evolution of hydration products, as well as the
underlying hydration mechanisms. This process has a significant impact on the properties
and applications of alkali-activated slag.

The excitation effects vary significantly with different activators. When sodium metasil-
icate is used as an activator compared to water glass, the strength development is faster,
which is likely attributed to the specific chemical properties of sodium metasilicate. On the
other hand, when sodium hydroxide serves as the activator, it may generate a small amount
of ettringite or other hydrated aluminates. However, the quantity and types of these prod-
ucts are influenced by various factors such as activator concentration, slag composition,
reaction conditions, and so forth.
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3. Acid Corrosion Resistance of Alkali-Activated Slag Cement Concrete
3.1. Mechanism of Acid Corrosion

Acid corrosion is a phenomenon that causes a decrease in the alkalinity of concrete,
leading to the decomposition of cement hydration products [29]. Concrete itself is alkaline.
Therefore, if the acidity is slight, pockmarks will appear on the surface of the concrete;
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if the acidity is strong enough and in a large amount, salts (calcium chloride, sodium
chloride, etc.) will be produced inside the concrete; the corrosion is more rapid if the acid
is mobile. Acid corrosion exists in the environment, e.g., acid rain, rivers in industrial
and chemical areas, and microorganisms. Although the hydration product Ca(OH)2 is
minimal in AAS cement concrete, the presence of alkali activators makes the pH in the
pores high nonetheless [30]. In the early stage of acid erosion, there is more OH− in the
pores of AAS cement concrete, and when H+ enters the pores by osmosis, there can be
enough OH− to react with it and keep the pH high [30], thus no obvious degradation can
be seen in the early stage [31]; however, with the prolongation of time, the H+ dissolves
some of the calcium, which in turn leads to the degradation of the gel [32]. Studies have
shown that AAS cements leach more Ca2+ in acidic environments, and since the slag itself
is insoluble in acidic solutions, Ca2+ is mainly introduced by raw materials or produced by
decalcification of the gel [33–35]. In addition, acid produces direct damage to the Si-O-Al
bond and de-alumination occurs, leading to changes in the composition and structure of
the silicoaluminate network [32]. If the corrosion medium is sulfuric acid, acid corrosion
also produces the swelling substance gypsum [36]. The pH of the acidic solution has a
great influence on the degradation of AAS cement concrete [37].

In addition to chemical sulfuric acid erosion, biological sulfuric acid corrosion also
exists. Biological sulfuric acid is caused by microorganisms, and studies have shown that
the erosion product is still gypsum [38]. Xie Y [39] showed that the hydration products of
AAC before corrosion are hard calcium silica, tobermorite, C-S-H, and zeolite. Figure 4
shows the corrosion morphology of AAC cement concrete; Figure 4a shows hard calcium
silica is fused with gypsum; Figure 4b shows that the surface of the zeolite is covered
with a layer of gypsum; and Figure 4c shows that the whole pore wall is covered with
gypsum, the crystal shape of gypsum is clearly visible, and the product at the original
pore wall is covered with gypsum. It can be seen that the calcium ions generated by the
decalcification reaction of hard calcium silica are corroded by biosulfuric acid combined
with the intruding SO4

2− to form gypsum; zeolites and other silica-aluminate materials
were corroded by biosulfuric acid, which led to the dissolution of aluminum ions. This
resulted in the damage of the structure and the loss of the original crystal shapes, and the
zeolites were also covered by gypsum eventually. The corroded area swells and cracks,
which will exacerbate the leaching of acidic ions and make acidic corrosion more severe.
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acid [33]. (a) CaSO4•2H2O and Xontlite; (b) the surface condition of zeolite; (c) the condition of the
pore wall.

3.2. Effect of Acid Corrosion on Concrete Properties

Acid corrosion begins on the surface of concrete, and the degree of corrosion is related
to the pH of the acid solution, the properties and proportion of slag, and the type of acid [38].
Fang Z [40] found that when AAS cement concrete specimens were put into sulfuric acid
solution, bubbles were generated on the surface accompanied by rotten egg odor. With the
increase in sulfuric acid concentration, the surface of the concrete was chalked severely,
and the corrosion was aggravated. At the same time, the longer the exposure time of AAS
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cement in a sulfuric acid solution, the more serious the strength loss [41]. Lee [42] showed
that in alkali-activated slag/fly ash mortar, the larger the slag content, the more detrimental
to the resistance to sulfuric acid corrosion, this is because a higher calcium content of
slag is more prone to gypsum production, which leads to expansion and associated crack
formation [43,44]. In Khan’s study, the samples were immersed in a 3% sulfuric acid
solution for 90 days. The results showed that, after 90 days, the compressive strength
of all the samples was significantly reduced [45]. AAS concrete showed better corrosion
resistance than OPC concrete after 90 days. AAS concrete lost only 21% of its strength after
120 days of exposure to sulfuric acid at pH 1, while OPC-based concrete suffered a 71% loss
of strength. OPC exposed to 5% sulfuric acid solution lost 103% of its mass in 100 days,
while AASC lost only 10% in 365 days [46].

Ren J [37] studied alkali-activated slag/fly ash mortar in the presence of phospho-
ric acid [37,44] and found that the degradation depth increased when the slag dosage
increased, but the degradation of the alkali-activated mortar slowed down with the ex-
tension of erosion time. Additionally, the phosphoric acid solution degraded the mortar
more deeply than the mixture of phosphoric acid and sulfuric acid, while the sulfuric acid
solution degraded the mortar the least. Similar conclusions were obtained by Jie [47]. The
different corrosiveness of the three solutions may be due to the difference in the type and
concentration of the acid, or it may be related to the release of H+ concentration in an
aqueous solution [48]. Zhao W [49] immersed the AAS mortar in acetic acid and sulfuric
acid solutions with the same PH, and the surface of the specimens both showed obvious
flaking phenomenon after 28 d. The smaller the pH, the rougher the surface of the spec-
imens, and the corrosive effect of acetic acid was the most obvious. It can be seen that
acetic acid has a stronger destructive capacity for AAS mortar. If AAS mortar is exposed to
hydrochloric acid and nitric acid, hydrochloric acid leads to more obvious quality loss of
AAS mortar, which is because hydrochloric acid can react with free Ca2+ in AAS mortar to
produce the highly soluble salt CaCl2 [49]. It has been shown that the mass loss of AAS in
a hydrochloric acid solution increases with increasing immersion time [50,51], and changes
in mass were more pronounced in samples subjected to acid attack, up to 4.5–5.5%, than in
samples immersed in water.

Lloyd [52] compared the corrosive effects of sulfuric acid and nitric acid on AAS
cement, geopolymer cement, and calcium aluminate cement by taking them as the objects
of the study. It was confirmed that sulfuric acid corrodes AAS cements the slowest and
nitric acid corrodes AAS to a lesser depth than sulfuric acid. Ana [53] applied two methods
of acid neutralization capacity monitoring and mass loss/consumption of acid monitoring
for rapid testing of acid attack resistance of alkali-activated specimens. Teymouri [54]
investigated the effect of different mix design parameters on the durability of AAS concrete
in a hydrochloric acid solution and the study showed that potassium hydroxide as an
alkaline activator in AAS concrete showed higher strength reduction and weight loss in
hydrochloric acid solution than sodium hydroxide, and that the lower alkali equivalent
gave AAS concrete better acid resistance. At the same concentration of 5%, the compressive
strength loss of AAS concrete was highest in H2SO4, followed by HCl and HNO3 [55].
Organic acids such as acetic acid (CH3COOH) degrade more than chemical acids at the
same pH. Bernal et al. showed that acetic acid at pH 4.5 was more corrosive to AAS
than the more acidic nitric, sulfuric, and hydrochloric acids [56]. Nevertheless, Ren et al.
demonstrated that AAS is still more stable than OPC in an acidic environment [37].The
effect of acid corrosion on concrete properties was studied, as shown in Table 1.
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Table 1. The impact of acid corrosion on concrete performance.

Types of Acids Condition Result Ref.

Sulfuric acid solution

-

Bubbles are generated on the surface of
AAS concrete, accompanied by the smell of
rotten eggs; The higher the concentration of
sulfuric acid, the more severe the corrosion.

Lanfang [34]

- The higher the slag content, the more
severe the corrosion. Lee [36]

Soak in a 3% concentration
solution for 90 days

All specimens showed a significant
decrease in compressive strength, but AAS

concrete had less strength loss than
OPC concrete.

Newaz [45]

Soak in pH = 1 solution for
120 days

The strength loss of OPC concrete is 71%,
and the strength loss of AAS

concrete is 21%.
Mithun [46]

Soak in a 5% concentration
solution for 100 days

and 365 days

OPC concrete loses 103% of its quality
within 100 days, while AASC only loses

10% within 365 days.
Mithun [46]

Phosphoric acid solution,
mixed solution of

phosphoric acid and
sulfuric acid

-
The corrosion effect of phosphoric acid
solution is most obvious, while sulfuric

acid solution is the least.
Ren [31] Jie [41]

Acetic acid, sulfuric
acid solution Soak at the same pH

The smaller the pH value, the rougher the
surface of the sample, and the corrosion
effect of acetic acid is the most obvious.

Zhao [43]

Hydrochloric acid solution
- As the soaking time increases, the quality

loss of AAS can reach 4.5–5.5%.
Afridi [50]

Hamsashree [51]

AAS concrete excited by
different activators

Low alkali equivalent makes AAS concrete
have good acid resistance.

Sulfuric acid and nitric
acid solutions -

Sulfuric acid has the slowest corrosion
effect on AAS cement, while nitric acid has

a deeper corrosion depth on AAS than
sulfuric acid.

Lloyd [46]

Sulfuric acid, hydrochloric
acid, nitric acid solution

Soak at the same
concentration of 5%

The compressive strength loss of AAS
concrete is highest in sulfuric acid,
followed by hydrochloric acid and

nitric acid.

Thunuguntla [55]

4. Sulfate Corrosion Resistance of Alkali-Activated Slag Cement Concrete
4.1. Destruction Mechanism of Sulfate Corrosion

Sulfate erosion is one of the important factors affecting the durability of concrete.
Heavily salted soil, inland salt lakes, industrial wastewater, groundwater, seawater, and
other environments contain a large amount of sulfate, and if concrete exists in these
environments, it will be damaged by SO4

2− erosion [54]. The corrosive destruction of
concrete by sulfate is due to a complex combination of physical and chemical actions
working together to produce expansive substances (calomel and gypsum) [57]. Since the
hydration products of AAS cement concrete are different from those of OPC concrete, the
corrosion mechanism differs.

4.1.1. Sodium Sulfate Corrosion Damage Mechanism

Ogawa et al. investigated the sulfate corrosion resistance of ground blast furnace slag
cement (GGBS) with different contents of calcium sulfate. The sulfate corrosion resistance
was evaluated using ASTMC 1012, and multiple mechanisms of sulfate corrosion resistance
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of GGBS cement were revealed by the analysis of hydration products and sulfate ion
intrusion. The results showed that the hydration products in an alkali-stimulated slag
cement matrix first reacted with external sulfate ions to generate part of calcium alumina,
which reduced the possibility of other internal substances reacting with external sulfate
to achieve the effect of sulfate corrosion resistance [58]. Additionally, research on the
mechanical and conductive performance of electrically conductive cementitious composite
using graphite, steel slag, and GGBS has been conducted, providing insights into the
potential applications of GGBS in multifunctional cementitious materials [59]. According
to Jin Y [60], the anti-ionic erosion performance of AAS cement concrete is closely related to
the composition and structure of the hydration product phase, and the reaction mechanism
of AAS cement and sulfate with different activators is different. Under Na2SO4 erosion,
when Na2CO3 activates (Nc-activated slag) the slag, the presence of carbonate prevents the
formation of calcium alumina due to the competition mechanism between carbonate ions
and sulfate ions in the formation of calcium alumina; calcium alumina is easily formed
when Na2SO4 activates (Ns-activated slag) the slag, and Na2SO4 corrosion causes the
conversion of calcium alumina to monosulfate. This contradicts the mechanism of phase
change of sulfate-containing salts in the OPC system. In the OPC system, calomel is usually
formed due to the reaction of the existing AFm phase with the intruding sulfate, whereas
for AAS, the AFm is formed by the decomposition of the existing calomel in the surface-
exposed portions [61] (as shown in Figure 5). There is also the most common mixture of
NaOH and Na2SiO3 which activates the slag, where the silicate in the activator plays an
important role, and the amount of silica in the system increases when used. In addition, it
is known that, in the reaction of alkali-activated materials, the alumina of the precursor
is more active than silica, and that silica in the silicate activators reacts with the alumina
that is initially released from the precursor, thus accelerating the formation of gels [62]. So,
when Na2SO4 erodes, having less Ca2+ and Al3+ involved in the reaction produces calcite
and gypsum swelling products. So, the mixed activated slag of NaOH and Na2CO3 (NH-
andNc-activated slag) is better for Na2SO4 erosion resistance. Moreover, the structure and
composition of C-A-S-H gels depend greatly on the type of activator, and NaOH-activated
slag has a higher Ca/Si ratio and a more ordered structure compared to Na2SiO3-activated
slag [63]. The C-A-S-H phase undergoes slight decalcification and de-alumination and
promotes the production of trace chalcocite since calcium in the alkali-activated system
may undergo dissolution by ion exchange with Na2SO4 [61,64].
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Another study showed that there were Na2SO4 crystals in the crevices of AAS cement
specimens immersed in Na2SO4 solutions [34]. The study of Rong Z [65] also confirmed that
the destruction of AAS cement in Na2SO4 solutions was due to the infiltration of Na2SO4
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solution into the pores, which formed salt crystals inside to produce volume expansion
damage, and the surface of the specimen was gradually peeled off and chalked through the
wet and dry cycles. However, with the prolongation of the immersion time, the compressive
strength would show a tendency to increase. Analysis of the reasons for this shows that the
dissolution and reaction of excess alkali promotes hydration, Na2SO4 can actually act as
an excitatory agent for AAS cements to make the structure denser, which, together with
the small amount of calcite and gypsum present [23], produces a filler effect internally to
make the microstructure denser [66–68]. In addition, chemical corrosion resistance is better
due to the lower porosity of AAS than that of OPC and the higher curvature of the pore
structure, which provides some inhibition of ion intrusion [69,70].

4.1.2. Magnesium Sulfate Corrosion Damage Mechanism

Compared with Na2SO4, the erosion mechanism of MgSO4 on AAS cement concrete
is different. Due to the reaction between Mg2+ and C-S-H gel, MgSO4 erosion is not simply
“sulfate erosion” [71]. In fact, the key factor determining the rate and effect of sulfate attack
in alkali-activated systems is the nature of the anions and cations of the attacking medium,
with the presence of magnesium ions decalcifying the C-A-S-H, producing gypsum, and
leading to degradation of the gel system [64,72]. The mechanism of MgSO4 erosion resis-
tance of AAS cement concrete using different activators is different. For NaOH-activated
slag cement, in the initial stage, Mg2+ reacts with OH− in the pore solution to form hy-
dromagnesite adsorbed on the surface of the hydration product particles, which hinders
further erosion. As the OH− in the surface layer is consumed, the buffering effect of the
hydromagnesite is gradually lost, and the pH of the surface layer rapidly decreases to
10.5. This is the equilibrium pH of saturated hydromagnesite, and in the absence of the
buffering capacity of organic salts, the pH of the surface AAS decreases rapidly, which leads
to direct decalcification of the C-A-S-H gel. However, at this pH value, there is no large
amount of dealumination, thus the Al-Si ratio in C-A-S-H remains relatively unchanged,
and the intruding Mg2+ further reacts with the decalcified C-A-S-H to form magnesium
silica-aluminate hydrate (M-A-S-H) [61].

C-S-H is unstable at a pH below 10 where Mg2+ ions are exchanged, and this ion ex-
change changes the chemical composition and structure of the gel as Mg2+ replaces Ca2+ in
C-S-H to form hydrated magnesium silicate (M-S-H). The Mg2+ ions may also be combined
with silicate, aluminate, and other constituents of the gel through chemisorption to form
new chemical bonds. As the reaction proceeds, precipitates of silicate and magnesium
complexes may form in the solution, and these precipitates gradually accumulate inside the
concrete to form M-S-H gels. Together, the reaction between the effective Ca2+ in the pore
solution and the intruding SO4

2− will produce gypsum (e.g., Figure 6) [61,64]. M-A-S-H,
M-S-H, and gypsum are expansive substances, which ultimately cause the destruction of
AAS concrete [46]. AAS cements are low in aluminum, and when the hydration reaction
produces a C-A-S-H gel, there is no more free Al3+ provided to produce calcite. Therefore,
there is almost no appearance of calomel in MgSO4 corrosion [73,74]. The reaction mech-
anism of Na2CO3-activated slag with MgSO4 is similar to that of NaOH-activated slag,
but the carbonate phase contained in the specimen reacts with MgSO4, possibly forming
MgCO3 and releasing it into the pore solution [61]. For Na2SO4-activated slag, it is un-
likely that a protective layer of hydromagnesite would form due to insufficient available
OH−, and the subsequent reaction is thought to be similar to that of NaOH-activated
slag [61]. In summary, compared to NaOH− and Na2CO3-activated slag, Na2SO4-activated
slag is less resistant to MgSO4 erosion due to the lack of formation of a hydromagnesite
protective layer.
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4.2. Effect of Sulfate on the Properties of AAS Concrete

One of the factors affecting the resistance of AAS cement concrete to sulfate corrosion
is the type of sulfate [75], as it depends mainly on the cation. To date, there is a large
body of literature comparing the corrosive properties of sodium sulfate and magnesium
sulfate erosion on AAS, which are bound to have different degrees of influence on their
properties because of the large differences in the corrosion mechanisms of these two sulfates.
The effect of sulfate on the properties of AAS concrete was studied, as shown in Table 2.
First of all, sodium sulfate erosion affects the surface, reaction products, and strength
of AAS cement concrete to varying degrees. The results of Ahmad [76], who immersed
alkali-activated slag/fly ash mortar in Na2SO4, showed that there were no visible cracks
or swellings on the surface edges of the mortar specimens, and that the loss of strength
in the specimens was only in the range of 1–17%. Li [77] immersed the AAS mortar in a
Na2SO4 solution for wet and dry cycle tests. No gypsum was observed, indicating that AAS
mortar has little or no sodium sulfate erosion problems, but the crystallization pressure and
diffusion stress of sodium sulfate may cause severe spalling of the surface. The detection
and measurement of such cracks are crucial for assessing the durability of AAS cement
concrete, and recent research has focused on improving the automation of crack detection,
such as the novel visual crack width measurement based on backbone double-scale features
proposed in [78], which enhances the accuracy and efficiency of crack detection. When
MgO and CaO are used to activate slag, MgO as an activator produces more hydrotalcite
and slightly better resistance to sodium sulfate erosion than CaO-activated slag mortars [79].
It has been widely recognized that, in sodium sulfate solutions, the early strength of AAS
cement concrete hydration will increase and the late strength will decrease. Jun W [80]
also immersed AAS cement in Na2SO4 solutions to observe its strength development and
mass changes, and showed that its compressive strength increased with the increase in
erosion time, with the mass remaining basically unchanged. It indicates that sodium sulfate
has a contributing effect on its strength development. It has also been shown that the
compressive strength still decreases with the continuous extension of erosion time [81,82].
Secondly, the magnesium sulfate erosion process is more complicated. Studies have shown
that, after prolonged immersion of AAS cement in a MgSO4 solution, although there is
no obvious change in appearance, the penetration rate of SO4

2− ions decreases with the
extension in hardening time due to the formation of hydration products filling the internal
pores [83], while the compressive strength still decreases with the increase of solution
concentration and immersion time [84].
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Table 2. The impact of sulfates on the performance of AAS concrete.

Types of Sulfate Results Refs.

Na2SO4 solution

The surface edge of the mortar sample has no obvious damage, and the strength
has been lost. Ahmad [70]

The soaking and drying cycle was carried out without the formation of gypsum. Li [71]

The compressive strength increases while the quality remains basically unchanged. Guo Jun [72]

With the continuous extension of erosion time, the compressive strength
will still decrease. Zhu [73,74]

The surface of the AAS sample remains unchanged. Ying Hua [78]

The strength of slag Portland cement first increases slightly and then decreases,
while the strength of AAS cement continues to increase during the experimental

aging period.
Komljenovic [79]

MgSO4 solution

White Mg(OH)2 precipitate adheres to the surface of the test specimen. Ying Hua [78]

Low concentrations have a relatively small impact on AAS; 5–10% magnesium
sulfate can lead to complete disintegration of the gel. Gong [81]

The strength loss of AAS concrete is greater than that of OPC concrete. Komljenovic [80]

Baščarevć showed [5] that the compressive strength of AAS concrete decreased more
significantly in MgSO4 solutions than in Na2SO4 solutions. Hua B [85] showed that in
Na2SO4 solutions there was no change in the surface of AAS specimens, and in MgSO4
solutions the reaction between free Mg2+ and OH− in AAS produced Mg(OH)2 white
precipitates attached to the specimen surface. In addition, when Mg2+ and SO4

2− coexisted,
it led to shrinkage in the formation of cracks within the concrete, and corrosion increased.
Yu H [86] immersed AAS cement into Na2SO4 and MgSO4 solutions and found that the
coefficient of expansion increased only slightly (0.176–0.453%), and the microstructure
remained intact. Magnesium sulfate erosion caused cracks inside the concrete and reduced
its strength, so that the corrosion was more pronounced, while the destructive effect of
sodium sulfate erosion decreased.

In addition to the way the type of sulfate affects the erosion effect, the erosion effect
also varies with different sulfate concentrations. Gong [87] found that sodium sulfate with
a mass percentage of 1–10% and magnesium sulfate with 1% had less effect on AAS and
produced less caliche and gypsum. However, magnesium sulfate with a mass percentage
of 5–10% can lead to complete disintegration of the gel, and the magnesium sulfate erosion
made the internal production of M-S-H and a large amount of gypsum. These differences
are related to the ability of the ions (Na+, Mg2+, H+) to synergize SO4

2− to change the pH
in the pore solution. The effect of Mg2+ is greater than that of Na+, and it is mainly in
the presence of Mg2+ that the production of magnesia hydrate lowers the pH so that the
decalcification of the AAS produces M-S-H, as shown in Figure 7, so that at the same mass
percentage of magnesium sulfate is more able to affect the durability of AAS.
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The durability of AAS cement concrete is better than silicate cement concrete due to
its denser structure. AAS cement concrete showed better durability than OPC concrete in
Na2SO4 solutions [88]. Sheng S [79] observed the products of OPC mortar and AAS mortar
eroded by sodium sulfate by XRD and found that the main cause of cracking in OPC mortar
was the formation of calcite and gypsum. There were more hydrotalcite-like structures in
the erosion products of AAS mortar, whose properties of being able to consume part of
the aluminum phase and adsorb sulfate ions hinder the formation of the erosion products
such as calcite. Komljenovic [89] studied the changes in strength of slag silicate cement
and AAS cement immersed in a Na2SO4 solution for 90 d. The strength of slag silicate
cement increased slightly at 30 d and began to decrease at 60 d. The strength of AAS
cement maintained an increase in strength during the test stage. However, the compressive
strength of AAS mortar specimens in a 10% MgSO4 solution decreased significantly and
the loss of strength was greater than that of OPC mortar, which may be attributed to
the lack of Ca(OH)2 in AAS mortar. This restricts the formation of the protective layer
of hydromagnesite, thus leading to a direct attack of Mg2+ on the C-S-H structure [46].
Aydn [73] has a different view, suggesting that, in a 10% MgSO4 environment, the loss of
strength of OPC concrete was greater than that of AAS cement concrete, a large amount
of gypsum and calomelite was produced inside OPC concrete and the specimens were
damaged, the surface of the AAS concrete did not show any cracking, and crack formation
was observed in the region of 20 to 25 µm depth.

5. Alkali-Inspired Slag Cement Concrete for Seawater Corrosion Resistance

According to the statistics of 2020, about 40% of the world population lives within
100 km of a coast and 10% live in low elevation coastal zones less than 10 m above sea
level [90]. As a result, concrete is often found in seawater environments, such as sea
bridges and harbor terminals. The marine environment is a harsh and complex corrosive
environment, where components of seawater can be transported into concrete through
connecting pores, where the abundance of sulfates and chlorides reduces the durability of
the material, leading to the deterioration of the reinforced concrete structure, and affecting
its load-bearing capacity [91,92]. Different parts of concrete corrode differently in seawater
environments, as shown in Figure 8. The main hydration products of OPC are high-calcium-
type calcium silicate hydrate, calcium hydroxide, and calcium aluminate hydrate, and the
sulfate in seawater reacts with the hydration products of the cement to produce expansion
and cracking. Byung Hwan [93] investigated the effect of relative humidity on the perme-
ability of chloride ions in concrete by determining the chloride ion permeation profiles of
concrete specimens, and found that chloride ions were more diffusible in saturated concrete
pore solutions, and that the poor moisture connectivity of the pore structure of partially
saturated concrete impeded the diffusion of chloride ions. This indicates that the degree of
chloride ion diffusion is related to the degree of densification of the material itself. AAS ce-
ment concrete hydration products are free of calcium hydroxide and are more dense, which
makes them more suitable for application in the marine environment. Shi [94] confirmed
that AAS mortar can provide better protection for steel reinforcement. The study by Yin
C [95] found that the strength of NaCl-doped AAS cement increased with the increase in
dosage, and the degree of slag hydration and C-S-H content increased significantly, which
was because the addition of NaCl produced NaOH, which increased the alkalinity of the
liquid phase of AAS cement and promoted the further hydration of the slag; however,
there was no significant change in the strength of CaCl2-doped AAS cement. Therefore,
the higher chloride binding capacity of AAS cements provides potential feasibility for the
use of seawater as mixing water in marine environments [96]. Studies have shown that
replacing fresh water with seawater in concrete can increase the compressive strength of
concrete [97]. Mengasini [98] also found that AAS concrete mixed with seawater and cured
in a seawater environment had good mechanical properties, and as the time of curing
in a seawater environment was extended, the compressive strength increased, reaching
66 MPa at 56 d, which is much higher than that of AAS concrete mixed with fresh water.
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The compressive strength of AAS concrete cured with fresh water was 7 MPa higher than
that of AAS concrete mixed with fresh water and cured with fresh water. This is because
the Mg2+ contained in seawater reacted with OH− in the alkaline environment to form
hydromagnesite, and Ca2+ released from the matrix of AAS cement concrete reacted with
OH− in the alkaline environment to form Ca(OH)2, then reacted with the carbonate in the
seawater to form calcium carbonate on the surface of the specimen, so that the generated
hydromagnesite and calcium carbonate played a certain protective role for the concrete [99].
However, Li Y [100] showed that cracks appeared in the cross-section of seawater-mixed
AAS-cemented concrete when the external temperature increased above 200 ◦C, and the
higher the temperature, the more pronounced the cracks were. Yang S [101] prepared
AAS-cemented concrete by substituting seawater and sea sand for freshwater and river
sand, and found that there was an effect on the morphology of the hydration products of
the AAS-cemented concrete, and that drying shrinkage was slightly increased. Resistance
to chloride ion penetration was enhanced, in addition to higher short-term bond strength,
interfacial shear stiffness, and shear fracture energy with embedded reinforcement inside.
This may be due to the fact that seawater and sea sand accelerate the formation of the
C-S-H gel phase [24]. Due to the high chloride content of seawater, much research has
been conducted on the degradation of steel in seawater concrete due to corrosion. When
seawater is utilized to mix OPC concrete, a significant amount of corrosion occurs in the
steel reinforcement [102]. Pitting corrosion of steel in seawater has been found to cause a
large number of corrosion pits on the surface of the steel [103]. Jie Liu et al. [104] found that
the tensile strength of FRP panels was significantly affected by seawater corrosion, with
the strength decreasing in an approximately linear manner with time. Significantly lower
capacities were obtained for FRP samples subjected to wet cycle corrosion compared to
immersion conditions.
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While OPC concrete mixed with seawater presents higher initial strength than with
tap water, a significant reduction in strength occurs with age, and after a few years the use
of seawater leads to the formation of deeper corrosion pits compared to tap water [105].
Li [106] showed that seawater and sea sand significantly accelerated the setting time of
cement with an early strength effect, but harmful components in seawater hindered the
later development of concrete strength. This is in line with Mohammed’s view [105]. Chale
observed chloride in concrete in the marine environment early on and recommended the use
of fly ash with a low water-cement ratio to make concrete more resistant to seawater erosion.
The utilization of seawater leads to deeper corrosion pits in concrete compared to ordinary
tap water [107]. Sulphates in seawater are mainly sodium sulphate and magnesium
sulphate. Sulfates react with cement to form alumina (AFt) and gypsum, and AFt is the
main material providing the early strength of cementitious materials [108]. However, AFt
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and gypsum are extensible, and they gradually grow into the pores at the interface region of
the hardened slurry and aggregates. Excessive amounts of AFt and gypsum can easily cause
microstructural damage at a later stage, increasing water infiltration channels and reducing
the durability of the structure [109]. Typically, tidal environments accelerate concrete
corrosion, and Rashad [110] showed that specimens exposed to simulated tidal zones were
more severely damaged than specimens fully immersed in seawater. This is in keeping with
the damage pattern of OPC concrete. Since encountering tidal environments on the coast is
inevitable, even though AAS concrete exhibits good resistance to seawater corrosion, it still
struggles to withstand the damage caused by tidal environments. Therefore, studying the
corrosion resistance of AAS concrete under tidal conditions is of great significance. AAS
concrete corrosion resistance study to seawater, as shown in Table 3.

Table 3. AAS concrete is resistant to seawater corrosion.

Conditions Results Refs.

Mixing with seawater

The strength of AAS cement mixed with NaCl increases as the amount
of NaCl increases, while the strength of AAS cement mixed with CaCl2

does not change significantly.
Jun [89]

Replacing freshwater with seawater can improve the compressive
strength of concrete. Mengasini [18,90]

Different ambient
temperatures.

The higher the ambient temperature, the more pronounced the cracks
in the AAS concrete mixed with seawater become. Li [91]

Using sea sand and seawater
for mixing

The hydration product morphology of AAS concrete is influenced;
there is a slight increase in drying shrinkage; and the resistance to

chloride ion penetration is enhanced.
Yang [100]

When using water mixed with OPC concrete, initial strength increases,
but later strength decreases significantly, and a large amount of

corrosion occurs in the steel bars, resulting in corrosion pits.

Dasar [102]
Melchers [103]

Mohammed [105]

Simulated tidal effect The samples exposed to simulated tidal zones are more severely
damaged than those fully immersed in seawater. Rashad [101]

6. Conclusions and Outlook

From the above review and analysis, the following conclusions can be obtained:

(1) Under the action of alkaline activators, the slag is activated and generates hydration
products such as C-S-H, C-A-S-H, C-A-H, and N-A-S-H. The hydration reaction
process includes the disintegration of slag, the fracture and bonding of functional
groups, and the polymerization reaction.

(2) The mechanism of acid corrosion is primarily due to the changes in the gel structure
caused by H+, leading to the decalcification of the gel and the subsequent formation
of expansive substances. In the case of both chemical and biological sulfuric acid
erosion, the destruction of AAS concrete is attributed to the formation of gypsum.
Regardless of whether it is chemical action or diffusion, different types of acids have
varying degrees of corrosion on AAS cement concrete, with stronger acids causing
more severe corrosion. Additionally, a lower alkali equivalent can enhance the acid
resistance of AAS concrete.

(3) Sulfate corrosion mainly includes sodium sulfate and magnesium sulfate corrosion.
While sodium sulfate corrosion may produce a small amount of gypsum and calcium
alumina, magnesium sulfate is more complex compared to sodium sulfate, resulting
in hydromagnesite, M-S-H, M-A-S-H, and gypsum, so that the destruction of AAS
cement concrete is serious; therefore, AAS cement concrete resistance to sodium
sulfate corrosion is better than magnesium sulfate, and compared with the ordinary
silicate cement concrete durability, is also more excellent.

(4) AAS cement concrete exhibits good resistance to seawater corrosion. When AAS
concrete is immersed in a solution rich in chloride ions, it promotes the development
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of strength. Furthermore, preparing AAS cement concrete with seawater and sea
sand can enhance its mechanical properties to a certain extent. The use of seawater
as mixing water has potential feasibility. This conclusion contrasts with that of
OPC concrete, making AAS concrete more suitable than OPC concrete for use in
coastal environments.

Currently, people are trying to widely use various solid wastes, with the core goal
being recycling. However, up to now, little effort has been invested in establishing relevant
standards to guide this utilization. Some minor components in the raw materials (such
as magnesium oxide) may have unknown effects on the durability of AAS, which has
aroused concern in the industry and deserves further research in the future. There is still
controversy over whether some testing methods are applicable or reasonably reflect the
true trend of durability (e.g., in tidal environments).
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