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Abstract: Multiscale parameter optimization for laser peen forming (LPF) on 6005A-T6 aluminum
alloy plates was conducted through a combination of simulation and experimentation. By obtaining
the optimal parameter, this study aims to explore the constrained deformation and forming laws of
the integral stiffened plates. Detailed descriptions were provided regarding the dynamic response
process and transient behavior of aluminum alloy plates under ultrahigh strain rates, along with an
in-depth analysis of the stress evolution. The results reveal that laser beam diameter and laser beam
energy can achieve large range forming, while the number of tracks facilitates the precise deformation
adjustment. During the 12-track LPF process, there is an overall upward trend in deformation values
accompanied by a dynamic increase in the bend curvature. After static relaxation, the deformation
value recovers to 55.2% of the final bending curvature. The chord direction scanning of stiffened
plates exhibits a larger bending curvature, indicating its greater forming capacity for large-sized
single unfolding direction formation; whereas, the unfolding direction scanning of stiffened plates
excels in achieving efficient integrated two-way forming.

Keywords: laser peen forming; parameter optimization; 6005A-T6 aluminum alloy plates; integral
stiffened plate; constrained deformation

1. Introduction

Currently, the lightweight and high-strength integral components required to maintain
the structural integrity of high-speed transport equipment, such as aircraft wings and high-
speed rail skins, primarily rely on conventional mechanical bending and shot peening
methods [1–3]. However, the limitations of these formed components include poor accuracy,
thin compressive stress layer, and severe stress concentration issues, which constrain
the application of integral stiffened plates (SP) in terms of their formability [4–6]. In
comparison with other traditional surface strengthening techniques, laser peening (LP)
technology offers several advantages, including higher shockwave pressure (GPa), greater
power density (GW/cm), increased high strain rate (107/s), and shorter pulse duration
(ns) [7–9]. When the peak pressure of the laser-induced shockwave surpasses the dynamic
yield strength of the materials, plastic deformation transpires in the strengthening zone,
producing compressive stress perpendicular to the surface [10,11]. This disrupts the tension–
compression stress balance in overall stress fields, leading to stress redistribution for
rebalancing purposes [12–14]. In order to fully utilize the overall forming effect caused
by plastic deformation and stress redistribution to obtain the desired shaped parts, laser
peen forming (LPF) technology emerges as a timely solution, with its precise processing
method characterized by low cold work hardening, high compressive stress intensity, and
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processing flexibility, LPF holds promising prospects for broad applications [15–17]. The
aircraft wings and high-speed rail skins are prone to fatigue damage due to long-term
exposure to complex loads. The aircraft skin and wings are treated with LPF to achieve the
uniform distribution of the residual stresses on the surface by optimizing laser parameters,
significantly improving fatigue resistance.

The key technical challenge of LPF lies in establishing the response law between the tar-
get shape, including both plate and SP, and process parameters, such as laser settings, beam
size, and control system path. This enables precise controlled forming to be achieved [18].
Hence, numerous experts and scholars have conducted profound and meaningful explo-
ration on the plastic forming characteristics of LPF. Zhang et al. conducted experimental
studies to explore the correlation of overall deformation and residual stress field change
in aluminum alloy plates of varying geometric thickness [19]. Hu et al. discussed the
bending deformation behavior from convex to concave by adjusting laser intensity and
plate thickness, respectively [20]. Li et al. examined the influence of pulse duration and
pressure distribution in LP on the residual stress field and the formation of holes [21].
However, previous research has primarily focused on the flexible forming characteristics
of components using a single parameter, demonstrating the feasibility and application
potential of replacing traditional mechanical shot peening with LPF. However, practical
problems often involve multiple parameters. Single parameter optimization cannot capture
the complex interactions between multiple parameters, nor can it guarantee the globally
optimal combination of parameters. This research conducted a thorough investigation into
the bend forming of 6005A–T6 aluminum alloy plates by LPF under the cumulative impact
of multidimensional parameters to explore the constrained deformation of integral skin
structure. Multiparameter optimization research comprehensively considers the interaction
of parameters and finds the global optimal solution, which is more in line with practical
applications. Reasonable parameter selection can significantly improve the fatigue life of
integral skin structures in fields such as aerospace and automotive. Under different param-
eters, the dynamic response behavior of materials varies significantly, which directly affects
the forming effect. Through exploring the parameter optimization and dynamic response of
LPF for the integral skin structure, uniform processing can be applied to different positions
of this structure. This has a guiding significance for obtaining uniform stress distribution
and avoiding stress concentration, thereby significantly improving mechanical properties.

Yang et al. used the average induced stress obtained from representative element
models to calculate the saturated bending curvature and improve its computational effi-
ciency in addressing the impact of LP-induced compressive stress on wing forming and
fatigue resistance [22]. Glaser et al. optimized the engineering design and used the in-
cremental drilling method to measure residual stress. They found a correlation between
Almen deformation amplitude and residual stress, and residual compressive stress can
improve the fatigue resistance of aviation components [23]. Cai et al. proposed a feature
strain method to reconstruct residual stress fields using the eigenstrain method based
on bicubic spline interpolation surface and finite element method, which describes the
residual stress distribution characteristics of aviation components [24]. Currently, many
scholars use the abovementioned various methods to describe the residual compressive
stress induced by LP to investigate the forming and fatigue resistance performance of avia-
tion components. However, accurately measuring the dynamic deformation behavior for
the plates or the integral stiffened plates under ultrahigh strain rates remains challenging
during the LPF process of aviation components. Therefore, there is a lack of systematic
research on the dynamic deformation behavior and stress evolution process. Furthermore,
the underlying mechanism governing dynamic deformation remains unclear and requires
further exploration.

In this paper, the parameter optimization for LPF on 6005A–T6 aluminum alloy plates
was conducted to explore the constrained deformation of SPs through a combination of
simulation and experiment. The impact of multidimensional process parameters on the
forming capacity was systematically investigated, while offering a detailed description of
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the dynamic response and transient behavior of aluminum alloy plates under ultrahigh
strain rates. Furthermore, a thorough analysis and comparison were conducted to com-
prehend the stress evolution process during LPF. Ultimately, by contrasting various LPF
schemes for “Plate + Stiffener”, the constrained deformation of SP was comprehended
under optimized process conditions. The current work endeavors to explore the dynamic
constrained deformation behavior of SP and offers valuable insights for the advancement
of LP flexible forming technology.

2. Materials and Numerical Analysis
2.1. Materials

The lightweight and high-strength 6005A–T6 aluminum alloy was extensively utilized
in the skin plates, wing plates, and other SPs found in high-speed transportation equipment,
such as aircraft, trains, and subways [25]. The chemical composition of the 6005A-T6
aluminum alloy primarily comprises Fe 0.35, Si 0.9, Mn 0.5, Cr 0.3, Cu 0.3, Ti 0.1, Zn 0.2,
Mg 0.7, and Al balanced (wt.%) [26]. Tables 1 and 2 display the mechanical material data and
the processing parameters for LPF, respectively. The LPF treatment parameters in Table 2
are the main technical specifications of the employed laser, including a laser wavelength
of 1064 nm, a laser pulse width of 15 ns, and a repetition rate of 2 Hz. Additionally, to
standardize the number of LP, the number of tracks is set to 5 times. In this research,
the aforementioned experimental data served as the foundation for the finite element
simulation, which aimed to analyze the dynamic response of the 6005A-T6 aluminum alloy
plate to LP.

Table 1. The mechanical material data used for simulations [27].

Property Value

Density/Kg/m3 2700
Young modulus/GPa 69

Poisson’s ratio 0.31
Tensile strength/MPa 290
Yield strength/MPa 264

Elongation/% 10

Table 2. The LPF treatment parameters [27].

Processing Parameters Value

Laser wavelength/nm 1064
Laser pulse width/ns 15

Repetition rate/Hz 2
Number of tracks/times 5

2.2. Mechanism of LPF

Figure 1 depicts the LPF process, which is accomplished by inducing the plastic
deformation of the plate through the forceful effect of laser-induced shockwaves [20].
The high-energy short-pulse laser beam irradiation causes the plate surface to instantly
vaporize into a high-temperature and high-pressure plasma, and the robust shockwave
generated by the plasma explosion propagates towards the interior of the plates [28]. In the
depth direction, the stress gradient and the cumulative shock bending moment, induced
by the intense shockwave, compel the material into bending deformation, as illustrated
in Figure 1a,b. In the process shown in Figure 1c, the intense compression engenders a
negative plastic strain in the Y direction. Subsequently, the material undergoes expansion in
the X–Z plane, resulting in a positive plastic strain. Upon static relaxation, the confinement
imposed by the surrounding material leads to the formation of a residual compressive
stress layer on the material surface.
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Figure 1. The schematic representation of the LPF process illustrates (a) the laser shockwaves, (b) the
overall bending outcome, and (c) the bending mechanism.

2.3. Experimental Design for Parametric Optimization

In an effort to minimize the number of experiments, this study employed the Taguchi
method based on the L9 orthogonal arrays. These arrays, characterized by unique prop-
erties, were chosen from the total number of experiments conducted using the complete
factorial method. Three factors with three-level parameters were selected for this study.
These factors include laser beam energy (5 J, 8 J, and 11 J), overlap rate (0%, 25%, and 50%),
and laser beam diameter (3 mm, 4 mm, and 5 mm), as illustrated in Table 3. Utilizing the
designed L9 orthogonal array, the experimental parameters designated as S1–S9 in Table 4
were determined.

Table 3. The Taguchi parameters and levels utilized to optimize the laser forming process.

No. Parameters Symbol Level 1 (A) Level 2 (B) Level 3 (C)

1 Beam energy J 5 0% 3
2 Overlap rate times 8 25% 4
3 Beam diameter mm 11 50% 5

Table 4. The parameters of the designed experiments.

Design Point
Number

Beam
Energy/J

Overlap
Rate/%

Beam Diameter/
mm

Power Density/
GW·cm−2

Peak Pressure/
MPa

S1 5 0% 3 3.3 1662
S2 5 25% 4 1.8 1228
S3 5 50% 5 1.2 1003
S4 8 0% 4 3.0 1585
S5 8 25% 5 1.9 1261
S6 8 50% 3 5.3 2107
S7 11 0% 5 2.6 1476
S8 11 25% 3 7.3 2466
S9 11 50% 4 4.1 1853

2.4. Pressure Loading Conditions

It is widely recognized that the driving force of LPF originates from the pressure
generated by laser-induced shockwaves. As identified by R. Fabbro, the total duration
of these laser-induced shockwaves extends 3–5 times the pulse width [29]. Consequently,
the shockwave pressure duration of 75 ns is employed for a pulse width of 15 ns. The
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correlation between the peak pressure of a high-energy laser shockwave, denoted as Pmax,
and the incident laser power density, represented by I0, is articulated in Equation (1) [30].

Pmax = 0.01
√

α

2α + 3
·
√

Z ·
√

I0 (1)

where α represents the coefficient for the conversion of internal energy into thermal energy,
assigned a value of 0.09, and Z denotes the reduced shock impedance [28].

The reduced shock impedance Z and the incident laser power density I0 are indicated
in Equations (2) and (3):

2
Z

=
1

Z1
+

1
Z2

(2)

I0 =
χ · Elaser

τ · π · ( d
2 )

2 =
4χ · Elaser
τ · π · d2 (3)

where Z1 represents the confining medium impedance of the water confinement layer
(0.165 × 106 g·cm−2·s−1), and Z2 displays the target impedance of the 6005A-T6 plate
(1.43 × 106 g·cm−2·s−1). Consequently, the calculated value for Z is 0.296 × 106 g·cm−2·s−1.
χ represents the absorption coefficient of the absorber layer, endowed as 0.7, and τ is the
laser pulse width, assigned as 15 ns. Elaser denotes the single-pulse laser energy (5 J, 8 J,
and 11 J), and d displays the laser beam diameter (3 mm, 4 mm, and 5 mm). The computed
values for the incident laser power density I0 and the peak pressure of the shockwaves
Pmax are attached in Table 4.

The temporal distribution of pressure also considerably influences the outcome of LPF.
The evolution of the laser-induced shockwave is bifurcated into the illuminated excitation
process and the free decay process. The pressure factor P(t), as it varies with time t, is
depicted in Equation (4), and the temporal distribution curve of pressure loading–unloading
is illustrated in Figure 2 [31].

P(t) =

{
− 1

64 t(t − 30) 0 ≤ t ≤ 15
exp[−0.3(t − 15)] 15 ≤ t ≤ 75
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Figure 2. The temporal distribution of shockwave pressure induced by a laser pulse.

2.5. Material Constitutive Model

To examine the dynamic response process of 6005A-T6 aluminum alloy under high
strain rate plastic deformation, the Johnson–Cook (J–C) constitutive model was employed
to simulate the stress evolution induced by laser shockwaves [32]. The J–C model has been
widely used in simulating material behavior during the LPF process due to its suitability
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for complex working conditions with high strain rates and high temperatures. This model,
as an empirical model, describes the stress–strain relationship of materials under dynamic
loading conditions. It effectively reveals the behavior of materials at high strain rates,
especially in LP processes with high strain rates and high stress gradients. Therefore, in
the LPF simulation of a plate, the J–C model is preferred due to its wide applicability and
relatively mature application experience. The flowing water on the outermost layer of
aluminum alloy serves as a constraint layer for pressure rise and cooling. The sub-surface
black tape absorbs pulsed laser energy and can be vaporized to form plasma, generating
shockwave pressure. The pulsed laser energy does not directly act on the material surface,
and the confinement layer and absorption layer protect the aluminum alloy surface from
thermal effects. Therefore, this study ignored the influence of laser thermal effects on
sample deformation. As a typical cold-worked LPF process, the temperature aspect was
excluded from the subsequent simulation. Consequently, the yield stress at a nonzero strain
rate σ can be represented in Equation (5):

σ = (A + Bεn)(1 + C ln
.
ε
∗
) (5)

where ε represents the plastic strain, and
.
ε
∗ denotes the normalized plastic strain rate. The

parameters A, B, C, m, and n refer to the initial yield stress, strain hardening modulus, strain
rate sensitivity coefficient, thermal softening index, and stress hardening index, respectively.
The specific parameter values are presented in Table 5.

Table 5. J–C constitutive model parameters.

Processing Parameters Value

A 264
B 313
C 0.0029
n 0.553
m 1.7

Fusion temperature 605
Initial temperature 20

2.6. Finite Element Method (FEM)

The FEM was employed using Abaqus software (Version number: 6.14.4) to simulate
each experimental parameter. To reduce computational costs, while achieving more precise
outcomes, the areas labeled A, B, and C areas in Figure 3 require division into varying grid
densities. A dense mesh density was necessary in the peened area A to accurately capture
the stress waves. In contrast, the no peened area B, which included the clamping area
C, was assigned a standard mesh density. The length of the peened area A (30 mm) was
determined by the beam diameter and the overlap rate of the laser spot, ensuring inclusion
of the laser spot boundary. For the forming of plates, appropriate clamping methods were
adopted to ensure uniform deformation and reduce local stress concentration, thereby
improving the forming quality. Usually, the clamping point should be set in a location that
does not affect deformation to avoid interference with the forming process. For the forming
of plates, the degree of deformation was mainly measured by the length direction, so a fixed
length single-sided plate clamping method was adopted. During the simulation process,
the fixed constraints were set at one end of the plate model. After the last laser peening, the
constraints on the model were removed, and the static rebound was performed. Finally, the
residual stress redistribution and the geometrical deformation of the material were obtained.
C3D8T–type elements, which are eight-node thermally coupled elements with three-axis
displacement capabilities, were employed in this three-area mesh modeling. The total
number of elements and nodes for the plate model was 170,000 and 189,981, respectively.



Materials 2024, 17, 5090 7 of 20

Materials 2024, 17, x FOR PEER REVIEW 7 of 21 
 

 

2.6. Finite Element Method (FEM) 
The FEM was employed using Abaqus software (Version number: 6.14.4) to simulate 

each experimental parameter. To reduce computational costs, while achieving more pre-
cise outcomes, the areas labeled A, B, and C areas in Figure 3 require division into varying 
grid densities. A dense mesh density was necessary in the peened area A to accurately 
capture the stress waves. In contrast, the no peened area B, which included the clamping 
area C, was assigned a standard mesh density. The length of the peened area A (30 mm) 
was determined by the beam diameter and the overlap rate of the laser spot, ensuring 
inclusion of the laser spot boundary. For the forming of plates, appropriate clamping 
methods were adopted to ensure uniform deformation and reduce local stress concentra-
tion, thereby improving the forming quality. Usually, the clamping point should be set in 
a location that does not affect deformation to avoid interference with the forming process. 
For the forming of plates, the degree of deformation was mainly measured by the length 
direction, so a fixed length single-sided plate clamping method was adopted. During the 
simulation process, the fixed constraints were set at one end of the plate model. After the 
last laser peening, the constraints on the model were removed, and the static rebound was 
performed. Finally, the residual stress redistribution and the geometrical deformation of 
the material were obtained. C3D8T−type elements, which are eight-node thermally cou-
pled elements with three-axis displacement capabilities, were employed in this three-area 
mesh modeling. The total number of elements and nodes for the plate model was 170,000 
and 189,981, respectively. 

 
Figure 3. Mesh density division of the peened area and the no peened area. (a) three-dimensional 
dimensions and regional division. (b) mesh density division. 

2.7. Deformation Characterization of Plates and the Formation Process of SP 
The variations in overlap rate and beam diameters in the peened area caused the total 

peened area to change, thereby influencing the length and height of the free end B. Hence, 
the total height displacement value or the total bending curvature could not be solely uti-
lized as indicators of the LP forming capacity. More precisely, following LPF, the bending 
curvature of the LP region for S1−S9 was employed to characterize the forming capacity. 
Additionally, considering that the LP area of the plate could be likened to a segment of a 
sphere, the curvature across this area remained consistent. Consequently, the simplified 
geometric relationship illustrated in Figure 4b was introduced. Additionally, the overlap-
ping trajectories for laser spots of varying sizes were designed in Figure 4c to ensure a 
symmetrical distribution in the unfolding direction of forming, as much as possible. 

Figure 3. Mesh density division of the peened area and the no peened area. (a) three-dimensional
dimensions and regional division. (b) mesh density division.

2.7. Deformation Characterization of Plates and the Formation Process of SP

The variations in overlap rate and beam diameters in the peened area caused the
total peened area to change, thereby influencing the length and height of the free end B.
Hence, the total height displacement value or the total bending curvature could not be
solely utilized as indicators of the LP forming capacity. More precisely, following LPF, the
bending curvature of the LP region for S1–S9 was employed to characterize the forming
capacity. Additionally, considering that the LP area of the plate could be likened to a
segment of a sphere, the curvature across this area remained consistent. Consequently, the
simplified geometric relationship illustrated in Figure 4b was introduced. Additionally, the
overlapping trajectories for laser spots of varying sizes were designed in Figure 4c to ensure
a symmetrical distribution in the unfolding direction of forming, as much as possible.
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Figure 4. (a) Schematic of experimental specimen, (b) bending curvature calculation, and (c) overlap-
ping trajectories for laser spots of varying sizes.

Subsequently, the optimized laser processing parameters (S6: A2B3C1) were employed
to investigate the deformation behavior of SP. To facilitate a more effective comparison
and comprehension of the deformation situation between the conventional plate and
SP, the single plate (S6, chord direction scanning, named CDS–P), and single stiffener
(unfolding direction scanning, named UDS–S) were considered separately. The SP was also,
respectively, designed as the unfolding direction scanning and chord direction scanning
for plates and stiffeners, named CDS–SP and UDS–SP. Furthermore, combining CDS–SP
and UDS–SP modes is crucial for complementing each other and enhancing the overall
forming capacity and efficiency of SP in two directions. Therefore, a specific design of LPF
is depicted in Figure 5, which is primarily categorized into the CDS–P, UDS–S, CDS–SP,
UDS–SP, and UCDS–SP. For the forming of single stiffener and stiffened plates, considering



Materials 2024, 17, 5090 8 of 20

the deformation in two directions, a fixed-length single-sided stiffener clamping method
with less constraint on the plate was determined.
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3. Experimental Equipment

The experimental verification equipment is displayed in Figure 6. A Q-switched
Nd: YAG pulse laser was employed for LP, featuring primary technical specifications,
such as a wavelength of 1064 nm, a repetition rate of 5 Hz, and a pulse duration of 15 ns.
The experiment was performed in accordance with the laser parameters and the process
strategy outlined in Section 2. A 100 µm black tape served as the absorption protective
layer, while 1 mm flowing water was exploited as a transparent constraint layer to amplify
the shockwave pressure. The plate and SP were secured by fixtures and manipulated using
a KUKA robotic arm to facilitate relative spot movement.
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(b) the laser.

The accuracy of the numerical model was verified through experimental steps, such
as material preparation, LP experiments, and deformation measurement. This includes
using the same or similar materials and conducting LPF experiments based on simulation
conditions. The arc height gauge was used to measure the bending deformation and
stress–strain distribution of materials. Finally, the experimental data and simulation results
were compared to verify the reliability of the model, and the errors between the two were
calculated and analyzed.

4. Simulating Results and Discussion
4.1. Plastic Deformation Progress

Following Taguchi’s numerical simulation, the deformation field results of the height
displacement values and their statistical outcomes for the medium thickness plates after
static reply are clearly presented in Figure 7. The residual compressive stresses emerge
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in the peened area of the medium thickness plate subjected to laser-induced shockwave
pressure. To maintain geometric compatibility, the residual compressive stress is partially
relieved to generate a negative bending moment that induces tensile deformation in the
peened area. The unclamped area undergoes reverse deformation, resulting in a convex
curvature. However, varying combinations of the three factors, including beam energy,
overlap rate, and beam diameter, each with their corresponding three levels, result in
differing total displacement values in the height direction of both the peened area A and
the free end B. Overall, the total displacement values for S6 and S9 are notably large,
measuring 0.603 mm and 0.686 mm (S9 > S6), respectively. This outcome is determined by
the maximum overlap rate and higher laser power density, while the latter is associated
with increasing beam energy and reducing beam diameter.
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Figure 7. The bending deformation results of medium thickness plates: (a) represents the simulation
results of the deformation field after static reply, (b) depicts the deformation curve, and (c) presents
the statistical result of the deformation field.

The bending curvature ρ of the peening region a2 can be determined from the total
height displacement value h of the plate, as formulated in Equation (6).

h = h1 + h2 = r − r cos φ + a3 sin φ
a2 = rφ
ρ = 1/r

(6)

where a1 and a3, respectively, represent the lengths of the no peened area at the clamping
end and the free end, while a2 denotes the bending length of the peened area under LP
action. The parameters h1, h2, and h present the height displacement values of a2, a3, and
the a2 + a3, respectively. Furthermore, r and φ, respectively, represent the bending curvature
radius and the corresponding circular center angle of a2.

The solution outcomes derived from MATLAB (Version number: v6.6.0) code and the
corresponding histograms are presented in Table 6 and Figure 8, respectively. Overall, the
bending curvature of the peened area aligns closely with the trend in the total deformation
height value. However, there are still some variations in the specific bending deformation
amplitude. The bending curvature of S6 and S9 is significantly larger than that of the other
samples, reaching 2.68 × 10−3 mm−1 and 2.28 × 10−3 mm−1, respectively. Compared
to S9, S6 displays the maximum bending curvature, which most accurately characterizes
the forming ability under three distinct process parameters. This difference is due to the
previous bending deformation overlooking the small peened area a2, resulting from the
overlap of the small laser spot in S6.
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Table 6. The solution results calculated by MATLAB code for the peened area.

No. a1 = a3/mm a2/mm h/mm ψ/rad h2/mm h1/mm r/mm ρ/×10−3 mm−1

S1 17.5 15 0.342 0.0137 0.240 0.102 1094.9 0.91
S2 17.5 15 0.430 0.0172 0.301 0.129 872.1 1.15
S3 17.5 15 0.392 0.0157 0.275 0.117 955.4 1.05
S4 15 20 0.373 0.0149 0.224 0.149 1342.3 0.74
S5 15 20 0.447 0.0179 0.268 0.179 1117.3 0.90
S6 20.5 9 0.603 0.0241 0.494 0.108 373.4 2.68
S7 12.5 25 0.437 0.0175 0.218 0.219 1428.6 0.70
S8 19 12 0.390 0.0156 0.296 0.094 769.2 1.30
S9 19 12 0.686 0.0274 0.522 0.164 438.0 2.28
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Figure 8. The histogram based on the bending curvature calculations for the peened area, as detailed
in Table 6.

To further quantify the impact of various process parameters, such as beam energy,
overlap rate, and beam diameter on the bending curvature, an analysis of extreme differ-
ences calculation was employed. The results of this analysis are presented in Table 7. The
signal-to-noise (S/N) ratio was calculated, and the findings can be examined in Figure 9.
A comparison of the extreme difference values reveals the following order of influence:
overlap rate (R2) > beam diameter (R3) > beam energy (R1). Evidently, the impact degree of
the process parameters on the bending curvature is ranked as follows: the largest influence
is exerted by the overlap rate, followed by the beam diameter, with the beam energy having
the least impact. Consequently, we can ascertain the process parameter design strategy
for LPF, simplifying the process design based on the influence degree on the forming
curvature. In other words, the overlap rate and beam diameter, employed as the primary
variables, facilitate a broad range of deformation adjustments, while the beam energy,
served as a secondary variable, achieves more precise deformation adjustments within a
narrower range.

From the bending curvature results in the peened area, the bending curvatures of S6
and S9 remain comparatively the largest (S6 > S9). However, the magnitude of the bending
curvature values does not correlate with the total displacement values (S9 > S6). The dis-
crepancy arises because smaller-sized samples are selected for the simulation experiments
to expedite calculations. As a result, the ratio of the peened area to the unpeened area at the
free end (a2/a3) is uniformly increased, thereby magnifying the effect of the peened area. In
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practical applications involving large plates, the ratio of a2 in a small, localized area to a3 is
significantly diminished (a2/a3), thereby reducing the effect of the peened area. The larger
a2/a3 ratios for S6 and S9 (0.44 and 0.63, respectively) lead to an increased magnification
degree of the influence and the total displacement value. Therefore, the most accurate
representation of the plate’s bending deformation law is not the sum (h) of the displacement
values of a2 and a3 (h1 and h2, respectively). Instead, it is the bending curvature ρ of the
peened region (a2). This further underscores the correctness and precision of characterizing
the LP forming capacity by the bend curvature of the peened area.

Table 7. The results derived from the extreme difference calculation include the S/N ratio values for
various parameters at different levels, along with their effectiveness ranking.

No. Beam
Energy/J

Overlap
Rate/Times

Beam
Diameter/mm

Bend Curvature
ρ/×10−3 mm−1

S1 5 0% 3 0.91
S2 5 25% 4 1.15
S3 5 50% 5 1.05
S4 8 0% 4 0.74
S5 8 25% 5 0.90
S6 8 50% 3 2.68
S7 11 0% 5 0.70
S8 11 25% 3 1.30
S9 11 50% 4 2.28

Sum of index 1 3.11 2.35 4.89 Total/(T) = 11.71
Sum of index 2 4.32 3.35 4.17
Sum of index 3 4.28 6.01 2.65

Range/(R) R1 = 1.21 R2 = 3.66 R3 = 2.24
Effectiveness ranking 3 1 2 R2 > R3 > R1
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4.2. Equivalent Plastic Strain

In Section 4.1, the correctness and precision of characterizing the forming capacity by
the bending curvature of the peened area have been effectively demonstrated. However,
LPF also encounters challenges related to the forming quality, typically characterized by the
equivalent plastic strain as an indicator of influence. The equivalent plastic strains for S1–S9,
along with their statistical results, are presented in Figure 10. It is observed that the pattern
of variation in the equivalent plastic strain values is positively correlated with laser power
density (beam energy/beam diameter). In other words, as the beam energy increases and
the beam diameter decreases, the laser power density elevates, leading to larger equivalent
plastic strain values and a consequential decline in the forming quality. Furthermore,
Section 4.1 highlights that both beam energy and beam diameter are crucial variables
that significantly impact the bending curvature degree (forming capacity). Specifically,
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the increased laser beam energy and reduced laser beam diameter contribute to a larger
bending curvature and enhanced forming capacity. Consequently, there exists a competitive
mechanism between the forming quality and forming capacity. For this reason, for LPF, we
ensure that the relatively larger forming capacity fulfills the application requirements, while
concurrently optimizing the forming quality to meet the satisfactory precision standards.
For S6 and S9, which exhibit comparatively larger forming capacities (2.68 × 10−3 mm−1

and 2.28 × 10−3 mm−1, respectively), there is no substantial disparity in the forming quality
(0.091 mm and 0.073 mm, respectively). In summary, the optimal parameter combination,
S6 (A2B3C1), is selected.
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4.3. Stress Evolution

To gain a deeper insight into the bending deformation and stress distribution of
LPF, the stress field after static reply and the stress distribution curve are simulated in
Figures 11 and 12. In the cross-sectional area, for multipulse LPF, the stress waves induced
by the subsequent pulses overlap with those induced by the preceding pulses. To minimize
errors and unify the path, the last LP sequence is selected as Paths 1–1′. In the surface
area, it is widely recognized that when stress waves encounter material boundaries, re-
flection and transmission phenomena occur, the degree of which depends on the physical
properties of the materials on both sides of the boundary. To stay as far away as possible
from the reflection and transmission areas of the boundary, the center position in the width
direction is selected as Paths 2–2′. The stress distribution along Path 1 and Path 1′ typically
displays the characteristic pattern of “two-sided compression/middle tension”. Typically,
the compressive stress on the upper surface is induced by the compressive deformation
resulting from the force effect of LP, while that of the lower surface arises from the equiv-
alent bending moment experienced by the plate following bending deformation. Due to
the internal stress balance within the material, tensile stress is observed in the middle
region. Moreover, it has been discovered that a larger laser power density induces larger
compressive stress and deeper compressive stress layers on the upper surface. A larger
laser power density leads to an increased degree of bending deformation, consequently
resulting in larger compressive stress and the deeper compressive stress layers in the lower
surface. In general, the deeper the compressive stress layers on both surfaces in the depth
direction, the shallower the tensile stress in the middle region to balance the compressive
stress. Notably, in Figure 11b, samples S1, S6, S8, and S9 of S11 display a penetrating
compressive stress, and the reverse side of all samples demonstrates varying degrees of
compressive stress. This is attributed to the combined action of large laser power density
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and significant bending compression. In Figure 11c, insufficient overlap results in the
surfaces of samples S1, S4, S5, S7, and S8 experiencing tensile stress. Overall, S6 exhibits
the maximum compressive stress. In Figure 12b, compared to S11, the stress of S33, which
is perpendicular to the scanning path, is smaller, and there is no occurrence of penetrating
compression stress. Similarly, the significant bending deformation in the length direction
leads to larger compressive stress on the reverse side of all samples. In Figure 12c, the
tensile stress at the surface overlap of samples S1, S4, S5, S7, S8, and S9 are larger, while
samples S2, S3, and S6 generally display compressive stress. Among these, S6 possesses
the highest stress value.
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4.4. The Evolution of the Stress and Deformation of S6

To explore the stress transformation during the lap process, the stress evolution simula-
tion for S6 and the corresponding stress distribution curve are presented in Figure 13. When
LP is conducted in a single track, a characteristic “middle compression/two-sided tension”
stress distribution is observed. With the increase in the number of tracks, compressive
stress is induced by the new trajectory couples and expands on the basis of the original
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compressive stress. Consequently, the compressive stresses in the lap region couple with
each other, increasing to 187.5 MPa, while the tensile stress in the edge region also rises to
184.9 MPa. After static reply, compressive stress decreases to −138.4 MPa, exhibiting an
overall uniform compressive state.
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Figure 13. (a) Stress evolution in the middle region of S6, (b) corresponding stress distribution in the
unfolding direction, and (c) residual stress distribution after static reply.

The deformation evolution process for each step of S6 is depicted in Figure 14, while
the deformation value and bending curvature of the peened area are presented in Table 8.
As the number of tracks increases, the deformation value exhibits an ascending trend.
After five tracks of 65 steps, the maximum deformation attains 1.347 mm. Additionally,
the maximum deformation value consistently occurs on the side following the scanning
direction. This is due to the force effect of LP causing differences in the oscillation of
deformation values at both ends of the plate in the chord direction. Compared to the final
65 steps (1.347 mm), the deformation value after static reply (0.603 mm) reverts by 55.2%,
demonstrating forming symmetry in the chord direction. Figure 14b,c displays that, as
the number of tracks increases, the incremental amplitude of deformation value and the
bending curvature decrease. Following LP, the surface undergoes work hardening, which
leads to a reduced plastic flow of the material in the prior direction during subsequent
LP processes. Finally, compared to the preceding track, there is a decrease in surface
compressive stress and bending deformation.
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Table 8. The solution results computed using MATLAB code.

No. a1/mm a2/mm a3/mm h/mm φ/rad r/mm ρ/×10−3 mm−1

Step–13 20.5 3 26.5 0.092 0.0033 909.1 1.10
Step–26 20.5 4.5 25 0.312 0.0115 391.3 2.56
Step–39 20.5 6 23.5 0.710 0.0268 223.9 4.47
Step–52 20.5 7.5 22 1.075 0.0418 179.4 5.57
Step–65 20.5 9 20.5 1.347 0.0539 167.0 5.99

Static reply 20.5 9 20.5 0.603 0.0241 373.4 2.68

4.5. Deformation Situation and Stress Field of SP

The simulation results of the deformation field after static reply are presented in
Figure 15, and the bending curvature results, calculated according to Equation (6), are
displayed in Table 9. It is observed that the height direction yields the deformation value of
0.60 mm and 0.79 mm for the CDS–P (S6) and UDS–S, respectively. However, compared to
the calculated bending curvature of the CDS–P (2.68 × 10−3 mm−1), the larger thickness
significantly reduces the bending curvature of the UDS–S (0.63 × 10−3 mm−1) by an order
of magnitude, making deformation considerably more challenging. The bending curva-
ture of the CDS–SP is 0.86 × 10−3 mm−1. Compared to the CDS–P (2.68 × 10−3 mm−1),
the restriction imposed by the stiffener increases the forming difficulty by approximately
3.1 times under identical LP conditions. Similarly, the bending curvature of the UDS–SP is
0.08 × 10−3 mm−1. Compared to the UDS–S (0.63 × 10−3 mm−1), the restraint imposed by
the plate amplifies the forming difficulty by approximately 7.9 times. The results reveal
that the plate and stiffener of SP impose constraints on each other, presenting significant
challenges to bend forming. Under nearly the same number of laser spots (65 and 66,
respectively), the bending curvature of the CDS–SP is larger than that of the UDS–SP
(0.86 × 10−3 mm−1 and 0.08 × 10−3 mm−1, respectively, approximately 10.8 times), reflect-
ing a larger forming capacity. In contrast, the former induces local bending deformation in
the middle of the peened area, while the latter generates the overall deformation from the
clamping side to the opposite end. There are no significant disparities in the deformation
value of the CDS–SP in the middle and on both sides, which measures 0.19 mm. Similarly,
the same conclusion can be deduced from Figure 15g. It is noted that there are discrepancies
in the chord direction deformation values of the UDS–SP, exhibiting the “middle smaller
(0.10 mm)/two-sided larger (0.13 mm)” phenomenon. The deformation in the middle area
of the plate is significantly less than the two-sided area. The constraint of the stiffener
increases the thickness of the middle area, and the bending deformation is more difficult.
Moreover, the constraint effect of the stiffener on the bending deformation is larger than
the positive bending moment formed by the inertia effect, so the deformation on two
sides of the plate is more significant. Consequently, the UDS–SP is more predisposed
to achieving efficient two-way forming. The results illustrate that the aforementioned
two forming processes hold significant importance for LPF, primarily encompassing the
forming capacity and efficiency. The CDS–SP possesses a larger forming ability and is more
concentrated on large-sized forming in a single unfolding direction; whereas, the UDS–SP
offers more advantages in achieving efficient integrated forming in two directions. The
bidirectional forming of the plate and stiffener is termed the UCDS–SP. By amalgamating
the advantages of the two aforementioned modes, the deformation height values in the
unfolding and chord directions increase to 0.291 mm and 0.318 mm, respectively. These
values are marginally smaller than the sum of the aforesaid two modes, which are 0.295 mm
(0.193 + 0.102 mm) and 0.329 mm (0.193 + 0.136 mm). This is attributed to the overlapping
area between the two peened regions, and the plastic deformation that occurs at this area
after the first LPF constrains the forming value of the subsequent LP.
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Table 9. The statistical data of deformation value and bending curvature.

Forming Methods a1 = a3/mm a2/mm H/mm ψ/rad r/mm ρ/×10−3 mm−1

CDS-P (S6) 20.5 9 0.603 0.0241 373.4 2.68
UDS-S 0 50 0.790 0.0316 1582.3 0.63

CDS-SP 20.5 9 0.193 0.0077 1168.8 0.86
UDS-SP 0 50 0.102 0.0041 12,195.1 0.08

UCDS-SP / / 0.291 / / /

The simulation results of the stress field after static reply are presented in Figures 16 and 17.
Compared to the CDS–P, the large thickness gives rise to a distinct stress field. The
stress distribution of the UDS–S in the depth direction consistently exhibits a “two-sided
compression/middle tension” pattern, with no occurrence of penetrating compressive
stress observed. The subsurface layer consists of a high-density residual compressive stress
layer, and the compressive stress of S33 (−150.0 MPa) is larger than that of S11 (−112.0 MPa).
This discrepancy is ascribed to the more significant plastic deformation of S33 compared
to S11, which leads to a more significant rebound effect and consequently larger residual
stress. Furthermore, Figure 17f illustrates that the large bending deformation induces
more substantial compressive stress on the material’s backside in the length direction
(S33) compared to the width direction (S11). The stress field of CDS–SP differs from that
of plate. The stiffener extends the propagation distance of the stress wave in the depth
direction. Consequently, the stress balance position shifts downward, while the stress field
distribution of the plate remains unaltered. Additionally, it is noted that the compressive
stress of S11 (−195.2 MPa) is larger than that of S33 (−166.9 MPa). In contrast to the
unfolding (Z) direction forming constrained by the stiffener, the plate’s plastic forming
in the chord (X) direction, which faces lesser constraints, is more feasible, causing more
significant rebound effects and larger residual stress. However, regarding the stiffener,
the large bending deformation in the Z direction leads to severe compression on the
stiffener’s backside, presenting a larger compressive stress of S33 (−103.4 MPa). The stress
field of the UDS–SP closely resembles that of the UDS–S. The subsurface layer in the
depth direction is also characterized by a high-density compressive stress layer, uniformly
exhibiting a “two-sided compression/middle tension” stress distribution. Variously, the
presence of the plate enlarges the propagation range of stress waves to all directions,
which aids in the bidirectional deformation of the plate and elevates the compressive stress
after static rebound (from −112.0 MPa to −137.2 MPa of S11 and from −150.0 MPa to
−209.2 MPa of S33). The compressive stress of S33 (−209.2 MPa) is larger than that of
S11 (−137.2 MPa). The compressive stresses of the UCDS–SP of S11 and S33, respectively,
increase to −160.9 MPa and −226.0 MPa, primarily in the overlapping area of the two
peened regions.
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5. Experimental Verification of Simulation Results

To facilitate a direct comparison with simulation outcomes, the LP experiment fol-
lows the procedure detailed in the preceding simulation, as illustrated in Figure 18. It
is widely recognized that bending deformation is dependent on both positive bending
moments, induced by force effects, and negative bending moments, resulting from stress
gradients [31]. In Figure 18a, it is observed that all samples manifest varying degrees of
overall convex bending deformation, which highlights the significant influence of negative
bending moments induced by stress gradients. Furthermore, as depicted in Figure 18c,d,
the experimental results of S1–S9 plates, stiffener, and SP closely match the simulation
outcomes. Significantly, the experimental values consistently surpass the simulation values,
albeit by a slight margin. This pattern suggests a slight variance between experimental
observations and simulated predictions. It is necessary to consider that the minor thermal
effects disregarded during the simulation process could inherently induce a certain degree
of softening in the 6005A–T6 aluminum alloy material. Conversely, it is also essential to
recognize that the complex interaction among the constraint layer, absorption layer, and the
material itself, as observed in actual experimental conditions, tends to be significantly more
intricate than what is commonly simulated. This discrepancy in complexity inevitably
leads to the discrepancies between the values obtained through the experiment methods
and those derived from the simulation approach.
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The relative percentage error is a common measure of the degree of deviation between
the simulation and experimental results. The uncertainty is described through relative
error analysis to evaluate the accuracy of the model predictions. By comparing the actual
measurement results with the model prediction results, the relative errors were obtained,
as displayed in Table 10. The relative error range of the two is roughly between 4.4%
and 19.6%. For engineering applications, the relative error is acceptable in a range of less
than 20%. Therefore, reasonable error ranges prove and verify the effectiveness of the
model. The uncertainty comes from multiple aspects, such as model establishment (model
selection, material parameter estimation), numerical errors (mesh partitioning and time
step), boundary condition selection, and measurement errors.

Table 10. The relative error obtained by comparing actual measurement results with model predic-
tion results.

No. Simulation/mm Experiment/mm Error/% No. Simulation/mm Experiment/mm Error/%

S1 0.342 0.41 16.7 S8 0.390 0.45 13.3
S2 0.430 0.51 15.7 S9 0.686 0.81 15.3
S3 0.392 0.46 14.8 CDS–P 0.603 0.75 19.6
S4 0.373 0.39 4.4 UDS–S 0.790 0.91 13.2
S5 0.447 0.53 15.7 CDS–SP 0.193 0.23 16.1
S6 0.603 0.75 19.6 UDS–SP 0.102 0.12 15.0
S7 0.437 0.52 16.0 UCDS–SP 0.291 0.36 19.2

6. Conclusions

This paper conducted the parameter optimization for LPF on 6005A–T6 aluminum
alloy plates to explore the constrained deformation of SP. Specifically, the following conclu-
sions are drawn:

(1) The impact of process parameters on bending curvature is ranked as follows: the
overlap rate is the largest, followed by the beam diameter; the beam energy is the smallest.
Therefore, adjusting the overlap rate and beam diameter of the primary variables obtains a
wide range of deformations, while the beam energy of secondary variable achieves a more
precise deformation.
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(2) During the 12–track LPF process, there is an overall upward trend in deformation
values and a dynamic increase in bend curvature. After static relaxation, there is a recovery
of 55.2% in the deformation value compared to the final bending curvature.

(3) The plate and stiffener of the SP are mutually constrained, severely limiting the
overall formation. The CDS–SP exhibits a greater forming capacity than that of the UDS–SP,
and there are no significant disparities in the CDS–SP deformation in both the middle
and side regions. However, discrepancies exist in the chord direction deformation of the
UDS-SP, which shows a pattern of “smaller at middle/larger at two sides”.

(4) The CDS–SP exhibits a larger bending curvature than the UDS–SP, indicating
a superior forming capacity. The CDS–SP focuses more on large-sized forming along
a single unfolding direction, while the UDS–SP excels at achieving efficient, integrated
two-way forming.
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