Effects of Pressure, Surfactant Concentration, and Heat Flux on Pool Boiling Using Expanding Microchanneled Surface for Two-Phase Immersion Cooling
Abstract
:1. Introduction
1.1. Challenges of Two-Phase Immersion Cooling in Data Centers
1.2. State of the Art on Pool Boiling Enhancement Using Surfactant
1.3. Purpose of the Present Work
2. Experimental Facilities
2.1. Experimental Set-Up
2.2. Surface Treatment
2.3. Imaging and Measurement
2.4. Heated Surfaces and Solution Preparation
3. Data Processing and Uncertainty Analysis
4. Results and Discussion
4.1. Effect of Saturated Pressure
4.2. Effect of Surfactant Concentration
4.3. Effect of Heat Flux
4.4. Boiling Curves and HTC
4.5. Mechanism of Intermittent Bubbling and Temperature Oscillation
5. Conclusions
- (1)
- Increasing the saturated pressure can effectively promote the transition from intermittent boiling to continuous boiling. In this study, the saturated pressure was systematically reduced from 13 kPa to 8.8 kPa. The decrease in pressure resulted in changes to the increased activation energy of nucleation , leading to a reduction in system stability and making intermittent boiling more pronounced.
- (2)
- At low saturated pressures, the boiling curve of deionized water with added surfactant exhibits an “S” shape. The surfactant reduces both surface tension and wettability, resulting in a more pronounced temperature overshoot at low heat flux compared to without surfactant. However, as the concentration increases, the effects of surface tension become dominant, leading to smaller bubbles that effectively alleviate temperature overshoot. Under 8.8 kPa, boiling enhancement was achieved across all heat flux conditions until a concentration of 0.3 mL/L was reached for the ECS.
- (3)
- The increase in heat flux allows for more heat transfer to the surface for nucleation, which can shorten the waiting time for bubbling under sub-atmospheric pressure. The maximum HTC of the PS with added surfactant reached 2.86 W·cm−2·K−1, representing a 138% increase compared to deionized water. The maximum HTC of the ECS with added surfactant reached 6.89 W·cm−2·K−1, which was increased by 45%.
- (4)
- When the pressure decreased from 38.5 kPa to 8.8 kPa, the bubble detachment time significantly increased due to a sharp increase in bubble size, extending by 105% for the PS. At this point, with the addition of a low surfactant concentration, more pronounced intermittent boiling and temperature oscillations occurred. When the concentration decreased from 0.5 mL to 0.1 mL, the bubble waiting time increased by more than 25 times.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
C | surfactant concentration, mL/L |
G | energy |
latent heat of liquid, kJ/kg | |
Ps | saturated pressure, kPa |
heat flux, W/cm2 | |
r | radius, mm |
T | temperature, K |
ΔT | superheat, K |
bubble departure time, ms | |
waiting time for bubbling, ms | |
wall roughness, um | |
Greek alphabet | |
static contact angle, ° | |
σ | surface tension coefficient, mN/m |
Abbreviations | |
CTAB | cetyltrimethylammonium bromide |
ECS | expanding microchanneled surface |
ONB | onset of nucleate boiling |
ppm | part per million |
PS | plane surface |
SDS | solution sodium dodecyl sulfate |
Tween 20 | polysorbate 20 |
TritonX-114 | Tert-OCLylphenoxy poly ethanol |
References
- Liu, Y.; Wei, X.; Xiao, J.; Liu, Z.; Xu, Y.; Tian, Y. Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers. Glob. Energy Interconnect. 2020, 3, 272–282. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Zhang, K.; Lang, X.; Chen, H.; Yu, H.; Li, S. Performance evaluation and optimization of data center servers using single-phase immersion cooling. Int. J. Heat Mass Transf. 2024, 221, 125057. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Liu, S.; Zhang, X.; Sun, H. Server performance optimization for single-phase immersion cooling data center. Appl. Therm. Eng. 2023, 224, 120080. [Google Scholar] [CrossRef]
- Roach, J. To Cool Datacenter Servers, Microsoft Turns to Boiling Liquid. 2024. Available online: https://news.microsoft.com/source/features/innovation/datacenter-liquid-cooling (accessed on 26 April 2021).
- Liu, J.; Chen, H.; Huang, S.; Jiao, Y.; Chen, M. Recent progress and prospects in liquid cooling thermal management system for lithium-ion batteries. Batteries 2023, 9, 400. [Google Scholar] [CrossRef]
- Larrañaga-Ezeiza, M.; Navarro, G.V.; Garmendia, I.G.; Arroiabe, P.F.; Martinez-Aguirre, M.; Arostegui, J.B. Parametric optimisation of a direct liquid cooling—Based prototype for electric vehicles focused on pouch-type battery cells. World Electr. Veh. J. 2022, 13, 149. [Google Scholar] [CrossRef]
- Pulugundla, G.; Dubey, P.; Wu, Z.; Wang, Q.; Srouji, A.K. Thermal management of lithium ion cells at high discharge rate using submerged-cell cooling. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020; pp. 1–5. [Google Scholar]
- Dubey, P.; Pulugundla, G.; Srouji, A.K. Direct comparison of immersion and cold-plate based cooling for automotive li-ion battery modules. Energies 2021, 14, 1259. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int. J. Heat Mass Transf. 2013, 64, 122–132. [Google Scholar] [CrossRef]
- Katto, Y.; Yokoya, S. Behavior of a vapor mass in saturated nucleate and transitional pool boiling. Trans. Jpn. Soc. Mech. Eng. 1975, 41, 294–305. [Google Scholar] [CrossRef]
- Cooper, M. The microlayer and bubble growth in nucleate pool boiling. Int. J. Heat Mass Transf. 1969, 12, 915–933. [Google Scholar] [CrossRef]
- Coulibaly, A.; Lin, X.; Bi, J.; Christopher, D.M. Bubble coalescence at constant wall temperatures during subcooled nucleate pool boiling. Exp. Therm. Fluid Sci. 2013, 44, 209–218. [Google Scholar] [CrossRef]
- Birbarah, P.; Gebrael, T.; Foulkes, T.; Stillwell, A.; Moore, A.; Pilawa-Podgurski, R.; Miljkovic, N. Water immersion cooling of high power density electronics. Int. J. Heat Mass Transf. 2019, 147, 118918. [Google Scholar] [CrossRef]
- Gao, T.; Shao, S.; Cui, Y.; Espiritu, B.; Ingalz, C.; Tang, H.; Heydari, A. A study of direct liquid cooling for high-density chips and accelerators. In Proceedings of the 2017 16th IEEE Intersociety Conference On Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 565–573. [Google Scholar]
- Carey, V.P. Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Gao, W.; Qi, J.; Yang, X.; Zhang, J.; Wu, D. Experimental investigation on bubble departure diameter in pool boiling under sub-atmospheric pressure. Int. J. Heat Mass Transf. 2019, 134, 933–947. [Google Scholar] [CrossRef]
- McGillis, W.R.; Carey, V.P.; Fitch, J.S.; Hamburgen, W.R. Pool boiling enhancement techniques for water at low pressure. In Proceedings of the 1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium, Phoenix, AZ, USA, 12–14 February 1991; pp. 64–72. [Google Scholar]
- Elghanam, R.; Fawal, M.; Aziz, R.A.; Skr, M.; Khalifa, A.H. Experimental study of nucleate boiling heat transfer enhancement by using surfactant. Ain Shams Eng. J. 2011, 2, 195–209. [Google Scholar] [CrossRef]
- Raza, Q.; Kumar, N.; Raj, R. Wettability-independent critical heat flux during boiling crisis in foaming solutions. Int. J. Heat Mass Transf. 2018, 126, 567–579. [Google Scholar] [CrossRef]
- Du, J.; Wang, Y.; Yang, W.; Wang, J.; Cao, Z.; Sundén, B. Effect of nanoparticle concentration and surfactants on nanofluid pool boiling. Int. J. Heat Mass Transf. 2024, 221, 125080. [Google Scholar] [CrossRef]
- Ammerman, C.N.; You, S.M. Determination of the boiling enhancement mechanism caused by surfactant addition to water. J. Heat Transf. 1996, 118, 429–435. [Google Scholar] [CrossRef]
- Frost, W.; Kippenhan, C.J. Bubble growth and heat-transfer mechanisms in the forced convection boiling of water containing a surface active agent. Int. J. Heat Mass Transf. 1967, 10, 931–949. [Google Scholar] [CrossRef]
- Kumar, N.; Raza, Q.; Raj, R. Surfactant aided bubble departure during pool boiling. Int. J. Therm. Sci. 2018, 131, 105–113. [Google Scholar] [CrossRef]
- Wu, W.-T.; Yang, Y.-M.; Maa, J.-R. Enhancement of Nucleate Boiling Heat Transfer and Depression of Surface Tension by Surfactant Additives. J. Heat Transf. 1995, 117, 526–529. [Google Scholar] [CrossRef]
- Wen, T.; Luo, J.; Jiao, K.; Lu, L. Pool boiling heat transfer enhancement of aqueous solution with quaternary ammonium cationic surfactants on copper surface. Int. J. Heat Mass Transf. 2022, 190, 122761. [Google Scholar] [CrossRef]
- Li, B.; Zheng, J.; Dang, C.; Kang, Y.; Jia, H. Experimental investigation on bubble dynamic behaviors in pool boiling of surfactant solutions. Int. J. Therm. Sci. 2024, 198, 108858. [Google Scholar] [CrossRef]
- Tian, Z.; Etedali, S.; Afrand, M.; Abdollahi, A.; Goodarzi, M. Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nano-fluid. Powder Technol. 2019, 356, 391–402. [Google Scholar] [CrossRef]
- Yang, Y.; Maa, J. On the criteria of nucleate pool boiling enhancement by surfactant addition to water. Chem. Eng. Res. Des. 2001, 79, 409–416. [Google Scholar] [CrossRef]
- Lee, C.Y.; Zhang, B.J.; Kim, K.J. Influence of heated surfaces and fluids on pool boiling heat transfer. Exp. Therm. Fluid Sci. 2014, 59, 15–23. [Google Scholar] [CrossRef]
- Proper, J.; Kulacki, F. Pool boiling of a dilute emulsion: Surfactant effect on heat transfer. Int. Commun. Heat Mass Transf. 2021, 128, 105586. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Y.; Wu, H. Effects of surfactants on subcooled pool boiling characteristics: An experimental study. Int. J. Heat Mass Transf. 2022, 199, 123419. [Google Scholar] [CrossRef]
- Jia, H.; Xu, L.; Xiao, X.; Zhong, K. Study on boiling heat transfer of surfactant solution on grooved surface. Int. J. Heat Mass Transf. 2021, 181, 121876. [Google Scholar] [CrossRef]
- Sun, C.; Guo, D.; Wang, Z.; Sun, F. Investigation on active thermal control method with pool boiling heat transfer at low pressure. J. Therm. Sci. 2018, 27, 277–284. [Google Scholar] [CrossRef]
- Giraud, F.; Rullière, R.; Toublanc, C.; Clausse, M.; Bonjour, J. Experimental evidence of a new regime for boiling of water at subatmospheric pressure. Exp. Therm. Fluid Sci. 2015, 60, 45–53. [Google Scholar] [CrossRef]
- Yamada, M.; Shen, B.; Imamura, T.; Hidaka, S.; Kohno, M.; Takahashi, K.; Takata, Y. Enhancement of boiling heat transfer under sub-atmospheric pressures using biphilic surfaces. Int. J. Heat Mass Transf. 2017, 115, 753–762. [Google Scholar] [CrossRef]
- Najim, A.; More, V.; Thorat, A.; Patil, S.; Savale, S. Enhancement of pool boiling heat transfer using innovative non-ionic surfactant on a wire heater. Exp. Therm. Fluid Sci. 2017, 82, 375–380. [Google Scholar] [CrossRef]
- Yuan, L.; Hong, F.; Cheng, P. Pool boiling enhancement through a guidance structure mounted above heating surface. Int. J. Heat Mass Transf. 2019, 139, 751–763. [Google Scholar] [CrossRef]
- Michaie, S.; Rullière, R.; Bonjour, J. Experimental study of bubble dynamics of isolated bubbles in water pool boiling at subatmospheric pressures. Exp. Therm. Fluid Sci. 2017, 87, 117–128. [Google Scholar] [CrossRef]
- Halon, T.; Zajaczkowski, B.; Michaie, S.; Rulliere, R.; Bonjour, J. Experimental study of low pressure pool boiling of water from narrow tunnel surfaces. Int. J. Therm. Sci. 2017, 121, 348–357. [Google Scholar] [CrossRef]
- Kwark, S.M.; Amaya, M.; Kumar, R.; Moreno, G.; You, S.M. Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters. Int. J. Heat Mass Transf. 2010, 53, 5199–5208. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Xu, C.; Zhu, H.; Chen, X.; Liang, K.; Xu, J. Correlation of pool boiling heat transfer and enhancement by microstructure surfaces at sub-atmospheric pressures. Int. J. Heat Mass Transf. 2024, 226, 125465. [Google Scholar] [CrossRef]
- Ateş, A.; Benam, B.P.; Mohammadilooey, M.; Çelik, S.; Serdyukov, V.; Surtaev, A.; Sadaghiani, A.K.; Koşar, A. Pool boiling heat transfer on superhydrophobic, superhydrophilic, and superbiphilic surfaces at atmospheric and sub-atmospheric pressures. Int. J. Heat Mass Transf. 2023, 201, 123582. [Google Scholar] [CrossRef]
- Huang, G.; Tang, K.; Yu, S.; Tang, Y.; Zhang, S. Enhanced pool boiling heat transfer by metallic nanoporous surfaces under low pressure. Int. J. Heat Mass Transf. 2021, 184, 122382. [Google Scholar] [CrossRef]
- Pal, A.; Joshi, Y. Boiling of water at subatmospheric conditions with enhanced structures: Effect of liquid fill volume. J. Electron. Packag. 2008, 130, 011010. [Google Scholar] [CrossRef]
- Dahariya, S.; Betz, A.R. High pressure pool boiling: Mechanisms for heat transfer enhancement and comparison to existing models. Int. J. Heat Mass Transf. 2019, 141, 696–706. [Google Scholar] [CrossRef]
- Chen, H.; Chen, G.; Zou, X.; Yao, Y.; Gong, M. Experimental investigations on bubble departure diameter and frequency of methane saturated nucleate pool boiling at four different pressures. Int. J. Heat Mass Transf. 2017, 112, 662–675. [Google Scholar] [CrossRef]
- Staniszewski, B.E. Nucleate Boiling Bubble Growth and Departure; Massachusetts Institute of Technology, Division of Industrial Cooperation: Cambridge, MA, USA, 1959. [Google Scholar]
- Akiyama, M.; Tachibana, F.; Ogawa, N. Effect of pressure on bubble growth in pool boiling. Bull. JSME 1969, 12, 1121–1128. [Google Scholar] [CrossRef]
- Etedali, S.; Afrand, M.; Abdollahi, A. Effect of different surfactants on the pool boiling heat transfer of SiO2/deionized water nanofluid on a copper surface. Int. J. Therm. Sci. 2019, 145, 105977. [Google Scholar] [CrossRef]
- Hu, Z.-C.; Liu, X.-Y.; Wang, Q. Calculation and analysis of excess adsorption and surface tension of aqueous surfactant solutions under pool boiling conditions. Int. J. Heat Mass Transf. 2021, 185, 122416. [Google Scholar] [CrossRef]
- Yin, J.; Xiao, X.; Feng, L.; Zhong, K.; Jia, H. Experimental investigation of pool boiling characteristics of surfactant solutions on bi-conductive surfaces. Int. J. Heat Mass Transf. 2020, 157, 119914. [Google Scholar] [CrossRef]
- Mata, M.R.; Ortiz, B.; Luhar, D.; Evereux, V.; Cho, H.J. How dynamic adsorption controls surfactant-enhanced boiling. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Cho, H.J.; Sresht, V.; Blankschtein, D.; Wang, E.N. Understanding enhanced boiling with triton x surfactants. In Proceedings of the ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, Minneapolis, MN, USA, 14–19 July 2013. [Google Scholar]
- Guo, D.-S.; Li, X.-B.; Zhang, H.-N.; Li, F.-C.; Su, W.-T.; Zhu, H. Bubble behaviors during subcooled pool boiling in water and nonionic surfactant aqueous solution. Int. J. Heat Mass Transf. 2020, 159, 120087. [Google Scholar] [CrossRef]
- Surtaev, A.; Serdyukov, V.; Malakhov, I. Effect of subatmospheric pressures on heat transfer, vapor bubbles and dry spots evolution during water boiling. Exp. Therm. Fluid Sci. 2019, 112, 109974. [Google Scholar] [CrossRef]
- Shiau, B.-J.; Sabatini, D.A.; Harwell, J.H. Properties of food grade (edible) surfactants affecting subsurface remediation of chlorinated solvents. Environ. Sci. Technol. 1995, 29, 2929–2935. [Google Scholar] [CrossRef]
- Basu, N.; Warrier, G.R.; Dhir, V.K. Wall heat flux partitioning during subcooled flow boiling: Part 1—Model development. J. Heat Transf. 2005, 127, 131–140. [Google Scholar] [CrossRef]
- Ravikumar, S.V.; Haldar, K.; Jha, J.M.; Chakraborty, S.; Sarkar, I.; Pal, S.K.; Chakraborty, S. Heat transfer enhancement using air-atomized spray cooling with water–Al2O3 nanofluid. Int. J. Therm. Sci. 2015, 96, 85–93. [Google Scholar] [CrossRef]
- Kwak, H.-Y.; Kim, Y.W. Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions. Int. J. Heat Mass Transf. 1998, 41, 757–767. [Google Scholar] [CrossRef]
- Karri, S.B.R. Dynamics of bubble departure in micro-gravity. Chem. Eng. Commun. 1988, 70, 127–135. [Google Scholar] [CrossRef]
- Halon, T.; Zajaczkowski, B.; Michaie, S.; Rulliere, R.; Bonjour, J. Enhanced tunneled surfaces for water pool boiling heat transfer under low pressure. Int. J. Heat Mass Transf. 2018, 116, 93–103. [Google Scholar] [CrossRef]
- Wang, X.; Liang, K.; Xu, J.; Wang, J.; Chen, X. Experimental study on bubble dynamics and heat transfer of pool boiling at sub-atmospheric pressures. Int. Commun. Heat Mass Transf. 2023, 148, 107065. [Google Scholar] [CrossRef]
Reference | Pressure Variation (kPa) a |
Luling Yuan (2019) [37] | 12.3, 31.2, 101 |
Sandra Michaie (2017) [38] | 4.2, 5.6, 7.4, 9.6, 12.4, 15.8, 20, 25.1, 31.2, 38.6, 47.4, 57.9, 70.2, 84.6, 101.4 |
Tomasz Halon (2017) [39] | 0.75, 1, 2, 4, |
Sang M. Kwark (2010) [40] | 20, 47, 101, 200 |
Xiang Wang (2024) [41] | 40, 60, 80, 100, 120 |
Ayşenur Ateş (2023) [42] | 28.3,103.7, |
Guanghan Huang (2022) [43] | 25, 65 |
Aniruddha Pal (2008) [44] | 9.7, 15, 21 |
Smreeti Dahariya (2019) [45] | 103.4, 206.8, 310.2, 413.7 |
Hanzhi Chen (2017) [46] | 150, 200, 300, 400 |
Staniszewski (1959) [47] | 101, 193, 276, |
Akiyama (1969) [48] | 101, 203, 507, 807 |
Reference | Concentration Range (Ratio to CMC) b |
Bing Li (2024) [26] | 0.1, 1, 5, 10 (SDS) |
Sasan Etedali (2019) [49] | 0.480 (SDS) 0.732 (CTAB) |
Chi Young Lee (2014) [29] | 0.437 (SDS) |
R.I. Elghanam (2011) [18] | 0.087, 0.217, 0.435, 0.652 (SDS) |
Zi-Cheng Hu (2022) [50] | 0.087, 0.174, 0.348, 0.435, 0.783, 1.3 (SDS) |
Jialun Yin (2020) [51] | 0.135, 0.405, 0.946 (SDS) |
Zhen Yang (2022) [31] | 0.093, 0.93, 1.85 (Tween 20) |
Mario R. Mata (2022) [52] | (0.02~31.3) (Tween 20) |
H. Jeremy Cho (2013) [53] | 0.61 (TritonX-114) |
Dong-Sheng Guo (2020) [54] | 1 (TritonX-114) |
Tao Wen (2022) [25] | 0.267, 0.533, 1.066, 2.133 (CTAB) |
Parameters | Maximum Relative Uncertainty |
---|---|
Heat flux (W/cm2) | 16.9% |
HTC (W/cm2·K−1) | 20.6% |
Concentration of surfactant | 1.0% |
Static contact angle (o) | 1.4% |
Waiting time of bubble (ms) | 2.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Fu, D.; Dang, C.; Hong, S. Effects of Pressure, Surfactant Concentration, and Heat Flux on Pool Boiling Using Expanding Microchanneled Surface for Two-Phase Immersion Cooling. Materials 2024, 17, 5155. https://doi.org/10.3390/ma17215155
Hu Y, Fu D, Dang C, Hong S. Effects of Pressure, Surfactant Concentration, and Heat Flux on Pool Boiling Using Expanding Microchanneled Surface for Two-Phase Immersion Cooling. Materials. 2024; 17(21):5155. https://doi.org/10.3390/ma17215155
Chicago/Turabian StyleHu, Yifei, Dengwei Fu, Chaobin Dang, and Sihui Hong. 2024. "Effects of Pressure, Surfactant Concentration, and Heat Flux on Pool Boiling Using Expanding Microchanneled Surface for Two-Phase Immersion Cooling" Materials 17, no. 21: 5155. https://doi.org/10.3390/ma17215155
APA StyleHu, Y., Fu, D., Dang, C., & Hong, S. (2024). Effects of Pressure, Surfactant Concentration, and Heat Flux on Pool Boiling Using Expanding Microchanneled Surface for Two-Phase Immersion Cooling. Materials, 17(21), 5155. https://doi.org/10.3390/ma17215155