Elaboration and Characterization of Electrodes from Robinia pseudoacacia and Azadirachta indica Charcoal Powder with Coconut Bio-Pitch as a Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bio-Oil Preparation
2.2. Bio-Pitch Production
2.3. Electrode Preparation and Characterisation
- V: anode volume (cm3);
- h: electrode length (cm);
- D: electrode diameter (cm).
- d: density (g/cm3);
- m: electrode mass (g).
- U is the average voltage (V).
- A: sample section area (cm2);
- I: current intensity (A);
- L: distance between two points (cm);
- D: sample diameter (cm).
3. Results and Discussion
3.1. Bio-Oil Production
3.2. Synthesis of Bio-Pitch
3.2.1. Density of the Bio-Pitch
3.2.2. Coking Value
3.3. Preparation and Characterisation of Electrodes
3.3.1. Production of Charcoal
3.3.2. Mass Loss and Density After Heat Treatment
3.3.3. Electrical Resistivity
3.3.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3.5. Electrochemical Response
3.3.6. Morphological Characterisation by Atomic Force Microscopy (AFM)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiminaitė, I.; Lisauskas, A.; Striūgas, N.; Kryževičius, Ž. Fabrication and characterization of environmentally friendly biochar anode. Energies 2022, 15, 112. [Google Scholar] [CrossRef]
- Yadav, A.K.; Dash, P.; Mohanty, A.; Abbassi, R.; Mishra, B.K. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol. Eng. 2012, 47, 126–131. [Google Scholar] [CrossRef]
- Guan, C.Y.; Tseng, Y.H.; Tsang, D.C.W.; Hu, A.; Yu, C.P. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. J. Hazard. Mater. 2019, 365, 137–145. [Google Scholar] [CrossRef]
- Arends, J.B.A.; Speeckaert, J.; Blondeel, E.; De Vrieze, J.; Boeckx, P.; Verstraete, W.; Rabaey, K.; Boon, N. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl. Microbiol. Biotechnol. 2014, 98, 3205–3217. [Google Scholar] [CrossRef]
- Sonu, K.; Sogani, M.; Syed, Z.; Dongre, A.; Sharma, G. Improved decolorization of dye wastewater and enhanced power output in the electrically stacked microbial fuel cells with H2O2 modified corncob anodes. Environ. Prog. Sustain. Energy 2021, 40, ep13638. [Google Scholar] [CrossRef]
- Gallardo, A.F.S.; Provis, J.L. Electrochemical cell design and impedance spectroscopy of cement hydration. J. Mater. Sci. 2021, 56, 1203–1220. [Google Scholar] [CrossRef]
- Kocaefe, Y.; Kocaefe, D.; Bhattacharyay, D. Quality Control via Electrical Resistivity Measurement of Industrial Anodes. Light Met. 2015, 2015, 1097–1102. [Google Scholar] [CrossRef]
- Coutinho, A.R.; Rocha, J.D.; Luengo, C.A. Preparing and characterizing biocarbon electrodes. Fuel Process. Technol. 2000, 67, 93–102. [Google Scholar] [CrossRef]
- Hussein, A.; Wang, Z.; Ratvik, A.P.; Grande, T.; Alamdari, H. Electrochemical Performance of Carbon Anodes Made of Bio-pitch as a Binder. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2022, 53, 584–593. [Google Scholar] [CrossRef]
- Gharbi, O.; Tran, M.T.T.; Tribollet, B.; Turmine, M.; Vivier, V. Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochim. Acta 2020, 343, 136109. [Google Scholar] [CrossRef]
- Lan, L.; Li, J.; Feng, Q.; Zhang, L.; Fu, Q.; Zhu, X.; Liao, Q. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells ScienceDirect Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells. Int. J. Hydrogen Energy 2019, 45, 3833–3839. [Google Scholar] [CrossRef]
- Sekeri, S.H.; Ibrahim, M.N.M.; Umar, K.; Yaqoob, A.A.; Azmi, M.N.; Hussin, M.H.; Othman, M.B.H.; Malik, M.F.I.A. Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent. Int. J. Biol. Macromol. 2020, 164, 3114–3124. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Umar, K. Biomass-derived composite anode electrode: Synthesis, characterizations, and application in microbial fuel cells (MFCs). J. Environ. Chem. Eng. 2021, 9, 106111. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Lan, L.; Li, Z.; Wei, W.; Lu, J.E.; Chen, S. Facile Synthesis of Fe/N/S-Doped Carbon Tubes as High-Performance Cathode and Anode for Microbial Fuel Cells. ChemCatChem 2019, 11, 6070–6077. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Yaakop, A.S.; Rafatullah, M. Utilization of biomass-derived electrodes: A journey toward the high performance of microbial fuel cells. Appl. Water Sci. 2022, 12, 99. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent advances in anodes for microbial fuel cells: An overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S. Biomass-Derived Carbon for Electrode Fabrication in Microbial Fuel Cells: A Review. Ind. Eng. Chem. Res. 2020, 59, 6391–6404. [Google Scholar] [CrossRef]
- Choi, K.C.; Lee, E.K.; Choi, S.Y.; Park, S.J. Electrical and Physical Properties of Carbonized Charcoals. Polymer 2003, 27, 40–45. [Google Scholar]
- Sonu, K.; Sogani, M.; Syed, Z.; Rajvanshi, J.; Pandey, S.C. Performance evaluation of Epipremnum aureum plant-based microbial fuel cell using composite anode made up of carbonized corncob and carbon rod. Biomass Convers. Biorefinery 2024, 14, 5149–5156. [Google Scholar] [CrossRef]
- Hussein, A.; Fafard, M.; Ziegler, D.; Alamdari, H. Effects of charcoal addition on the properties of carbon anodes. Metals 2017, 7, 98. [Google Scholar] [CrossRef]
- Amara, B. Utilisation du Biocharbon dans la Production des Anodes en Carbone. Ph.D. Thesis, Université du Québec à Chicoutimi, Saguenay, QC, Canada, 2022. [Google Scholar]
- ASTM D4715-98; Standard Test Method for Coking Value of Tar and Pitch (Alcan). ASTM: West Conshohocken, PA, USA, 2022.
- ASTM D5502-00; Standard Test Method for Apparent Density by Physical Measurements of Manufactured Anode and Cathode Carbon Used by the Aluminum Industry. ASTM: West Conshohocken, PA, USA, 2005.
- Silva, F.T.M.; Ataíde, C.H. Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization. Energy 2019, 172, 509–516. [Google Scholar] [CrossRef]
- Thieblesson, L.M.; Djomo, A.S.; Kouassi, K.A. Caractérisation physique et hygrothermique des matières premières en vrac (granules de papier, ouate de cellulose et fibre de bois) pour l’ élaboration d’ éco-matériaux. Afr. Sci. 2021, 19, 17–30. Available online: https://www.afriquescience.net/admin/postpdfs/517844c7c6a48741f3c91915553b55d41727785180.pdf (accessed on 12 October 2023).
- Lu, Y.; Mollaabbasi, R.; Picard, D.; Ziegler, D.; Alamdari, H. Physical and chemical characterization of bio-pitch as a potential binder for anode. In Light Metals 2019; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2019; pp. 1229–1235. [Google Scholar] [CrossRef]
- Amrani, S.; Kocaefe, D.; Kocaefe, Y.; Bhattacharyay, D.; Bouazara, M.; Côté, J. Effect of carbon anode production parameters on anode cracking. SN Appl. Sci. 2021, 3, 196. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.; Lu, Y.; Mollaabbasi, R.; Tessier, J.; Alamdari, H. Bio-pitch as a binder in carbon anodes for aluminum production: Bio-pitch properties and its interaction with coke particles. Fuel 2020, 275, 117875. [Google Scholar] [CrossRef]
- Rocha, J.D.; Coutinho, A.R.; Luengo, C.A. Biopitch produced from eucalyptus wood pyrolysis liquids as a renewable binder for carbon electrode manufacture. Braz. J. Chem. Eng. 2002, 19, 127–132. [Google Scholar] [CrossRef]
- Doat, J. Le pouvoir calorifique des bois tropicaux. Revve Bois For. Trop. 1977, 172, 33–55. Available online: https://agritrop.cirad.fr/444136/ (accessed on 12 October 2023).
- Prauchner, M.J.; Pasa, V.M.D.; Otani, S.; Otani, C. Biopitch-based general purpose carbon fibers: Processing and properties. Carbon N. Y. 2005, 43, 591–597. [Google Scholar] [CrossRef]
- Kocaefe, Y.; Charette, A.; Bui, R.T. Heat transfer modelling of the combustion chamber of a sidewell furnace. In Proceedings of the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Belem, Malta, 16–18 July 2012; pp. 1488–1495. [Google Scholar]
- Kretzschmar, A.; Selmert, V.; Weinrich, H.; Kungl, H.; Tempel, H.; Eichel, R.A. Tailored Gas Adsorption Properties of Electrospun Carbon Nanofibers for Gas Separation and Storage. ChemSusChem 2020, 13, 3180–3191. [Google Scholar] [CrossRef]
- Park, J.; Kretzschmar, A.; Selmert, V.; Camara, O.; Kungl, H.; Tempel, H.; Basak, S.; Eichel, R.A. Structural Study of Polyacrylonitrile-Based Carbon Nanofibers for Understanding Gas Adsorption. ACS Appl. Mater. Interfaces 2021, 13, 46665–46670. [Google Scholar] [CrossRef]
- Borowec, J.; Selmert, V.; Kretzschmar, A.; Fries, K.; Schierholz, R.; Kungl, H.; Eichel, R.; Tempel, H.; Hausen, F. Carbonization-Temperature-Dependent Electrical Properties of Carbon Nanofibers—From Nanoscale to Macroscale. Adv. Mater. 2023, 35, e2300936. [Google Scholar] [CrossRef]
- Mochidzuki, K.; Soutric, F.; Tadokoro, K.; Antal, M.J. Electrical and physical properties of carbonized coals. Polymer 2003, 42, 5140–5151. [Google Scholar]
- Friel, J.J.; Mehta, S.; Follweiler, D.M. Electron Optical and IR Spectroscopic Investigation of Coal Carbonization. In Coal and Coal Products: Analytical Characterization Techniques; ACS Publications: Washington, DC, USA, 1982; pp. 293–309. [Google Scholar]
- Amrani, S.; Kocaefe, D.; Kocaefe, Y.; Bhattacharyay, D.; Bouazara, M.; Coulombe, P. Evolution of anode properties during baking. IJISET-Int. J. Innov. Sci. Eng. Technol. 2017, 4, 301–309. [Google Scholar]
- Mapelli, C.; Castiglioni, C.; Meroni, E.; Zerbi, G. Graphite and graphitic compounds: Vibrational spectra from oligomers to real materials. J. Mol. Struct. 1999, 480–481, 615–620. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Naveenkumar, M. Enhanced performance study of microbial fuel cell using waste biomass-derived carbon electrode. Biomass Convers. Biorefinery 2023, 13, 5921–5929. [Google Scholar] [CrossRef]
- El Mekawy, A.; Hegab, H.M.; Mohanakrishna, G.; Pant, D.; Wang, H. Integrated Bioelectrochemical Platforms; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1037–1058. [Google Scholar] [CrossRef]
- Diao, P.; Guo, M.; Jiang, D.; Jia, Z.; Cui, X.; Gu, D.; Zhong, B. Fractional coverage of defects in self-assembled thiol monolayers on gold. J. Electroanal. Chem. 2000, 480, 59–63. [Google Scholar] [CrossRef]
- Boraah, N.; Chakma, S.; Kaushal, P. Optimum features of wood-based biochars: A characterization study. J. Environ. Chem. Eng. 2023, 11, 109976. [Google Scholar] [CrossRef]
- Wei, X.; Wei, J.S.; Li, Y.; Zou, H. Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J. Power Sources 2019, 414, 13–23. [Google Scholar] [CrossRef]
- Xian, F.; Gao, L.; Zhang, Z.; Zhang, H.; Dong, S.; Cui, G. N, P dual-doped multi-wrinkled nanosheets prepared from the egg crude lecithin as the efficient metal-free electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci. 2019, 476, 76–83. [Google Scholar] [CrossRef]
Type of Wood | Mass of Carbonized Wood (g) | Mass of Coal Obtained (g) | Coal Yield (%) |
---|---|---|---|
Azadirachta indica | 9200 | 4118 | 44.76 |
Robinia pseudoacacia | 9200 | 3856 | 41.91 |
Annealing Temperature (°C) | 800 | 1000 | - | ||
---|---|---|---|---|---|
Type of charcoal | (N800) | (A800) | (N1000) | (A1000) | Leclanche battery electrode |
Mass loss after annealing (%) | 37.20 | 40.87 | 47.45 | 56.77 | - |
Density (g/cm3) | 0.96 | 0.91 | 0.81 | 0.80 | 1.80 |
Electrode | A800 | N800 | A1000 | N1000 | G |
---|---|---|---|---|---|
1.60 | 1.16 | 0.5 | 0.13 | 0.05 |
Sample | n | |
---|---|---|
A800 | 69.570 | 0.124 |
A1000 | 2.014 | 0.280 |
N800 | 3.985 | 0.201 |
N1000 | 1.165 | 0.327 |
G | 0.511 | 0.511 |
Parameters | A800 | N800 | A1000 | N1000 | G |
---|---|---|---|---|---|
Sa (nm) | 59.904 | 47.0276 | 63.251 | 69.036 | 64.450 |
Sq (nm) | 107.053 | 96.0350 | 113.155 | 127.235 | 123.073 |
Sku | 8.36320 | 13.6314 | 9.04303 | 7.45238 | 8.30044 |
Sz (µm) | 1.18848 | 1.14395 | 1.70674 | 1.73661 | 1.24585 |
Sv (µm) | 0.53463 | 0.46902 | 0.91364 | 0.92079 | 0.62698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zingbe, E.; Kongnine, D.M.; Agbomahena, B.M.; Kpelou, P.; Mouzou, E. Elaboration and Characterization of Electrodes from Robinia pseudoacacia and Azadirachta indica Charcoal Powder with Coconut Bio-Pitch as a Binder. Materials 2024, 17, 5156. https://doi.org/10.3390/ma17215156
Zingbe E, Kongnine DM, Agbomahena BM, Kpelou P, Mouzou E. Elaboration and Characterization of Electrodes from Robinia pseudoacacia and Azadirachta indica Charcoal Powder with Coconut Bio-Pitch as a Binder. Materials. 2024; 17(21):5156. https://doi.org/10.3390/ma17215156
Chicago/Turabian StyleZingbe, Epiphane, Damgou Mani Kongnine, Bienvenu M. Agbomahena, Pali Kpelou, and Essowè Mouzou. 2024. "Elaboration and Characterization of Electrodes from Robinia pseudoacacia and Azadirachta indica Charcoal Powder with Coconut Bio-Pitch as a Binder" Materials 17, no. 21: 5156. https://doi.org/10.3390/ma17215156
APA StyleZingbe, E., Kongnine, D. M., Agbomahena, B. M., Kpelou, P., & Mouzou, E. (2024). Elaboration and Characterization of Electrodes from Robinia pseudoacacia and Azadirachta indica Charcoal Powder with Coconut Bio-Pitch as a Binder. Materials, 17(21), 5156. https://doi.org/10.3390/ma17215156