The Quantitative Evaluation of the Cell Structure Uniformity of Microcellular TPU with Low Porosity via a Digital Image Processing Method
Abstract
:1. Introduction
2. Methodology
2.1. Calculation of Actual Porosity
2.2. Processing Methods
2.3. Processing Steps
2.3.1. Image Binarization
2.3.2. Density Scatter Plot
2.3.3. Establishment of Quantitative Uniformity Indices
3. Results and Discussion
3.1. Cell Structure Evolution of Low-Porosity Microcellular Polymers
3.2. Applications of Uniformity Quantification Method
3.2.1. Number of Analyzed Cells
3.2.2. The Establishment of the Ideal Model
3.2.3. Uniformity Evaluation of SEM Images with Different Cell Sizes
3.2.4. Uniformity Evaluation of SEM Images with Different Porosities
3.2.5. Uniformity Evaluation of SEM Images with Different Cell Morphologies
3.2.6. Classification of Cell Structure Uniformity
3.2.7. Materials and Sample Preparation
3.2.8. Evolution of Cell Structure Uniformity of Microcellular TPU Foams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Cheng, B.; Gao, W.; Feng, C.; Huang, C.; Liu, Y.; Lu, P.; Zhao, H. Recent research progress and advanced applications of silica/polymer nanocomposites. Nanotechnol. Rev. 2022, 11, 2928–2964. [Google Scholar] [CrossRef]
- Sarver, J.A.; Kiran, E. Foaming of polymers with carbon dioxide—The year-in-review—2019. J. Supercrit. Fluids 2021, 173, 105166. [Google Scholar] [CrossRef]
- Zhai, W.; Jiang, J.; Park, C.B. A review on physical foaming of thermoplastic and vulcanized elastomers. Polym. Rev. 2022, 62, 95–141. [Google Scholar] [CrossRef]
- Liu, S.; Pandey, A.; Duvigneau, J.; Vancso, J.; Snoeijer, J.H. Size-Dependent Submerging of Nanoparticles in Polymer Melts: Effect of Line Tension. Macromolecules 2018, 51, 2411–2417. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Q.; Wang, C.; Guo, B.; Park, C.B.; Wang, G. High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Mater. Des. 2017, 131, 1–11. [Google Scholar] [CrossRef]
- Sun, X.; Kharbas, H.; Peng, J.; Turng, L.-S. A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer 2015, 56, 102–110. [Google Scholar] [CrossRef]
- Costeux, S. CO2-Blown Nanocellular Foams. J. Appl. Polym. Sci. 2014, 131, 41293. [Google Scholar] [CrossRef]
- Ameli, A.; Jung, P.U.; Park, C.B. Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 2013, 60, 379–391. [Google Scholar] [CrossRef]
- Zhai, W.; Jiang, J. Fundamental Issues for Batch Foaming of Thermoplastic Elastomers with Supercritical Fluids. Acta Polym. Sin. 2024, 55, 369–395. [Google Scholar]
- Wang, G.L.; Ren, T.Z.; Zhang, W.J.; Liu, J.X.; Xu, Z.R.; Zhao, J.C.; Li, X.Y.; Li, S.; Zhao, G.Q. Research on the cyclic compression performance of polycarbonate-based thermoplastic polyurethane foams prepared by microcellular foaming. J. CO2 Util. 2022, 65, 102218. [Google Scholar] [CrossRef]
- Ma, J.H.; Xu, N.; Cheng, J.; Pu, Y.P. A review on the development of ceria for chemical mechanical polishing. Powder. Technol. 2024, 444, 119989. [Google Scholar] [CrossRef]
- Zhao, D.W.; Lu, X.C. Chemical mechanical polishing: Theory and experiment. Friction 2013, 1, 306–326. [Google Scholar] [CrossRef]
- Prasad, A.; Fotou, G.; Li, S. The effect of polymer hardness, pore size, and porosity on the performance of thermoplastic polyurethane-based chemical mechanical polishing pads. J. Mater. Res. 2013, 28, 2380–2393. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Jeong, H. Approaches to Sustainability in Chemical Mechanical Polishing (CMP): A Review. Int. J. Precis. Eng. Manuf. Green. Technol. 2022, 9, 349–367. [Google Scholar] [CrossRef]
- Zhao, S.J.; Xie, R.Q.; Liao, D.F.; Chen, X.H.; Zhang, Q.H.; Wang, J.; Xu, Q. Particle Distribution Characterization on Material Removal Uniformity in Chemical Mechanical Polishing. In OPTIFAB; SPIE: St Bellingham, WA, USA, 2019; p. 11175. [Google Scholar]
- Li, S.; Gaudet, G.; Nair, J. ILD CMP with Silica Abrasive Particles: Effect of Pore Size of CMP Pad on Removal Rate Profiles. ECS J. Solid. State Sci. Technol. 2013, 2, 97. [Google Scholar] [CrossRef]
- Datta, D.; Rai, H.; Singh, S.; Srivastava, M.; Sharma, R.K.; Gosvami, N.N. Nanoscale tribological aspects of chemical mechanical polishing: A review. Appl. Surf. Sci. Adv. 2022, 11, 100286. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, F.; Yang, X.; Xiong, Z.; Liu, H.; Xu, D.; Zhai, W. Evolution of ordered structure of TPU in high-elastic state and their influences on the autoclave foaming of TPU and inter-bead bonding of expanded TPU beads. Polymer 2021, 228, 123872. [Google Scholar] [CrossRef]
- Wang, G.L.; Wan, G.P.; Chai, J.L.; Li, B.; Zhao, G.Q.; Mu, Y.; Park, C.B. Structure-tunable thermoplastic polyurethane foams fabricated by supercritical carbon dioxide foaming and their compressive mechanical properties. J. Supercrit. Fluid. 2019, 149, 127–137. [Google Scholar] [CrossRef]
- Ji, Z.; Ma, J.; Guo, X.; Wu, Y.; Ma, Z.; Qin, J.; Shao, L. Enhanced dimensional stability and mechanical properties of SBR/EVA foam by a scaffold structure constructed in the bubble cavity-wall. Compos. Sci. Technol. 2021, 213, 108936. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, J.; Wang, Z.; Li, Y.; Tian, F.; Wang, L.; Zhai, W. Controlling the crystal morphology of high-hardness TPU through two pre-crystallization processes and its impact on physical foaming behavior. Polymer 2024, 305, 127172. [Google Scholar] [CrossRef]
- Raps, D.; Hossieny, N.; Park, C.B.; Altstädt, V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015, 56, 5–19. [Google Scholar] [CrossRef]
- Kumar, A.; Patham, B.; Mohanty, S.; Nayak, S.K. Polyolefinic nanocomposite foams: Review of microstructure-property relationships, applications, and processing considerations. J. Cell. Plast. 2020, 58, 121–137. [Google Scholar] [CrossRef]
- Pang, Y.Y.; Cao, Y.Y.; Zheng, W.G.; Park, C.B. A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem. Eng. J. 2022, 430, 132662. [Google Scholar] [CrossRef]
- Wei, C.; Zhao, J.; Wang, G.; Chai, J.; Shi, Z.; Zhao, P.; Wang, Y. Strong and flame-retardant thermally insulating poly(vinylidene fluoride) foams fabricated by microcellular foaming. Mater. Des. 2022, 221, 110932. [Google Scholar] [CrossRef]
- Shi, J.C.; Gong, H.R.; Yang, F.; Liang, H.M.; Cong, L. Image Processing of Aggregate Skeleton Structure of Asphalt Mixture for Aggregate Uniformity Quantification. J. Mater. Civil. Eng. 2023, 35, 04022388. [Google Scholar] [CrossRef]
- Rossi, P.; Suarez, S.; Soldera, F.; Mücklich, F. Quantitative Assessment of the Reinforcement Distribution Homogeneity in CNT/Metal Composites. Adv. Eng. Mater. 2015, 17, 1017–1021. [Google Scholar] [CrossRef]
- Allier, C.; Hervé, L.; Paviolo, C.; Mandula, O.; Cioni, O.; Pierre, W.; Andriani, F.; Padmanabhan, K.; Morales, S. CNN-Based Cell Analysis: From Image to Quantitative Representation. Front. Phys. 2022, 9, 776805. [Google Scholar] [CrossRef]
- Kam, K.M.; Zeng, L.; Zhou, Q.; Tran, R.; Yang, J. On assessing spatial uniformity of particle distributions in quality control of manufacturing processes. J. Manuf. Syst. 2013, 32, 154–166. [Google Scholar] [CrossRef]
- Tan, H.; Huang, Z.C.; Zhu, S.R.; He, L.; Fang, X. An image-based approach for quantitative assessment of uniformity in particle distribution of noise reduction material. Microsc. Res. Tech. 2021, 84, 1924–1935. [Google Scholar] [CrossRef]
- Ponnamma, D.; Sadasivuni, K.K.; Grohens, Y.; Guo, Q.; Thomas, S. Carbon Nanotubes Based Elastomer Composites—An Approach towards Multifunctional Materials. J. Mater. Chem. 2014, 2, 8446–8485. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.W.; Mao, J.L.; Wang, S.; Zheng, Y.T. Quantitative evaluation of inclusion homogeneity in composites and the applications. J. Mater. Res. Technol. 2020, 9, 6790–6807. [Google Scholar] [CrossRef]
- Ning, Z.; Liu, Y.; Wang, W.; Dong, J.; Meng, X.; Wang, Q. Crack propagation and non-uniform deformation analysis in hydraulic asphalt concrete: Insights from X-ray CT scanning and digital volume correlation. Constr. Build. Mater. 2024, 411, 134704. [Google Scholar] [CrossRef]
- Leung, S.N.; Wong, A.; Guo, Q.; Park, C.B.; Zong, J.H. Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chem. Eng. Sci. 2009, 64, 4899–4907. [Google Scholar] [CrossRef]
- Rakow, J.F.; Waas, A.M. Size effects and the shear response of aluminum foam. Mech. Mater. 2005, 37, 69–82. [Google Scholar] [CrossRef]
- Zhu, H.X.; Windle, A.H. Effects of cell irregularity on the high strain compression of open-cell foams. Acta Mater. 2002, 50, 1041–1052. [Google Scholar] [CrossRef]
- Krause, B.; Mettinkhof, R.; van der Vegt, N.F.A.; Wessling, M. Microcellular Foaming of Amorphous High-Tg Polymers Using Carbon Dioxide. Macromolecules 2001, 34, 874–884. [Google Scholar] [CrossRef]
- Krause, B.; Koops, G.-H.; van der Vegt, N.F.A.; Wessling, M.; Wübbenhorst, M.; van Turnhout, J. Ultralow-k Dielectrics Made by Supercritical Foaming of Thin Polymer Films. Adv. Mater. 2002, 14, 1041–1046. [Google Scholar] [CrossRef]
- Ge, C.; Wang, S.; Zhai, W. Influence of cell type and skin-core structure on the tensile elasticity of the microcellular thermoplastic polyurethane foam. J. Cell. Plast. 2019, 56, 207–226. [Google Scholar] [CrossRef]
- Sobie, E.A. An Introduction to MATLAB. Sci. Signal. 2011, 4, 191. [Google Scholar] [CrossRef]
- Zhu, X.; Ai, S.; Fang, D.; Liu, B.; Lu, X. A novel modeling approach of aluminum foam based on MATLAB image processing. Comput. Mater. Sci. 2014, 82, 451–456. [Google Scholar] [CrossRef]
- Pinto, J.; Solórzano, E.; Rodriguez-Perez, M.A.; de Saja, J.A. Characterization of the cellular structure based on user-interactive image analysis procedures. J. Cell. Plast. 2013, 49, 555–575. [Google Scholar] [CrossRef]
- L’Yi, S.; Chang, Y.; Shin, D.; Seo, J. Toward Understanding Representation Methods in Visualization Recommendations through Scatterplot Construction Tasks. Comput. Graph. Forum 2019, 38, 201–211. [Google Scholar]
- Liu, H.-m.; Huang, Z.-c.; Talab, A.M.A. Patch-based vehicle logo detection with patch intensity and weight matrix. J. Cent. South. Univ. 2015, 22, 4679–4686. [Google Scholar] [CrossRef]
- Dong, M.; Wang, G.; Zhang, X.; Tan, D.; Kumar, D.J.P.; Ren, J.; Colorado, H.; Hou, H.; Toktarbay, Z.; Guo, Z. An overview of polymer foaming assisted by supercritical fluid. Adv. Compos. Hybrid. Mater. 2023, 6, 207. [Google Scholar] [CrossRef]
- Tabatabaei, A.; Park, C.B. In-situ visualization of PLA crystallization and crystal effects on foaming in extrusion. Eur. Polym. J. 2017, 96, 505–519. [Google Scholar] [CrossRef]
- Leung, S.N.; Park, C.B.; Xu, D.; Li, H.; Fenton, R.G. Computer Simulation of Bubble-Growth Phenomena in Foaming. Ind. Eng. Chem. Res. 2006, 45, 7823–7831. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, M.; Li, Y.; Chen, B.; Tian, F.; Zhai, W. Cell structure and hardness evolutions of TPU foamed sheets with high hardness via a temperature rising foaming process. J. Supercrit. Fluid. 2022, 188, 105654. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Batista, R.G.; Agarwal, A. Quantification of carbon nanotube distribution and property correlation in nanocomposites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1311–1318. [Google Scholar] [CrossRef]
- Yuan, X.; Jia, L.; Ba, Z.; Sheng, X.; Xiong, Z. Quantitative Assessment of Uniformity in Particle Distribution. In Proceedings of the Intelligent Robotics and Applications: 6th International Conference, Busan, Republic of Korea, 25–28 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 649–660. [Google Scholar]
Uniformity Index | Evaluation Method | Evaluation Effect |
---|---|---|
Cell size index (Ud) | CV1 histogram | Evaluation of the overall and local uniformity of cell size distribution |
Cell number index (Un) | CV2 histogram | Simple evaluation of cell distribution uniformity |
Cell spacing index (Ur) | CV3 histogram | Precise evaluation of cell distribution uniformity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Jiang, J.; Zhai, W. The Quantitative Evaluation of the Cell Structure Uniformity of Microcellular TPU with Low Porosity via a Digital Image Processing Method. Materials 2024, 17, 5203. https://doi.org/10.3390/ma17215203
Wang L, Jiang J, Zhai W. The Quantitative Evaluation of the Cell Structure Uniformity of Microcellular TPU with Low Porosity via a Digital Image Processing Method. Materials. 2024; 17(21):5203. https://doi.org/10.3390/ma17215203
Chicago/Turabian StyleWang, Liang, Junjie Jiang, and Wentao Zhai. 2024. "The Quantitative Evaluation of the Cell Structure Uniformity of Microcellular TPU with Low Porosity via a Digital Image Processing Method" Materials 17, no. 21: 5203. https://doi.org/10.3390/ma17215203
APA StyleWang, L., Jiang, J., & Zhai, W. (2024). The Quantitative Evaluation of the Cell Structure Uniformity of Microcellular TPU with Low Porosity via a Digital Image Processing Method. Materials, 17(21), 5203. https://doi.org/10.3390/ma17215203