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Abstract: The cell structure uniformity of microcellular polymers significantly impacts material
performance, especially for low-porosity microcellular TPU used in chip polishing. The distribution
of the cell structure of polishing pads directly affects the removal rate and process repeatability.
Despite its importance, no quantitative method for evaluating cell structure uniformity has been
reported in the literature. In this study, a digital image processing method that involves morphological
operations of scanning electron microscopy (SEM) images, binarization, and cell localization, and
the statistical evaluation of cell structure parameters was established to evaluate cell structure
uniformity. A quantitative metric, the cell structure uniformity index (CUI), was calculated based on
cell structure indices, incorporating the cell size index (Ud), the cell number index (Un), and the cell
local spacing index (Ur). By establishing an ideal model and analyzing representative SEM images,
the effectiveness and efficiency of the method for evaluating cell structure uniformity of microcellular
TPU were successfully validated. The results demonstrated that low-porosity TPU foams exhibited
relatively low cell structure uniformity compared to the ideal model. The heterogeneous nucleation
process in TPU caused non-uniform cell structures due to the temporal and spatial non-homogeneities
during the early cell nucleation process. As the cells grew, they merged and reduced the distance
between them, resulting in improved cell structure uniformity.

Keywords: digital image processing; microcellular TPU; cell structure uniformity; microcellular
foaming; quantitative evaluation

1. Introduction

Microcellular foaming using carbon dioxide (CO2) or nitrogen (N2) is an advanced
and environmentally friendly foaming technology for producing microcellular polymers
with uniform cell structures [1–3]. Unlike conventional polymer foams, microcellular
polymer foams generally exhibit micron-sized and even submicron-sized cell structures
and are primarily fabricated using physical foaming agents rather than chemical blowing
agents [4,5]. The tiny cell sizes endow microcellular foams with a lightweight nature and
other desirable properties, such as enhanced impact resistance, high resilience, thermal
and sound insulation, and a low dielectric coefficient. Microcellular polymers derived
from thermoplastic elastomers, such as thermoplastic polyurethane (TPU), have been
extensively employed in the fields of sports protection, thermal insulation, electronic
packaging, and the chemical mechanical polishing (CMP) of semiconductor chips [6–11].
As one of the seven key processes in chip manufacturing, CMP involves the atomic-level
removal of materials such as silicon, metal wires, and oxides to achieve both local and global
surface planarization [12,13]. The core materials used in CMP include polishing slurries
and polishing pads, and the CMP process combines chemical corrosion and mechanical
friction. Polyurethane (PU) foams, PU/nonwoven fabric foams, and microcellular TPU
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serve as primary materials for top polishing pads, where their grooved structures facilitate
the transport of polishing slurries and the removal of polished materials. The polishing
properties of CMP pads depend on both intrinsic and extrinsic factors related to the polymer
type and cell morphology [13].

The top pads contain numerous cell structures that serve various functions, including
storing and homogenizing polishing slurry, securing nanoscale abrasives, and providing a
micro-contact environment among the workpiece, polishing slurry, and polishing pad. To
ensure that the polishing pads have appropriate compressibility and mechanical strength,
microcellular TPU with low porosity, typically ranging from 10% to 50%, is generally
selected for the top pads [14,15]. As illustrated in Figure 1, cell structure uniformity in the
top pads significantly affects the distribution of the micro-contact environment. Uniform
cell size and cell structure distribution can enhance polishing efficiency and improve
stability and repeatability during the polishing process [16,17]. Therefore, developing low-
porosity TPU foams with uniform cell structures is crucial for advancing high-performance
microcellular TPU top pads. Since the advent of TPU microcellular foams, extensive
studies have been conducted on foaming behavior [18,19], cell structure control [20–22]
and structure–property relationships [23–25]. Although the properties and applications of
polymeric foams are highly dependent on cell distribution, limited research has focused on
quantifying cell structure distribution in low-porosity polymeric foams.
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Figure 1. Schematic diagram of CMP process: (a) CMP equipment, (b) non-uniform cell structure,
and (c) uniform cell structure for polishing top pad material.

Digital image processing technology has been widely employed for the quantitative
evaluation of particle distribution uniformity in composites, primarily by utilizing point
patterns to describe the distribution characteristics of target particles [26–28]. These meth-
ods include regional statistics, nearest neighbor distance [27], and coordinate projection [28].
Kama et al. [29] used the regional statistics method, dividing the study area into multi-
ple grids and calculating the number of particles within each grid. The uniformity of
metal nanoparticles in the composites was quantified through statistical characteristics
of particle numbers, such as the coefficient of variation (CV) or chi-squared distribution.
Although this method is simple and straightforward, it does not account for the spatial
distribution of particles. Tan et al. [30] utilized image processing techniques to quantify
the uniformity of particles in noise reduction materials and established quantitative and
local distance metrics to evaluate uniformity. The experimental results indicated that the
statistical analysis was consistent with human visual observation, revealing that lower
porosity corresponded to better uniformity. However, their method predominantly focused



Materials 2024, 17, 5203 3 of 19

on the cumulative distribution function derived from nearest neighbor distances, limiting
its ability to evaluate overall uniformity comprehensively. Pan et al. [31] proposed the
mean crowding index, fractal dimension, and the CV of Voronoi cell areas to evaluate the
abrasive distribution uniformity quantitatively from different perspectives. Nevertheless,
treating particles as dimensionless points is inappropriate, which means that particle size
should also be considered. Zhang et al. [32] reviewed advancements in quantitative evalua-
tion methods for the arrangement of inclusions in composites, particularly highlighting
the limitations of point patterns in uniformity assessment. They emphasized that, due
to varying scales, particles could not simply be regarded as dimensionless points in both
scientific research and practical applications, necessitating the consideration of factors such
as size and shape, as exemplified in the analysis of concrete faults [33].

The cell structures of low-porosity polymer foams are usually formed at the early
growth stage of nucleated bubbles. In a homogeneous nucleation system, cell nucleation
occurs randomly within polymers, whereas in a heterogeneous nucleation system, there
is temporal sequentiality and spatial selectivity [34]. This leads to diverse cell structures,
including interconnected, merged, or closely connected cells, as well as varying cell sizes
and shapes, such as circular and elliptical cells, ultimately causing non-uniformity in
cell size and distribution. Traditional studies have often used qualitative methods to
evaluate cell structure uniformity [35,36]. Frequently, foams have well-defined cell structure
distribution, yet their cell location distributions may differ significantly, and this distinction
cannot be explained by qualitative assessment [32]. Therefore, when evaluating the cell
structure uniformity of polymeric foams, factors such as cell size, cell number, and cell local
spacing should be considered in comprehensive quantitative analysis.

This paper proposed a method to quantify cell structure uniformity in SEM images of
microcellular polymer foams. The method processed and analyzed SEM images, providing
quantitative data on cell size, cell number, and cell local spacing, along with a corresponding
graphical analysis. First, a quantitative approach for evaluating cell structure uniformity
using digital image processing technology was proposed. Next, a set of evaluation indices
for cell structure uniformity were established, introducing the cell structure uniformity
index (CUI). The weights of three factors in the CUI, including the cell size index (Ud),
the cell number index (Un), and the cell local spacing index (Ur), were determined. Addi-
tionally, through case studies, the method was applied to various cell structure scenarios
to quantitatively evaluate cell structure uniformity. Finally, TPU foams with various cell
structures and porosities were prepared, and the effects of foaming parameters on the
uniformity of cell structures in TPU foams were investigated.

2. Methodology
2.1. Calculation of Actual Porosity

During the microcellular foaming of polymers, the prepared samples often exhibit a
non-foamed skin layer due to the rapid escape of dissolved gases from the polymer surface,
which affects the actual foam porosity [37,38]. Therefore, it is necessary to calculate the
actual foam layer density based on the skin layer thickness to correct porosity. To accurately
determine skin layer thickness, the minimum distance from the skin layer to the nearest cell
was first identified, followed by measuring the maximum distance from the skin layer to
the majority of cells. The average of these two values was used to represent the skin layer
thickness [39]. Figure 2 shows an SEM image of TPU foam fabricated based on a TPU resin
with a shore hardness of 70D. The foam morphology is characterized by a skin layer on the
top and bottom surfaces of the sample, with a porous structure in the middle. The foam
layer density (ρ2) and actual porosity (φ) can be calculated using the following equations:

ρ2 =
ρ1 d − ρ0(d1 + d2)

d − (d1 + d2)
(1)

φ = 1 − ρ2

ρ0
(2)
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where d, d1, and d2 represent the total thickness of the foamed sample, the top skin layer
thicknesses, and the bottom skin layer thicknesses, respectively. ρ0 and ρ1 represent the
sample density before and after foaming, respectively.

Materials 2024, 17, x FOR PEER REVIEW 4 of 20 
 

 

φ = 1 − ρ2
ρ0

 (2)

where d, d1, and d2 represent the total thickness of the foamed sample, the top skin layer 
thicknesses, and the bottom skin layer thicknesses, respectively. ρ0 and ρ1 represent the 
sample density before and after foaming, respectively. 

 
Figure 2. The cell morphology of microcellular TPU foam across the thickness direction. 

2.2. Processing Methods 
Digital image processing technology uses computers to process digital images, ex-

tract useful information, and perform various operations to achieve specific objectives. In 
this paper, an analysis program for obtaining quantitative parameters of cell structure 
uniformity was developed based on MATLAB’s programming and image-processing 
functions [40,41], along with relevant statistical principles [42]. The SEM images were suc-
cessfully digitized by running this program in MATLAB. As shown in Figure 3, the pro-
gram involved four main steps: morphological processing, binarization, cell localization, 
and the statistical quantification of uniformity indexes. This approach quantitatively as-
sessed the cell structure uniformity through three indices: Ud, Un, and Ur. Additionally, 
the CUI was introduced to represent the degree of uniformity. The program was applica-
ble to almost all types of polymeric foams. 

Figure 2. The cell morphology of microcellular TPU foam across the thickness direction.

2.2. Processing Methods

Digital image processing technology uses computers to process digital images, extract
useful information, and perform various operations to achieve specific objectives. In this pa-
per, an analysis program for obtaining quantitative parameters of cell structure uniformity
was developed based on MATLAB’s programming and image-processing functions [40,41],
along with relevant statistical principles [42]. The SEM images were successfully digi-
tized by running this program in MATLAB. As shown in Figure 3, the program involved
four main steps: morphological processing, binarization, cell localization, and the statis-
tical quantification of uniformity indexes. This approach quantitatively assessed the cell
structure uniformity through three indices: Ud, Un, and Ur. Additionally, the CUI was
introduced to represent the degree of uniformity. The program was applicable to almost all
types of polymeric foams.

2.3. Processing Steps
2.3.1. Image Binarization

Binarization is the process of converting a color or grayscale image into a black-and-
white image. During this process, SEM images with appropriate contrast and magnification
are selected and processed in MATLAB for morphological adjustments, such as grayscale
correction, denoising, and inversion, to enhance image quality. Image binarization can be
mainly divided into global threshold and local threshold methods. The global threshold
method only considers grayscale values but ignores the spatial characteristics of an image,
so it is highly sensitive to noise. The local threshold method calculates a threshold based on
this information in the field of each pixel on the image, and then selects different thresholds
for segmentation in different image areas, which only considers local features of an image
but ignores the overall distribution. Therefore, to obtain a binary image with relatively
large differentiation between cells and background, this paper proposed a local iteration
Otsu algorithm, combining the global threshold and local iteration threshold methods.
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Figure 3. An overview of the digital image processing method for quantitatively evaluating cell
structure uniformity.

To facilitate the subsequent morphological processing and cell localization of SEM
images, the improved Otsu method was employed to determine the final segmentation
threshold, while histogram equalization was applied to enhance the grayscale and contrast
of SEM images [30]. However, some binarized images may exhibit defects such as partially
missing cells, merged cells, spurs, and noise, which can affect the quality of binarization. For
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images with poor results, Photoshop was used for further refinement to better distinguish
cells from the background while preserving the original cell features as much as possible.
In the binarized images, cell regions appear in black, while the background is displayed
in white.

Figure 4 illustrates the binarization and cell localization process for SEM images of the
same foamed sample at different magnifications. Figure 4(a1,a2) shows the original SEM
image of the foamed sample, where the red region corresponds to the magnified images
shown in Figure 4(d1,d2), illustrating the effective results of the binarization process.
and Figure 4(b1,b2) presents the binarized image. Figure 4(c1,c2) is a schematic of cell
localization, achieved by calculating the centroid position of cells (marked with blue
asterisks). Figure 4(d1,d2) shows the local magnification of inversion and cell localization,
displaying the precise positioning of each cell in the local area. The results demonstrate
that this method achieved effective binarization and successfully extracted cell structure
information from SEM images.
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2.3.2. Density Scatter Plot

A density scatter plot is an enhanced scatter plot that provides intuitive data visual-
ization by reflecting the distribution of points and local density variations through color
mapping. Seo et al. [43] applied the scatter plot to assess particle distribution uniformity
and identify anomalous regions in composites. This paper innovatively introduced density
scatter plots to visually analyze the number and distribution characteristics of cells in SEM
images, achieving a qualitative evaluation of overall cell structure uniformity.

In practice, a coordinate matrix was first created in MATLAB, converting the image
coordinate system into a mathematical one, and the coordinates of each centroid point
relative to the bottom of the image were calculated. The scatplot function was then used
to plot density scatter plots of the SEM images, where each cell was represented by its
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centroid in the coordinate system. To evaluate the uniformity of cell distribution, the local
outlier factor (LOF) was introduced as a density-based outlier detection method. The LOF
evaluated the degree of outliers by comparing the local density of each data point with
that of its neighboring points, calculating the local reachable density (LRD) of each point,
and normalizing it within the range of 0 to 1. A gradient scheme from blue to yellow
was used to reflect the density variations, with the corresponding color determined by the
normalized LRD value of each point. Figure 4(e1,e2) displays the density scatter plots at
different magnifications, with the right column showing the degree of point aggregation to
evaluate cell clustering. Compared to Figure 4(e1), Figure 4(e2) contains more points in
total, with a greater number of yellow points that were more dispersed, indicating closer
cell packing and smaller cell spacing. Thus, sample (a2) exhibited higher cell structure
uniformity, which aligned with human visual observations [26,29].

2.3.3. Establishment of Quantitative Uniformity Indices

To quantitatively characterize cell structure uniformity, this study utilized the MAT-
LAB (R2022b) and ImageJ (1.53v 21 November 2022) software to statistically analyze
relevant parameters of cell structures. Three quantitative metrics for cell structure uni-
formity were established, as detailed in Table 1. Uniformity was represented by the CUI,
where a lower CUI value indicated a higher degree of uniformity. Through these indices,
cell structure uniformity was systematically quantified.

Table 1. Quantitative evaluation indexes of cell structure uniformity.

Uniformity Index Evaluation Method Evaluation Effect

Cell size index (Ud) CV1 histogram Evaluation of the overall and local
uniformity of cell size distribution

Cell number index (Un) CV2 histogram Simple evaluation of cell
distribution uniformity

Cell spacing index (Ur) CV3 histogram Precise evaluation of cell
distribution uniformity

This study proposed a statistical method based on standard deviation (S) and the
coefficient of variation (CV) to measure data dispersion. The CV, defined as the ratio of
the standard deviation to the mean, was used to compare variability between two or more
data groups with different means. A smaller CV value indicated higher data stability. To
evaluate the distribution behavior of cells in different images, the CV was introduced as
a dimensionless quantity to reflect dispersion and uniformity. The greater the number of
cells, the more accurate the CV measurement. Figure 5 illustrates the method for obtaining
the quantitative uniformity indices. In Figure 5a, I and II demonstrate the calculation of
the distance between cells. Figure 5b illustrates the calculation of the average cell distance
within region A, which is a magnified view of region III. Using MATLAB’s image process
toolbox, a binarized image was divided into subregions of equal area, where the number of
cells, cell size, and cell local spacing were calculated for each subregion. Subsequently, their
standard deviations and coefficients of variation were computed. By integrating the indices
of Ud, Un, and Ur, the CUI value was calculated eventually. The higher the CUI value,
the lower the cell structure uniformity. Notably, cell spacing was calculated by converting
the pixel value into the actual scale of the SEM images. The formulas for calculating these
indexes are as follows:

S =

√
∑N

i=1(xi−u)2

N−1
(3)

CV =
S
-

N
(4)

CUI =
3

∑
i=1

λiU, λ1 + λ2 + λ3 = 1 (5)
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where N is the total number of data points,
-

N is the mean, S is the standard deviation, and
CV is the coefficient of variation. U denotes the quantification index of uniformity, CUI
represents the cell structure uniformity index, and λi is the weight of each index. Since
the influence of each index on uniformity is considered equal, λi is set to 1/3, meaning all
indices have the same weight.
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diagrams of four and nine equal parts, respectively.

Cell size is a crucial parameter for characterizing cell structure; thus, the cell size
index (Ud) was introduced to assess the uniformity of cell size. The cell sizes of polymeric
foams typically range from hundreds of nanometers to hundreds of micrometers. Existing
studies often used the standard deviation (S) of cell size to describe its distribution, but
this method becomes less effective when there are large differences in cell size [44]. The
standard deviation can be influenced by the mean, particularly when there are significant
discrepancies in average values or inconsistent units, making direct comparisons potentially
inaccurate. In contrast, the coefficient of variation (CV) better avoids such issues. In
Figure 5a, the average cell size and the CV of cell size within each region were calculated
using ImageJ. The average of each CV (denoted as CV1) was calculated as the Ud to
evaluate cell size uniformity. A smaller Ud value indicated less variation in cell size across
subregions, suggesting that the overall distribution was more uniform. Additionally, a
histogram of cell size distribution was plotted to achieve a quantitative evaluation of both
overall and local cell size uniformity.

Cell density is another important parameter for characterizing cell structure; thus, the
cell number index (Un) was introduced to assess the uniformity of cell distribution. The
equal-area partitioning method, as shown in Figure 5c,d, divided the image into four and
nine sub-regions and counted the number of cell centroids in each subregion using the
count function. Similarly, the average CV of the cell number (denoted as CV2) was then
calculated as Un for a simple evaluation of cell distribution uniformity. A smaller CV2
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value indicated a more uniform local cell distribution, while a smaller Un value overall
meant less variation in cell number distribution in subregions, suggesting a more uniform
overall cell distribution. It was worth noting that to avoid boundary issues that may affect
the uniformity calculation, cells were assigned according to their centroid positions. If the
center of the centroid was located within a subregion, the cell was counted in that region,
ensuring the reliability of the results.

The previously discussed indices based on cell size and cell number do not account
for spatial distribution information. When cells are concentrated in certain areas of SEM
images, the uniformity quantification model may yield inaccurate results. Therefore, the
introduction of a local cell spacing index (Ur) was necessary. The calculation method for Ur
is shown in Figure 5b. Suppose there were five cells in subregion A. For any given cell with
centroid O, the distances between O and the centroids of the four surrounding cells were
calculated using the pdist2 function in MATLAB. The average of these distances, denoted
as r1, was then computed. Similarly, the average distances r2 to r4 for the remaining cells
were calculated. The overall average RA, representing the local cell spacing for subregion
A, was obtained by averaging r1 to r4. Other subregions were processed similarly. To assess
the spatial distribution of cells, the coefficient of variation of cell spacing (denoted as CV3)
and the mean of CV3 (denoted as Ur) in each subregion were calculated. Smaller and closer
CV3 values indicated less variation in cell spacing within subregions, reflecting better local
cell distribution uniformity. A smaller Ur value suggested an overall better uniformity of
cell distribution. These methods provided as effective means to quantitatively evaluate
both global and local uniformity of cell structure distribution.

3. Results and Discussion
3.1. Cell Structure Evolution of Low-Porosity Microcellular Polymers

In the microcellular foaming of polymers, supercritical CO2 or N2 fluids diffuse into
the polymer matrix under high temperature and pressure, gradually reaching a disso-
lution equilibrium with a solubility of 0.5–20.0% [3]. For the pressure quench foaming
process, when the system is released to atmospheric pressure, the supercritical fluid be-
comes supersaturated within the polymer, leading to cell nucleation. Once the size of the
nucleated bubbles exceeds the critical nucleation size (theoretically in the range of a few
nanometers) [45], these bubbles grow spontaneously. The supercritical fluid continues to
diffuse into the bubbles, promoting cell growth. As the foaming system cools, the modulus
of the foamed material increases, molecular chain movements are frozen, and the cell
structure stabilizes.

According to classical nucleation theory and extensive visualization studies, factors
such as polymer/fluid interfacial tension, nucleating agents, and the stress field play impor-
tant roles in cell nucleation [4,46,47]. During microcellular foaming, cell nucleation occurs
unevenly across both temporal and spatial scales, resulting in a non-uniform distribution
of nucleated bubbles [21]. However, as the cells grow, the cell structure merges and even
coalesces [48], reducing the distance between cells and thinning the cell walls, ultimately
leading to a more uniform cell structure.

Low-porosity TPU microcellular foams, with a typical porosity of 10–50%, are applied
in wafer polishing. These materials feature widely spaced cells and thick cell walls, with
cell structures in which nucleation is essentially completed, although growth is not yet fully
completed. The selected cell structures below all exhibit characteristics of low porosity.

3.2. Applications of Uniformity Quantification Method
3.2.1. Number of Analyzed Cells

The developed program allows for measuring the number of cells in each SEM image.
Cell recognition can be enhanced by using appropriate magnification during micrograph
acquisition [49]. Therefore, the CUI values of images with different magnifications were
analyzed for the same foam sample section (shown in Figure 4). Figure 6a demonstrated the
various uniformity indexes corresponding to different magnifications. Figure 6b showed
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the CUI values corresponding to SEM images with different magnifications, where the red
dashed line represented the CUI value of the ideal model. From the data in Figure 6b, it
was evident that the CUI values varied with magnification. As magnification increased, the
Un value significantly increased and the Ud value gradually increased, while the Ur value
remained essentially unchanged. Consequently, the CUI value increased from 0.152 to 0.193,
indicating a decrease in cell structure uniformity with higher magnification, which aligned
with visual observations. Specifically, for the SEM images at three magnifications (500×,
800×, and 1000×), the corresponding number of cells were 476, 190, and 139, respectively.
In the image with a magnification of 500×, computational complexity increased due to
the excessive number of cells. Meanwhile, visual observations suggested that the cell
structure itself was relatively uniform. Thus, under these conditions, further quantification
of uniformity became less meaningful. In this case, the SEM image with a magnification
of 800× was ultimately selected for quantifying cell structure uniformity, as it yielded a
smaller CUI value. Selecting an appropriate magnification before quantifying uniformity
is crucial to ensure that the number of cells is around 150–200, making the quantification
method more feasible and applicable.
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3.2.2. The Establishment of the Ideal Model

The previous section introduced a quantitative method for evaluating cell structure
uniformity but lacked a specific benchmark. Therefore, an ideal model of absolute unifor-
mity was established, with its cell structure uniformity quantified as shown in Figure 7.
This model contained 100 cells (i.e., 10 by 10) of the same size, with their positions dis-
tributed uniformly. Calculations showed that both Un and Ud values for this model were
0, while the Ur value depended on the number of subdivisions. Figure 7e,f showed that
Ur values for four and nine subdivisions were 0.156 and 0.135, respectively, with little
difference. Considering the appropriate number of cells, the nine-division method for
calculating the CV value was more suitable. According to Equation (5), the CUI value
of the ideal model was calculated as 0.045, which was very small, indicating absolute
uniformity. Additionally, the CUI value for ideal models with 121, 144, 169, and 196 cells
was calculated as 0.049, 0.050, 0.051, and 0.052, respectively. Since the ideal model should
have a completely uniform distribution of cell sizes and positions, the minimum CUI value
(CUI0 = 0.050) was used as the reference benchmark for subsequent evaluations. In the
following sections, typical SEM images with different cell structures will be evaluated for
uniformity to verify the accuracy and reliability of the quantitative uniformity method. The
selected images included varying cell sizes, porosities, and morphologies, with the number
of cells approximately between 150 and 200.
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Figure 7. A schematic diagram of an ideal model with a completely uniform cell structure and its
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(c) cell couting of ideal model, (d) density scatter plot of ideal model, (e) the cofficient of variation of
cell distance of ideal model with four subdivisions, (f) the cofficient of variation of cell distance of
ideal model with nine subdivisions.

3.2.3. Uniformity Evaluation of SEM Images with Different Cell Sizes

The selected SEM images with different cell sizes, along with their cell uniformity
evaluation results using three indices, are presented in Figure 8(a3,b3). Specifically,
Figure 8(a1,b1) showed binary images, Figure 8(a2,b2) presented density scatter plots
and histograms of coefficient of variation for cell spacing (Ur), and Figure 8(a3,b3) dis-
played cell size distribution histograms and the quantified uniformity indices (the same
below). From Figure 8, it can be observed that the cell size distribution of sample (b1) was
narrower compared to that of sample (a1), corresponding to the smaller Ud value of sample
(b1). Moreover, the Ud value of sample (b1) was smaller than that of sample (a1), while the
Un value was larger and the Ur value was similar. This resulted in a smaller CUI value for
sample (b1) (0.163 < 0.184), indicating that the cell structure uniformity of sample (b1) was
superior to that of sample (a1). The experimental statistical results were consistent with the
analysis reported in the literature and visual observations [26,50].

3.2.4. Uniformity Evaluation of SEM Images with Different Porosities

SEM images with different porosities were selected, and their uniformity quantification
results are displayed in Figure 9. As shown in Figure 9(a3,b3), the cell size distributions of
sample (a1) and sample (b1) were similar, corresponding to their comparable Ud values. It
can be concluded that sample (b1) exhibited better cell structure uniformity, as the three
index values for sample (b1) were smaller than those for sample (a1), resulting in a lower
CUI value (0.185 < 0.213). The experimental statistical results aligned with the visual
observation of the original SEM images [26].
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3.2.5. Uniformity Evaluation of SEM Images with Different Cell Morphologies

SEM images of three different cell morphologies were selected, and their uniformity
quantification results are illustrated in Figure 10(c1–c3). Specifically, Figure 10(a1–a3)
displays the uniform structure, continuous structure, and bimodal cell structure, each
containing approximately 200 cells. Figure 10(b1–b3) shows the corresponding density
scatter plots, where yellow points accurately reflected the characteristics of each cell mor-
phology. Figure 10(c1) shows the cell size distribution of foamed samples, and Figure 10(c2)
presents histograms of uniformity quantification indices. It was observed that the cell
size distribution for the three morphologies widened sequentially, leading to poorer size
distribution uniformity, which aligned with the increasing cell size index in Figure 10(c2).
Figure 10(c2,c3) shows that all three quantitative uniformity indices of samples (a1–a3)
gradually increased, resulting in rising CUI values (0.171 < 0.235 < 0.348). This suggests
that the cell structure uniformity of the three samples deteriorates sequentially, consistent
with the visual observations.
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3.2.6. Classification of Cell Structure Uniformity

To standardize the evaluation of cell structure uniformity in SEM images for sub-
sequent studies, it is essential to classify the uniformity levels [29]. In this study, SEM
images of numerous cross-sections of TPU foam samples were collected for analysis. Their
porosities were calculated to be between 10% and 70%, with average cell sizes ranging from
15 to 50 µm, according to Equation (2). Five uniformity levels were considered, as shown
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in Figure 11A–E: uneven uniformity, low uniformity, relatively low uniformity, medium
uniformity, and high uniformity (denoted as U5 to U1). The cell structure uniformity
improved gradually from U5 to U1. Observing from left to right, the size and positional
distribution of cells became increasingly uniform as cell size and porosity increased. In
the density scatter plots, the clustering of points and the number of yellow points both
decreased and the distribution of scattered points tended to be uniform, which qualitatively
indicated an improvement in cell structure uniformity.
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Figure 11. (a) SEM images, (b) binary images, and (c) density scatter plots describing the qualitative
evaluation of various uniformity levels.

Figure 12 presents the quantitative uniformity characterization results for SEM images
A–E. As illustrated in Figure 12a, the three uniformity quantitative indices for these images
exhibited a decreasing trend, leading to a gradual reduction in CUI values (0.322 > 0.221 > 0.181
> 0.173 > 0.151). This indicated an increase in cell structure uniformity. For instance, the cell
structure represented by U1 showed high uniformity, with a CUI value of 0.151, which was
close to the ideal model’s CUI0 value (0.050). Consequently, the CUI value can be used to
determine the uniformity levels of cell structures depicted in the SEM images.
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3.2.7. Materials and Sample Preparation

TPU pellets, with a shore hardness of 70D, were purchased from Lubrizol Specialty
Chemicals Manufacturing (Shanghai) Co., Ltd., CO2 with a purity of 99.9% was purchased
from Guangzhou Guangqi Gas Corporation. TPU pellets were completely dried at 100 ◦C
for 4 h and then hot-pressed into disks with a thickness of 1 mm. The preparation of TPU
foams was based on our previous work [21]. Briefly, the TPU disks were placed inside the
high-temperature chamber, and then the chamber was closed by a hydraulic ram. Then,
CO2 was fed into the chamber by a high-pressure syringe pump. After being saturated for
various saturation times, the supercritical fluid was rapidly released in 5 s intervals by a
solenoid valve. The saturation pressure and saturation time were 10–15 MPa and 30 min,
respectively. It is worth noting that the microcellular TPU foams, with a porosity of 10–50%,
had a number of cells approximately between 150 and 200 in the selected SEM images.

3.2.8. Evolution of Cell Structure Uniformity of Microcellular TPU Foams

The effects of foaming temperature and saturation pressure on the cell structure
uniformity of TPU foams with low porosity were investigated. Figure 13 illustrates the
SEM images of the foams, and Figure 14 provides data on the porosity, average cell size,
and cell density of the foams. As the foaming temperature increased, the cell structure
transitioned from circular to elliptical, accompanied by an increase in cell size and a
decrease in cell spacing, leading to a rise in foam porosity. This phenomenon was attributed
to the rise in foaming temperature, which reduced the modulus of the polymer matrix
and enhanced the diffusion rate of the foaming agent, thereby facilitating cell growth and
foam expansion. Figure 14c demonstrates that the cell density remained relatively constant
across varying foaming temperatures but increased with higher saturation pressures. This
was attributed to the greater solubility of the supercritical fluid, which reduced the energy
barrier of cell nucleation, resulting in a higher number of nucleated cells.
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The relationship between the CUI values and the porosity of TPU foams is illustrated
in Figure 15. It was observed that as porosity increased, the CUI values gradually decreased,
indicating an enhancement in the uniformity of the cell structure. This phenomenon can
primarily be attributed to spatial and temporal non-homogeneities during cell nucleation,
which resulted in non-uniform cell structures. Additionally, an increase in foaming tem-
perature led to higher porosity, promoting further cell growth, reducing the cell spacing
between them, and thinning the cell walls, thereby enhancing cell structure uniformity.
Furthermore, the results indicated that all foams prepared under a saturation pressure
of 15 MPa displayed CUI values lower than those prepared at 10 MPa, suggesting that
increased saturation pressure was beneficial for achieving more uniform cell structures.
This improvement can be explained by the fact that higher saturation pressures facilitate
increased gas solubility in the TPU matrix, significantly lowering the energy barrier of cell
nucleation, increasing the number of nucleated cells, and consequently resulting in smaller
cell sizes and enhanced cell density. As a result, the foams exhibited a more uniform cell
structure. Overall, under heterogeneous nucleation, the cell structure uniformity of TPU
foams was relatively uniform. However, there remained a certain discrepancy compared to
the ideal model, particularly at lower porosities where the uniformity of cell structure was
less uniform.
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Figure 15. The CUI values with the porosity of TPU foams.

4. Conclusions

The cell structure uniformity of microcellular polymers significantly impacts material
performance. This study proposed a new method for quantifying cell structure uniformity
by considering cell size, cell number, and cell local spacing factors. The degree of cell
structure uniformity of microcellular TPU was evaluated by comparing CUI values. The
experimental results indicated that the statistical analysis was consistent with visual obser-
vations. Smaller CUI values indicated better uniformity. By constructing an ideal model,
analyzing typical cases, and comparing it with other established methods, the effectiveness
and efficiency of the method were validated. The results demonstrated that low-porosity
TPU foams exhibit relatively low cell structure uniformity compared to the ideal model.
The heterogeneous nucleation process in TPU led to non-uniform cell structures, arising
from the temporal and spatial non-homogeneities during the initial cell nucleation. As the
cells grew, they merged and reduced the distance between them, resulting in improved cell
structure uniformity. It is expected that the CUI will be utilized by the research community
as a tool for quantitatively exploring cell morphology in microcellular polymers.
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