Thermal Conductivity of AlSi10MnMg Alloy in Relation to Casting Technology and Heat Treatment Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure of the Studied Alloys
3.2. Effect of Casting Technology on Thermal Diffusivity
3.3. Effect of Heat Treatment on Thermal Diffusivity
4. Discussion
5. Conclusions
- The alloy’s thermal diffusivity or thermal conductivity depends on the casting technology and heat treatment without prior solution treatment. The slower the cooling rate of the casting, the higher the thermal conductivity value. Regardless of the casting method, the thermal conductivity of the samples increases with increasing heat treatment temperature. The alloy prepared by HPDC shows the most significant increase in thermal conductivity.
- The thermal conductivity of the investigated alloys without heat treatment ranges from approximately 125 to 138 [W·m−1·K−1] at 50 °C and shows an increasing trend as a function of temperature (50–300 °C). The step increase in the temperature range of 150–200 °C is due to the precipitation of intermetallic phases from the solid solution. It is most significant in HPDC, where the cooling rate creates the most supersaturated solid solution.
- The thermal conductivity of the alloy after heat treatment (HT200, HT300, and HT400) shows a similar increasing trend in thermal conductivity depending on the temperature (50–300 °C), but there is no step between 150 and 200 °C. Moreover, the performed research showed that artificial ageing to improve mechanical properties, commonly implemented in industrial practice in the temperature range of 160–230 °C, results in an increase in thermal conductivity. The results also showed that for parts produced by GDC and especially HPDC, where thermal conductivity is important and high mechanical properties are not required, thermal conductivity can be improved by heat treatment at temperatures of 300–400 °C, where blistering does not occur.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biswas, P.; Patra, S.; Roy, H.; Tiwary, C.S.; Paliwal, M.; Mondal, M.K. Effect of Mn Addition on the Mechanical Properties of Al–12.6Si Alloy: Role of Al15(MnFe)3Si2 Intermetallic and Microstructure Modification. Met. Mater. Int. 2021, 27, 1713–1727. [Google Scholar] [CrossRef]
- Mrówka-Nowotnik, G.; Sieniawski, J.; Wierzbiński, M. Intermetallic phase particles in 6082 aluminium alloy. Arch. Mater. Sci. Eng. 2007, 28, 69–76. [Google Scholar]
- Gan, J.; Du, J.; Wen, C.; Zhang, G.; Shi, M.; Yuan, Z. The Effect of Fe Content on the Solidification Pathway, Microstructure and Thermal Conductivity of Hypoeutectic Al-Si Alloys. Int. J. Met. 2022, 16, 178–190. [Google Scholar] [CrossRef]
- Radetić, T.; Popović, M.; Novaković, M.; Rajić, V.; Romhanji, E. Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment. J. Min. Metall. Sect. B Metall. 2023, 59, 327–338. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Thermal conductivity of aluminium alloys—A review. Materials 2023, 16, 2972. [Google Scholar] [CrossRef]
- Madelung, O.; Klemens, P.G. Thermal Conductivity of Pure Metals and Alloys; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Davis, J.R. Aluminum and Aluminum Alloys; ASM International: Materials Park, OH, USA, 2001. [Google Scholar]
- Vandersluis, E.; Lombardi, A.; Ravindran, C.; Bois-Brochu, A.; Chiesa, F.; MacKay, R. Factors Influencing Thermal Conductivity and Mechanical Properties in 319 Al Alloy Cylinder Heads. Mater. Sci. Eng. A 2015, 648, 401–411. [Google Scholar] [CrossRef]
- Chen, J.K.; Hung, H.Y.; Wang, C.F.; Tang, N.K. Thermal and Electrical Conductivity in Al-Si/Cu/Fe/Mg Binary and Ternary Al Alloys. J. Mater. Sci. 2015, 50, 5630–5639. [Google Scholar] [CrossRef]
- Kim, C.W.; Kim, Y.C.; Kim, J.H.; Cho, J.I.; Oh, M.S. Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High-Pressure Die Casting. Korean J. Met. Mater. 2018, 56, 805–812. [Google Scholar] [CrossRef]
- Gan, J.Q.; Huang, Y.J.; Cheng, W.E.N.; Jun, D.U. Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al-Si alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2879–2890. [Google Scholar] [CrossRef]
- Choi, S.W.; Cho, H.S.; Kumai, S. Effect of the Precipitation of Secondary Phases on the Thermal Diffusivity and Thermal Conductivity of Al-4.5Cu Alloy. J. Alloys Compd. 2016, 688, 897–902. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Zhong, G.; Zhang, J.; Yang, Y.; Kang, D.; Li, H.; Jie, W.; Schumacher, P.; Li, J. Elucidating Thermal Conductivity Mechanism of Al-9Si Based Alloys with Trace Transition Elements (Mn, Cr, V). J. Alloys Compd. 2022, 907, 164446. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, Y.M.; Kim, Y.C. Influence of Precipitation on Thermal Diffusivity of Al-6Si-0.4Mg-0.9Cu-(Ti) Alloys. J. Alloys Compd. 2019, 775, 132–137. [Google Scholar] [CrossRef]
- Luo, G.; Zhou, X.; Li, C.B.; Du, J.; Huang, Z.H. A Quantitative Study on the Interaction Between Silicon Content and Heat Treatment on Thermal Conductivity of Al-Si Binary Alloys. Int. J. Met. 2022, 16, 1585–1594. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.L.; Zhong, G.; Zhang, J.C.; Chen, Y.N.; Jie, W.Q.; Schumacher, P.; Li, J.H. Effects of Si and Sr Elements on Solidification Microstructure and Thermal Conductivity of Al–Si-Based Alloys. J. Mater. Sci. 2022, 57, 6428–6444. [Google Scholar] [CrossRef]
- Weng, W.P.; Nagaumi, H.; Sheng, X.D.; Fan, W.Z.; Chen, X.C.; Wang, X.N. Influence of Silicon Phase Particles on the Thermal Conductivity of Al-Si Alloys. In Light Metals 2019; Springer International Publishing: New York, NY, USA, 2019; pp. 193–198. [Google Scholar]
- Zhang, A.L.; Li, Y.X. Effect of Alloying Elements on Thermal Conductivity of Aluminum. J. Mater. Res. 2023, 38, 2049–2058. [Google Scholar] [CrossRef]
- Wen, C.; Gan, J.Q.; Li, C.B.; Huang, Y.J.; Du, J. Comparative Study on Relationship Between Modification of Si Phase and Thermal Conductivity of Al–7Si Alloy Modified by Sr/RE/B/Sb Elements. Int. J. Met. 2021, 15, 194–205. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.F.; Xu, W.Z.; Hou, S.Y.; Hu, S.D. Simultaneous Improvement of Thermal Conductivity and Strength for Commercial A356 Alloy Using Strontium Modification Process. Met. Mater. Int. 2021, 27, 4742–4756. [Google Scholar] [CrossRef]
- Butler, C.; Babu, S.; Lundy, R.; Meehan, R.R.; Punch, J.E.F.F.; Jeffers, N. Effects of Processing Parameters and Heat Treatment on Thermal Conductivity of Additively Manufactured AlSi10Mg by Selective Laser Melting. Mater. Charact. 2021, 173, 110945. [Google Scholar] [CrossRef]
- Kim, M.S. Effects of Processing Parameters of Selective Laser Melting Process on Thermal Conductivity of AlSi10Mg Alloy. Materials 2021, 14, 2410. [Google Scholar] [CrossRef]
- Chen, J.K.; Hung, H.Y.; Wang, C.F.; Tang, N.K. Effects of Casting and Heat Treatment Processes on the Thermal Conductivity of an Al-Si-Cu-Fe-Zn Alloy. Int. J. Heat Mass Transf. 2017, 105, 189–195. [Google Scholar] [CrossRef]
- Ramirez, A.M.; Beltrán, F.E.; Yáñez-Limón, J.M.; Vorobiev, Y.V.; Gonzalez-Hernandez, J.; Hallen, J.M. Effects of porosity on the thermal properties of a 380-aluminum alloy. J. Mater. Res. 1999, 14, 3901–3906. [Google Scholar] [CrossRef]
- Zhang, C.; Du, Y.; Liu, S.H.; Liu, S.J.; Jie, W.Q.; Sundman, B. Microstructure and Thermal Conductivity of the As-Cast and Annealed Al–Cu–Mg–Si Alloys in the Temperature Range from 25 _C to 400 _C. Int. J. Thermophys. 2015, 36, 2869–2880. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Chen, X.L.; Yin, Y.H.; He, Y.; Zhou, Z.Q.; Guan, R.G. Microstructure Evolution of Eutectic Si in Al-7Si Binary Alloy by Heat Treatment and Its Effect on Enhancing Thermal Conductivity. J. Mater. Res. Technol. 2020, 9, 8780–8786. [Google Scholar] [CrossRef]
- Kim, Y.M.; Choi, S.W.; Kim, Y.C.; Kang, C.S. Increasing the Thermal Diffusivity of Al-Si–Mg Alloys by Heat Treatment. J. Therm. Anal. Calorim. 2022, 147, 2139–2146. [Google Scholar] [CrossRef]
- Rauta, V.; Cingi, C.; Orkas, J. Effect of Annealing and Metallurgical Treatments on Thermal Conductivity of Aluminium Alloys. Int. J. Met. 2016, 10, 157–171. [Google Scholar] [CrossRef]
- Lumley, R.N.; Deeva, N.; Larsen, R.; Gembarovic, J.; Freeman, J. The role of alloy composition and T7 heat treatment in enhancing thermal conductivity of aluminium high pressure diecastings. Metall. Mater. Trans. A 2013, 44, 1074–1086. [Google Scholar] [CrossRef]
Wt. % | Si | Fe | Cu | Mn | Mg | Cr | Ni | Zn |
10.4 | 0.115 | 0.005 | 0.577 | 0.273 | 0.005 | 0.006 | 0.005 | |
Wt. % | Pb | Sn | Ti | Na | Sr | Zr | Sb | Al |
<0.003 | <0.002 | 0.063 | <0.0005 | 0.006 | 0.0027 | <0.007 | 88.50 |
Point | Phase | Average Chemical Composition [At. %] | ||||
---|---|---|---|---|---|---|
Al | Mn | Si | Fe | Mg | ||
1 | matrix α(Al) | 98.5 | - | 1.5 | - | - |
2 | eutectic (α(Al) + Si) | - | - | |||
3 | eutectic particle | 1.6 | - | 98.4 | - | - |
4 | α–(Al, Mg)FeMnSi Al15(Fe,Mn)3Si2 | 69.2 | 14.9 | 12.6 | 3.3 | - |
5 | δ-phase Al4(Fe,Mn)Si2 | 52.3 | 14.0 | 30.7 | 3.0 | - |
6 | matrix α(Al) | 98.4 | - | 1.6 | - | - |
7 | eutectic (α(Al) + Si) | |||||
8 | eutectic particle | 3.6 | - | 96.4 | - | - |
9 | α–AlFeMnSi Al15(Fe,Mn)3Si2 | 69.4 | 14.7 | 12.3 | 3.6 | - |
10 | δ-phase Al4(Fe,Mn)Si2 | 53.3 | 13.5 | 30.3 | 2.7 | - |
Point | Phase | Average Chemical Composition [At. %] | ||||
---|---|---|---|---|---|---|
Al | Mn | Si | Fe | Mg | ||
1 | matrix α(Al) | 98.2 | - | 1.8 | - | - |
2 | eutectic (α(Al) + Si) | |||||
3 | eutectic particle | 3.1 | - | 96.9 | - | - |
4 | α–(Al, Mg)FeMnSi Al15(Fe,Mn)3Si2 | 68.7 | 13.9 | 12.3 | 3.7 | 1.4 |
5 | δ-phase Al4(Fe,Mn)Si2 | 58.9 | 12.8 | 25.3 | 3.0 | - |
6 | matrix α(Al) | 98.5 | - | 1.5 | - | - |
7 | eutectic (α(Al) + Si) | |||||
8 | eutectic particle | 2.8 | - | 97.8 | - | - |
9 | α–AlFeMnSi Al15(Fe,Mn)3Si2 | 76.7 | 11.8 | 8.9 | 2.6 | - |
10 | δ-phase Al4(Fe,Mn)Si2 | 54.9 | 13.1 | 28.9 | 3.1 | - |
Point | Phase | Average Chemical Composition [At. %] | ||||
---|---|---|---|---|---|---|
Al | Mn | Si | Fe | Mg | ||
1 | matrix α(Al) | 98.4 | - | 1.6 | - | - |
2 | eutectic (α(Al) + Si) | |||||
3 | eutectic particle | 3.2 | - | 96.8 | - | - |
4 | α–(Al, Mg)FeMnSi Al15(Fe,Mn)3Si2 | 69.5 | 15.4 | 12.7 | 2.4 | - |
5 | δ-phase Al4(Fe,Mn)Si2 | 63.6 | 9.1 | 24.5 | 2.7 | - |
6 | matrix α(Al) | 98.5 | - | 1.5 | - | - |
7 | eutectic (α(Al) + Si) | |||||
8 | eutectic particle | 3.4 | - | 96.6 | - | - |
9 | α–AlFeMnSi Al15(Fe,Mn)3Si2 | 70.0 | 15.0 | 12.7 | 2.3 | - |
Sample | As Cast | HT200 | HT300 | HT400 | ||||
---|---|---|---|---|---|---|---|---|
50 °C | 300 °C | 50 °C | 300 °C | 50 °C | 300 °C | 50 °C | 300 °C | |
Thermal Conductivity Coefficient λ [W·m−1·K−1] | ||||||||
GSC | 138 ± 0.4 | 159 ± 0.8 | 146 ± 1.0 | 160 ± 1.0 | 150 ± 1.6 | 158 ± 1.7 | 150 ± 0.4 | 158 ± 0.9 |
GDC | 125 ± 0.7 | 154 ± 0.7 | 136 ± 1.0 | 154 ± 0.8 | 143 ± 0.6 | 155 ± 0.8 | 150 ± 1.8 | 157 ± 1.5 |
HPDC | 129 ± 1.0 | 156 ± 1.9 | 142 ± 0.8 | 157 ± 0.5 | 145 ± 0.9 | 156 ± 0.6 | 162 ± 0.9 | 169 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nováková, I.; Jelínek, M.; Švec, M. Thermal Conductivity of AlSi10MnMg Alloy in Relation to Casting Technology and Heat Treatment Method. Materials 2024, 17, 5329. https://doi.org/10.3390/ma17215329
Nováková I, Jelínek M, Švec M. Thermal Conductivity of AlSi10MnMg Alloy in Relation to Casting Technology and Heat Treatment Method. Materials. 2024; 17(21):5329. https://doi.org/10.3390/ma17215329
Chicago/Turabian StyleNováková, Iva, Milan Jelínek, and Martin Švec. 2024. "Thermal Conductivity of AlSi10MnMg Alloy in Relation to Casting Technology and Heat Treatment Method" Materials 17, no. 21: 5329. https://doi.org/10.3390/ma17215329
APA StyleNováková, I., Jelínek, M., & Švec, M. (2024). Thermal Conductivity of AlSi10MnMg Alloy in Relation to Casting Technology and Heat Treatment Method. Materials, 17(21), 5329. https://doi.org/10.3390/ma17215329