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Abstract: In order to shorten the process of textile printing with natural dyes, develop new meth-
ods, and improve the color fastness and quality of printed products, this study presents a novel
approach by synthesizing a natural complex dye through the interaction between purpurin and Fe2+

ions, resulting in a compound named purpurin–Fe2+ (P-Fe). This synthesized complex dye was
meticulously characterized using state-of-the-art analytical techniques, including Fourier transform
infrared spectroscopy (FT-IR), ultraviolet–visible (UV–Vis) spectrophotometry, and scanning electron
microscopy energy-dispersive spectroscopy (EDS). The characterization confirmed the successful
complexation of purpurin with Fe2+ ions. The prepared complex dye P-Fe was used for the printing
of silk fabric. The optimized printing process involves steaming at a temperature of 100 ◦C for a
duration of 20 min. In comparison to fabrics printed using direct dyes, the K/S values of the fabric
printed with the P-Fe complex showed a significant enhancement, with all color fastness ratings
achieving grade four. Furthermore, the proportion of metal elements on the white background of
the printed fabric was found to be less than 0.180%, and the level of whiteness was above 50. The
application of the P-Fe dye in silk fabric printing not only streamlines the printing process but also
enhances the depth and speed of the printed color, effectively addressing the issue of color transfer
onto a white background, which is commonly associated with natural dyes.

Keywords: purpurin; metal ions; complex natural dyes; silk; printing

1. Introduction

Natural dyes have historically been the cornerstone of textile dyeing [1]. Character-
ized by their vibrant color spectrum and superior color fastness, they have progressively
replaced synthetic dyes in the domain of textile printing and dyeing [2].Contemporary
society places a premium on eco-friendly practices in all facets of daily life, including food,
clothing, shelter, and transportation. This shift has led to a renewed interest in natural dyes,
which are celebrated for their organic origins, non-toxic properties, and environmentally
benign characteristics. As a result, natural dyes are regaining prominence in textile printing
and dyeing, making research and development in associated dyeing and printing tech-
nologies a focal point [3]. Silk fabrics, derived from natural fibers, can achieve authentic
eco-friendly dyeing and finishing when combined with natural dyes, thereby enhancing
the added value of silk products [4].

Research into dyeing silk fabrics with natural dyes primarily focuses on optimizing
the dyeing process. Concurrently, investigations into silk fabric printing are primarily
directed toward enhancing color fastness. This objective can be achieved through the use of
mordant techniques, which involve the use of metal ions to augment the affinity between
natural dyes and silk fibers, consequently enhancing color fastness [5]. For instance, Rekaby
et al. [6] demonstrated that pre-mordanting silk fabrics with aluminum, ferrous ions, tin
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ions, and magnesium ions prior to printing with natural dyes from alkanet and rhubarb
significantly improved color fastness, with ferrous ion mordanting exhibiting the most
pronounced effect on fastness enhancement.

The traditional printing process involves the pre-mordanting of silk fabrics, where
metal ions interact with natural dyes in the color paste with ligand groups on the fibers to
form coordination structures, thereby enhancing the color yield and fastness of the printed
fabric [7]. However, the conventional process is lengthy, and during washing post-printing,
natural dyes that are washed off can easily form coordinate bonds with metal ions on
the white background of the silk fabric, causing the color transfer to the white base and
affecting the overall appearance of the printed fabric [8]. Moreover, the effluent from the
mordanting treatment contains a significant amount of unbound metal ions, which has
certain environmental impacts [9].

If metal ions can be preliminarily and stably complexed with natural dyes to form
metal complex natural dyes [10] and then directly added to the color paste for fabric
printing, it can not only shorten the process but also maximize the reaction between the dye
and metal ions with silk fibers during printing, thereby reducing the impact on the white
background. For instance, in Table 1, Wagner [11], it can be said that Al(III)—apigenin and
Fe(II)—apigenin complexes are formed in the dyeing process, and this increases the light
fastness of the dyeing. Qidi [12] prepared metal complex dyes of catechin and purpurin,
which were applied to the dyeing of wool, silk, and nylon 56, showing better color fastness
compared to traditional natural dyeing methods. Currently, there is limited research on the
use of metal complex and natural dyes for silk fabric printing.

Table 1. Dyes, metal ions, and complexes in References [11,12].

Dye Metal Ion Complexes References

Apigenin Al3+ Al3+–apigenin [11]
Apigenin Fe2+ Fe2+–apigenin
Catechin Al3+ Al3+–catechin

[12]Catechin Fe2+ Fe2+–catechin
Purpurin Al3+ Al3+–purpurin

Addressing the issues of poor color fastness, susceptibility to color transfer, and
lengthy processing times associated with traditional natural dye printing techniques, this
paper explores the coordination of purpurin, derived from the madder plant, with metal
ions to synthesize natural–metal complex dyes [13]: purpurin–Fe2+ (P-Fe). Characteri-
zation and analysis of the prepared complexes were conducted using various methods
such as FT-IR, UV–Vis, and EDS [14]. Based on this, the printing performance of the
complex dyes on silk fabrics was investigated, and the printing process conditions were
optimized. Compared with the conventional direct printing process using natural dyes,
the color depth, fastness, and white ground staining properties of the printed fabrics were
evaluated. This research provides new insights into the development of more environmen-
tally friendly printing techniques using natural dyes and enhancing the quality of natural
dye-printed products.

2. Materials and Methods
2.1. Materials

Bombyx mori silk power spinning and the combination of warp and weft threads,
was 3/40/44D (3 silks of 40–44 denier in diameter are intermingled as warp and weft
yarns). Mulberry silk and the organization of plain weave, was the finished product
of a warp density of 421 roots/10 cm and a weft density of 320 roots/10 cm, 81 g/m2

by Wujiang Huifang Silk Weaving Factory (Suzhou, China). Purpurin (with a purity of
97.9%) was purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China).
Ferrous sulfate heptahydrate (99%), glacial acetic acid (99.5%), sodium carbonate (99.8%),
sodium hydroxide (96%), and anhydrous ethanol (99.9%) were purchased from Chinasun
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Specialty Products Co., Ltd. (Suzhou, China) All the reagents used were of analytical grade.
Industrial-grade guar gum and Peregal O (96%) were procured from Suzhou Youhe Textile
Auxiliaries Co., Ltd. (Suzhou, China) and Jiangsu Sinofine Surfactants Technology Co., Ltd.
(Suzhou, China), respectively. National standard saponin was provided by the Shanghai
Textile Industry Technical Supervision Institute (Shanghai, China).

2.2. Preparation of Sample

In order to prepare purpurin metal complex dye, we used the following method: The
molar ratio of purpurin to metal ions was set at 1:1, with the pH value adjusted to 5. The
mixture was then stirred and maintained at 60 ◦C for 60 min. A calculated amount of
purpurin was dissolved and heated to 60 ◦C under stirring. The pH was adjusted using
acetic acid. Subsequently, a calculated quantity of iron(II) sulfate was slowly dripped
into the dye solution through a peristaltic pump. The mixture was further stirred and
maintained at the same temperature for the specified duration before cooling to room
temperature. The resulting product was centrifuged at 6000 rpm for 15 min using a
centrifuge. The precipitate was rinsed three times with a 1:1 ethanol–water solution and
finally dried at 50 ◦C until a constant mass was achieved, yielding P-Fe.

The method for preparing P-Fe printing paste is as follows: Weigh 65 g of 10% guar
gum paste into an enameled cup. Dissolve 2 g of complex natural dye, 5 g of urea, and
0.5 g of citric acid in 25 g of deionized water by heating, and successively add them to the
paste in order. Stir at 1200 r/min for 60 min using a mixer until the dye is evenly dispersed
in the paste. Place in a 25 ◦C water bath to stand and defoam for 60 min, and it is ready for
use [15].

2.3. Printing Process

The method for preparing the pre-mordanting formula and process is as follows: the
amount of mordanting agent is 5% (o.m.f), the amount of Peregal O is 0.5 g/L, and the
bath ratio is 1:40. The mordanting solution was heated to 60 ◦C in a constant temperature
water bath, and the fabric, which had been pre-wetted and squeezed dry, was immersed
and mordanted for 40 min with continuous stirring. The mordanting solution was heated
to 60 ◦C. After the mordanting was complete, the fabric was removed, rinsed, air-dried,
and set aside for printing.

The printing process is given as follows: The fabric is evenly laid on a magnetic bar
screen printing machine, ensuring that the fabric, screen frame, and magnetic bars are
completely dry. The magnetic force of the printer is adjusted to level 20, and the machine
speed is set to level 10. The prepared printing paste is poured onto the screen frame, and the
magnetic bar is used to scrape the paste across the fabric twice. The fabric is then removed
and placed in a drying oven at 80 ◦C for 5 min. The dried, printed fabric is steamed in
saturated steam at 102 ◦C and 100% humidity for 30 min. The fabric is then washed with
water at 25 ◦C, followed by a wash in warm water at 50 ◦C, with soaping (with a bath ratio
of 1:40 and a standard soap flake concentration of 2 g/L at 80 ◦C for 20 min); a final rinse
with cold water is performed at 25 ◦C, and the fabric is air-dried. The bath ratio for the
water wash steps is 1:80.

The steaming process is as follows: The steaming process variables for the complex
natural dye are temperatures ranging from 95 ◦C to 115 ◦C, with a fixed steaming time
of 30 min. Additionally, the steaming time varies from 10 min to 30 min to optimize the
dyeing process.

2.4. Testing and Characterization
2.4.1. Fourier Transform Infrared (FTIR) Spectroscopy

In order to investigate the changes in functional groups used the purpurin dye subse-
quent to complexation with metal ions, we used infrared light spectroscopic tests, and the
samples were prepared as follows: The test samples were pre-dried. Approximately 1 mg
of the sample was uniformly mixed with 200 mg of potassium bromide (KBr), thoroughly



Materials 2024, 17, 5367 4 of 13

ground, and then dried to remove moisture. The sample was pressed into a tablet and
analyzed using a Nicolet-5700 Fourier Transform Infrared Spectrometer, Thermo Fisher
Scientific, (Waltham, MA, USA). The infrared spectrum was scanned between 4000 and
400 cm−1 with automatic gain, and the spectral curve was plotted.

2.4.2. Ultraviolet–Visible (UV–Vis) Spectroscopy Analysis

To test the UV–visible spectra of the samples, the following method was used: the
solution to be tested was diluted to a specific ratio and scanned between 200 and 450 nm
using a TU-1900 UV–Vis Spectrophotometer, Beijing Purkinje GENERAL Instrument Co.,
Ltd. (Beijing, China) to obtain the spectral curve.

2.4.3. K/S Value and Color Characteristic Value

Four layers of printed fabric were cut and tested using an UltraScan PRO Spectropho-
tometer. HunterLab, (Fairfax, WA, USA). The parameters were set to a visible light range
of 400–800 nm under a D65 standard light source and 10◦ viewing angle conditions. Dif-
ferent printed positions were scanned four times, and the final result was taken as the
average value.

The whiteness of the white background after fabric printing was characterized by the
whiteness index. The testing method was the same as above. Select the WI CIE D65/10
parameter in the machine, and the directly read value is the whiteness value [16].
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2.4.4. Color Fastness

The washing fastness of the printed silk fabrics was measured according to method
A(1) of ISO 105-C10:2006 [17] on an SW-12A washing color fastness testing machine.
Rubbing fastness was evaluated according to ISO105-X12:2016 [18], and light fastness was
tested according to ISO105-B02:2014 [19].

2.4.5. Surface Elemental Composition Analysis

A conductive adhesive can be used to stick the sample to be tested on the electron
microscope table, with gold sprayed on the table containing the sample for 90 s. The
TM-3030 desktop scanning electron microscope/SwiftED3000 energy spectrometer can be
used to analyze the element types and contents on the sample surface.

3. Results
3.1. Characterization of P-Fe

To elucidate the structural and functional group alterations that occur upon com-
plexation, three distinct analytical approaches were employed: Fourier transform infrared
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spectroscopy (FTIR), ultraviolet–visible (UV–Vis) spectroscopy, and energy dispersive
spectrometry (EDS) for elemental composition analysis.

3.1.1. FTIR Analysis

The FTIR spectra of purpurin and P-Fe are depicted in Figure 1, with the main charac-
teristic bands detailed in Table 2.
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Figure 1. FTIR spectra of purpurin and P-Fe.

Table 2. Main characteristic bands of purpurin and P-Fe.

Characteristic Bands (cm−1) Purpurin P-Fe

3423 -OH -
√

3382 -OH
√

-
1620 C=O

√
-

1441 C-H
√ √

1211 C-O
√ √

984 C-C
√ √

812 C-H
√ √

620 O-Fe -
√

Purpurin, an anthraquinone derivative, is primarily characterized by the presence of
phenolic hydroxyl groups, carbonyl groups, and benzene rings in its molecular structure.
As depicted in Figure 1, purpurin exhibits deformation and stretching vibrations associated
with its phenolic hydroxyl groups, benzene rings, and carbonyl groups. Upon complexation
with ferrous ions, a series of changes occur in its Fourier infrared spectrum. Notably, a new
absorption peak emerges at 620 cm−1 in the complex dye P-Fe, which can be attributed to
the stretching vibration peak formed by the coordination of ferrous ions with purpurin,
resulting in an O-Fe bond. The characteristic absorption peak of the phenolic hydroxyl
group of purpurin, initially at 3382 cm−1, and the phenolic hydroxyl group is involved in
the complexation reaction between ferrous ion and purpurin, which leads to the absorption
peak of the phenolic hydroxyl group being shifted to 3423 cm−1 [20]. The absorption peak
of purpurin at 1620 cm−1 was the absorption peak of the carbonyl group. However, the
absorption peak at 1620 cm−1 disappeared in P-Fe, indicating that the carbonyl group was
involved in the reaction, leading to changes in its infrared properties. This suggests that
the ferrous ion coordinates with purpurin to form a new complex structure.

3.1.2. UV–Vis Spectra Analysis

The purpurin solution and P-Fe solution were analyzed using a UV–visible spec-
trophotometer, with the resulting UV–visible spectra illustrated in Figure 2.
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Figure 2. UV–Vis spectra of purpurin and P-Fe.

As can be seen from Figure 2, after the reaction of purpurin with metal ions, the
maximum ultraviolet absorption wavelength of the dye solution underwent redshift. This
redshift is attributed to the complexation reaction occurring at the carbonyl double bond
and phenolic hydroxyl groups of purpurin, forming coordination bonds with the metal
ions, which increased the planarity of the complex dye P-Fe and enhanced the conjugated
system of the dye. Purpurin exhibits an absorption peak at 250 nm, but after complexation
with iron ions, the original absorption peak shifted to 266 nm, which is a shift of 16 nm.
Therefore, the molecular structure of purpurin changed after complexation with metal ions,
indicating that a complexation reaction had occurred [21].

3.1.3. Elemental Analysis

Elemental scans of purpurin and P-Fe were conducted, with the results depicted in
Figure 3 and summarized in Table 3.
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Table 3. EDS analysis results of purpurin and P-Fe.

Samples
Elemental Content (wt)/%

C O Fe

Purpurin 73.47 26.53 0.00
P-Fe 70.27 25.00 4.73

Based on the scanning results shown in Figure 3, the elemental contents of C, O, and
Fe in both purpurin and P-Fe are analyzed. As can be seen from Table 3, the ratio of C
atoms to O atoms in purpurin is approximately 14:5, which corresponds to the chemical
structure C14H8O5 of purpurin. According to this structural formula, the mole ratio of C to
O is 14:5. In total, 1 mol of purpurin contains 14 mol of C and 5 mol of O, so the complex
dye P-Fe contains 5 mol of purpurin and 5 mol of Fe. In the P-Fe, the ratio of C atoms
to O atoms and iron atoms is approximately 14:5:1, indicating that one molecule of the
P-Fe contains approximately one molecule of purpurin and one Fe2+. From the above, it
can be inferred that purpurin and ferrous ions form a 1:1 complex. Combined with the
conclusions of infrared analysis, the structure of the P-Fe can be inferred, and the schematic
diagram is shown in Figure 4.
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3.2. Printing Performance of P-Fe on Silk Fabrics

The optimal printing process for P-Fe was determined by varying the steaming tem-
perature and duration. The silk fabrics were printed under optimal printing conditions.

The printing performance of P-Fe on silk fabrics was studied by printing silk fabrics
under optimal printing process conditions. This comparison facilitated an analysis of color,
color fastness, and color contamination on the white background of the printed silk fabrics.
This comparison helps to evaluate the performance of P-Fe in silk printing and identify any
potential issues related to color quality and durability.

3.2.1. Optimization of Printing Processes

Employing the single-factor experimental method, the impact of steaming temperature
on the K/S value and color characteristics of P-Fe-printed silk fabrics was examined with
the steaming time fixed at 15 min. Similarly, the steaming time’s effect on the K/S value
and color characteristics was investigated with the steaming temperature fixed at 100 ◦C.
The K/S value was measured at its maximum absorption wavelength was 555 nm. The
results are presented in Tables 4 and 5, respectively.
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Table 4. Effect of steaming temperature on K/S value and color characteristic values on the P-Fe
printing of silk fabrics.

Temperature/◦C K/S Value L* a* b* C* h/◦ Fabric
Sample

95 18.01 21.99 10.10 −6.44 11.97 327.48
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15 21.04 19.82 8.97 −5.00 10.25 330.89  

20 20.16 20.70 11.15 −4.96 12.15 336.17  

25 19.92 21.50 10.53 −6.06 12.15 330.09  

30 18.97 21.07 11.24 −5.25 12.39 335.17  

As can be seen from Table 4, the P-Fe-printed silk fabric reached a saturation value at 
a steaming temperature of 100 °C. Beyond this temperature, the K/S value continuously 
decreased with the rise in temperature. This is because the moisture content of the print 
paste decreased, and the diffusivity of P-Fe to the fabric was reduced. Additionally, the 
thermal stability of P-Fe deteriorated significantly after 100 °C, leading to the destruction 
of the complex structure [22]. Consequently, the coordination ability between alizarin 
hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed 
fabric, an increase in the brightness value, and an increase in the a*, b*, and C* values. The 
color of the printed fabric was lighter; therefore, the optimal temperature for P-Fe printing 
silk fabric was chosen to be 100 °C. 

As indicated in Table 5, the K/S value reached its zenith at a steaming time of 15 min. 
When the steaming time was more than 15 min, the K/S value no longer increased, and 
there were no significant changes in the brightness value, a*, b*, and C* values. This indi-
cates that the K/S value of the P-Fe printing silk fabric reached saturation under the steam-
ing conditions of 100 °C for 15 min. 

In conclusion, the optimal steaming process for P-Fe printed silk fabric is identified 
as a steaming temperature of 100 °C and a steaming time of 20 min, representing a more 
efficient process compared to conventional steaming methods [23]. 

3.2.2. Color Appearance of Printed Fabrics 
The color characteristics and K/S values of the directly printed, Fe2+ pre-mordant, and 

P-Fe printing silk fabrics were measured, with the results depicted in Figures 5 and 6 and 
Table 6, respectively. The color fastness values are listed in Table 7. 

Table 6. Color characteristic values of printed fabrics. 
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hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed 
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As can be seen from Table 4, the P-Fe-printed silk fabric reached a saturation value at 
a steaming temperature of 100 °C. Beyond this temperature, the K/S value continuously 
decreased with the rise in temperature. This is because the moisture content of the print 
paste decreased, and the diffusivity of P-Fe to the fabric was reduced. Additionally, the 
thermal stability of P-Fe deteriorated significantly after 100 °C, leading to the destruction 
of the complex structure [22]. Consequently, the coordination ability between alizarin 
hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed 
fabric, an increase in the brightness value, and an increase in the a*, b*, and C* values. The 
color of the printed fabric was lighter; therefore, the optimal temperature for P-Fe printing 
silk fabric was chosen to be 100 °C. 
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ing conditions of 100 °C for 15 min. 
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as a steaming temperature of 100 °C and a steaming time of 20 min, representing a more 
efficient process compared to conventional steaming methods [23]. 

3.2.2. Color Appearance of Printed Fabrics 
The color characteristics and K/S values of the directly printed, Fe2+ pre-mordant, and 

P-Fe printing silk fabrics were measured, with the results depicted in Figures 5 and 6 and 
Table 6, respectively. The color fastness values are listed in Table 7. 

Table 6. Color characteristic values of printed fabrics. 

15 21.04 19.82 8.97 −5.00 10.25 330.89

Materials 2024, 17, x FOR PEER REVIEW 10 of 15 
 

 

Table 4. Effect of steaming temperature on K/S value and color characteristic values on the P-Fe 
printing of silk fabrics. 

Temperature/°C K/S Value L* a* b* C* h/° Fabric Sample 

95 18.01 21.99 10.10 −6.44 11.97 327.48  

100 20.38 21.04 10.40 −6.06 12.04 329.74  

105 16.66 23.57 12.59 −7.16 14.49 330.44  

110 10.08 29.38 13.43 −8.38 15.83 328.07  

115 6.06 36.02 13.28 −8.71 15.88 326.72  

Table 5. Effect of steaming time on K/S value and color characteristic values on the P-Fe printing of 
silk fabrics. 

Time/min K/S Value L* a* b* C* h/° Fabric Sample 

10 18.63 22.08 11.93 −6.96 13.82 329.74  

15 21.04 19.82 8.97 −5.00 10.25 330.89  

20 20.16 20.70 11.15 −4.96 12.15 336.17  

25 19.92 21.50 10.53 −6.06 12.15 330.09  

30 18.97 21.07 11.24 −5.25 12.39 335.17  

As can be seen from Table 4, the P-Fe-printed silk fabric reached a saturation value at 
a steaming temperature of 100 °C. Beyond this temperature, the K/S value continuously 
decreased with the rise in temperature. This is because the moisture content of the print 
paste decreased, and the diffusivity of P-Fe to the fabric was reduced. Additionally, the 
thermal stability of P-Fe deteriorated significantly after 100 °C, leading to the destruction 
of the complex structure [22]. Consequently, the coordination ability between alizarin 
hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed 
fabric, an increase in the brightness value, and an increase in the a*, b*, and C* values. The 
color of the printed fabric was lighter; therefore, the optimal temperature for P-Fe printing 
silk fabric was chosen to be 100 °C. 

As indicated in Table 5, the K/S value reached its zenith at a steaming time of 15 min. 
When the steaming time was more than 15 min, the K/S value no longer increased, and 
there were no significant changes in the brightness value, a*, b*, and C* values. This indi-
cates that the K/S value of the P-Fe printing silk fabric reached saturation under the steam-
ing conditions of 100 °C for 15 min. 

In conclusion, the optimal steaming process for P-Fe printed silk fabric is identified 
as a steaming temperature of 100 °C and a steaming time of 20 min, representing a more 
efficient process compared to conventional steaming methods [23]. 
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As can be seen from Table 4, the P-Fe-printed silk fabric reached a saturation value at 
a steaming temperature of 100 °C. Beyond this temperature, the K/S value continuously 
decreased with the rise in temperature. This is because the moisture content of the print 
paste decreased, and the diffusivity of P-Fe to the fabric was reduced. Additionally, the 
thermal stability of P-Fe deteriorated significantly after 100 °C, leading to the destruction 
of the complex structure [22]. Consequently, the coordination ability between alizarin 
hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed 
fabric, an increase in the brightness value, and an increase in the a*, b*, and C* values. The 
color of the printed fabric was lighter; therefore, the optimal temperature for P-Fe printing 
silk fabric was chosen to be 100 °C. 

As indicated in Table 5, the K/S value reached its zenith at a steaming time of 15 min. 
When the steaming time was more than 15 min, the K/S value no longer increased, and 
there were no significant changes in the brightness value, a*, b*, and C* values. This indi-
cates that the K/S value of the P-Fe printing silk fabric reached saturation under the steam-
ing conditions of 100 °C for 15 min. 

In conclusion, the optimal steaming process for P-Fe printed silk fabric is identified 
as a steaming temperature of 100 °C and a steaming time of 20 min, representing a more 
efficient process compared to conventional steaming methods [23]. 

3.2.2. Color Appearance of Printed Fabrics 
The color characteristics and K/S values of the directly printed, Fe2+ pre-mordant, and 

P-Fe printing silk fabrics were measured, with the results depicted in Figures 5 and 6 and 
Table 6, respectively. The color fastness values are listed in Table 7. 
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decreased with the rise in temperature. This is because the moisture content of the print 
paste decreased, and the diffusivity of P-Fe to the fabric was reduced. Additionally, the 
thermal stability of P-Fe deteriorated significantly after 100 °C, leading to the destruction 
of the complex structure [22]. Consequently, the coordination ability between alizarin 
hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed 
fabric, an increase in the brightness value, and an increase in the a*, b*, and C* values. The 
color of the printed fabric was lighter; therefore, the optimal temperature for P-Fe printing 
silk fabric was chosen to be 100 °C. 

As indicated in Table 5, the K/S value reached its zenith at a steaming time of 15 min. 
When the steaming time was more than 15 min, the K/S value no longer increased, and 
there were no significant changes in the brightness value, a*, b*, and C* values. This indi-
cates that the K/S value of the P-Fe printing silk fabric reached saturation under the steam-
ing conditions of 100 °C for 15 min. 
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As can be seen from Table 4, the P-Fe-printed silk fabric reached a saturation value at 
a steaming temperature of 100 °C. Beyond this temperature, the K/S value continuously 
decreased with the rise in temperature. This is because the moisture content of the print 
paste decreased, and the diffusivity of P-Fe to the fabric was reduced. Additionally, the 
thermal stability of P-Fe deteriorated significantly after 100 °C, leading to the destruction 
of the complex structure [22]. Consequently, the coordination ability between alizarin 
hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed 
fabric, an increase in the brightness value, and an increase in the a*, b*, and C* values. The 
color of the printed fabric was lighter; therefore, the optimal temperature for P-Fe printing 
silk fabric was chosen to be 100 °C. 
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As can be seen from Table 4, the P-Fe-printed silk fabric reached a saturation value at
a steaming temperature of 100 ◦C. Beyond this temperature, the K/S value continuously
decreased with the rise in temperature. This is because the moisture content of the print
paste decreased, and the diffusivity of P-Fe to the fabric was reduced. Additionally, the
thermal stability of P-Fe deteriorated significantly after 100 ◦C, leading to the destruction
of the complex structure [22]. Consequently, the coordination ability between alizarin
hydroxyl and silk fabric diminished, causing a reduction in the K/S value of the printed
fabric, an increase in the brightness value, and an increase in the a*, b*, and C* values. The
color of the printed fabric was lighter; therefore, the optimal temperature for P-Fe printing
silk fabric was chosen to be 100 ◦C.

As indicated in Table 5, the K/S value reached its zenith at a steaming time of 15 min.
When the steaming time was more than 15 min, the K/S value no longer increased, and
there were no significant changes in the brightness value, a*, b*, and C* values. This
indicates that the K/S value of the P-Fe printing silk fabric reached saturation under the
steaming conditions of 100 ◦C for 15 min.

In conclusion, the optimal steaming process for P-Fe printed silk fabric is identified
as a steaming temperature of 100 ◦C and a steaming time of 20 min, representing a more
efficient process compared to conventional steaming methods [23].

3.2.2. Color Appearance of Printed Fabrics

The color characteristics and K/S values of the directly printed, Fe2+ pre-mordant,
and P-Fe printing silk fabrics were measured, with the results depicted in Figures 5 and 6
and Table 6, respectively. The color fastness values are listed in Table 7.
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Table 6. Color characteristic values of printed fabrics.

Sample C* h/◦

Direct printing 15.16 5.67
Fe2+ pre-mordant printing 11.55 329.39

P-Fe direct printing 10.26 330.88

Table 7. Effect of purpurin and P-Fe on the color fastness of printed silk fabrics.

Sample
Washing Fastness to Staining Rubbing Resistance

Light
FastnessWashing

Fastness
Staining on

Cotton
Staining
on Silk

Dry
Rubbing Wet Rubbing

Direct printing 3 3–4 4 4–5 4 3
Fe2+ pre-mordant printing 4–5 4 4 4–5 4 4

P-Fe direct printing 4–5 4 4 4–5 4 4–5
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From Figures 5 and 6, it can be seen that, compared with the value for the directly
printed silk fabric, the K/S values of the Fe2+ pre-mordant and P-Fe printed silk fabrics
increased by 5.760 and 21.032, respectively. This indicates that both Fe2+ pre-mordant and
P-Fe printing can enhance the color strength of the fabric after printing, with the P-Fe
printing showing a greater increase.

L* represents lightness, ranging from 100 for perfect white to 0 for absolute black [24].
The a* value represents a variation between the redness and greenness of the silk fabric
(a positive value indicates red, whereas a negative value indicates green). The b* value
represents a variation from the yellowness and blueness of the silk fabric (a positive value
indicates yellow, whereas a negative value indicates blue) [25]. Compared with direct
printing, the L*, a*, and b* values of the fabrics from Fe2+ pre-mordant printing and P-
Fe printing decreased, indicating that the brightness and color saturation of the fabrics
decreased. According to Table 6, it can be seen that the color saturation of the fabrics
decreased after printing with P-Fe, and the hue of the fabrics changed considerably. The
color characteristics of the fabrics from Fe2+ pre-mordant printing and P-Fe printing had a
greater impact after printing; the effect of P-Fe printing was more pronounced, with the
fabrics showing a deep purple-red color. This was due to the formation of coordination
bonds between the Fe2+ and hydroxyl groups of purpurin, as well as hydroxyl and carboxyl
groups on the silk fabric during mordant pre-mordant and complexation, which increased
the dyeing rate. However, Fe2+ pre-mordant printing can cause staining on the white part
of the printed fabric, whereas P-Fe printing has less impact on the white part of the fabric.

Washing fastness, rubbing fastness, and light fastness were measured for the directly
printed, Fe2+ pre-mordant, and P-Fe printed silk fabrics, and the results are shown in
Table 6. As shown in Table 7, compared with direct printing, the color fastness of P-Fe
printing to washing and light was improved by levels of 1–2 for all fabrics.

Silk fabrics printed with P-Fe exhibited enhanced fastness due to the Fe2+ pre-mordant
with purpurin, resulting in a greater quantity and stronger binding force of metal ions
compared to silk fabrics with Fe2+ pre-mordant printing [26]. Consequently, the P-Fe
printing silk fabrics achieved a fastness rating of grade four or more [27].

Under the optimal steaming process conditions for P-Fe, comparing the K/S value
of silk fabrics after purpurin Fe2+ pre-mordant printing, P-Fe showed an improvement of
265.14%. The color fastness of each color reached grade four.

3.2.3. Color Staining on White Background of Printed Fabrics

The whiteness of the white base portions of silk fabrics printed directly with purpurin,
pre-mordanted silk fabrics printed with purpurin, and silk fabrics printed directly with
the P-Fe complex dye were tested, with the results presented in Table 8. In order to further
investigate the staining of the white background, surface elemental tests were conducted
separately on the stained portions of the white backgrounds using three different processes.
The results are presented in Table 9.

Table 8. Effect of P-Fe on the white background of printed silk fabrics.

Samples White Background
WI CIE [D65/10]

Fabric Sample *
(White Background Section on the Right)

Silk fabrics 75.03
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Table 9. EDS analysis results of the white background portions of printed silk fabrics.

Samples
Elemental Content (wt)/%

C N O Fe

Direct printing 47.01 21.32 31.67 0.000
Fe2+ pre-mordant printing 48.02 19.49 30.93 1.56

P-Fe direct printing 48.25 21.31 30.32 0.13

As indicated in Table 8, the original whiteness of the silk fabric was 75.025. The
whiteness of the silk fabric printed with purpurin direct dye was 64.068, with minimal
color contamination. This minimal contamination is attributed to residual dye from the
unprinted white base during subsequent washing. When the silk fabric was pre-mordanted
with Fe2+ prior to purpurin printing, the whiteness of the white background drastically
dropped to 7.670, indicating severe staining. In contrast, the level of whiteness of the white
base of the silk fabric printed directly with complex dye P-Fe was 71.130 and had the least
impact on the whiteness of the fabric’s white base.

To enhance the color depth and fastness of natural dyes during silk fabric printing,
pretreatment with a mordant is commonly applied. However, this process often results in a
higher residual of metal ions on the white base. During subsequent washing, the unfixed
dyes rinsed from the residual color paste can combine with the residual Fe2+ ions, leading
to a decrease in the whiteness of the unprinted white silk areas. In contrast, the use of
complex dye P-Fe for printing did not cause such issues.

As shown in Table 9, when silk fabric was pretreated with Fe2+ and subsequently
printed, the white base contained a significantly higher concentration of Fe2+, representing
1.562%. This increase was attributed to the formation of coordination bonds between the
metal ions and the white base during the mordanting process. Conversely [28], the silk
fabric printed with the complex dye P-Fe exhibited a substantially lower Fe2+ content,
amounting to only 0.127%. This minimal residual presence was presumably due to a small
fraction of the complex dye P-Fe being adsorbed onto the white base of the silk fabric
during the washing phase [29].

Based on the results of color, color fastness, and white base staining, it was observed
that the conventional process of mordanting before printing on fabrics improved the depth
and fastness of color compared to direct printing but led to a significant decrease in the
whiteness of the white base of silk fabric to 7.670, with an Fe2+ content of 1.562%. This rep-
resents a substantial drop from the original whiteness of 75.025, indicating severe staining.
In contrast, silk fabric printed with the complex dye P-Fe showed further enhancement in
both color depth and fastness, with the white base achieving a whiteness of 71.13 and an
Fe2+ content of only 0.127%. This indicates that the use of the complex dye P-Fe for printing
results in a more substantial and secure bond between the dye and the fabric, thereby
improving the depth and fastness of the printed fabric’s color, with a minimal impact on
the white base. Moreover, as the fabric does not require pretreatment with a mordant, the
printing process was significantly streamlined [30].

4. Conclusions

In this study, we successfully prepared and characterized purpurin–Fe2+ complex
dyes. Analysis using ultraviolet–visible spectroscopy and Fourier transform infrared
spectroscopy identified new absorption peaks for the complex natural dye P-Fe, confirming
the coordination of purpurin with ferrous ions to form a complex structure. Structural
calculations and elemental content analysis revealed that purpurin predominantly formed
1:1 molar complexes with Fe2+, thus yielding the complex natural dye P-Fe.

The application of this complex dye to silk fabric printing was optimized. The optimal
steaming parameters determined were a temperature of 100 ◦C and a duration of 20 min.
When compared to direct printing and traditional silk fabric printing with mordant pre-
treatment, the fabric printed with P-Fe dye demonstrated superior color depth and fastness,
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with all color fastness ratings achieving grade four. The traditional silk fabric printed
with mordant pretreatment had a more severe color contamination issue on the white
background, with whiteness below 10 and iron ion residues exceeding 1%. In contrast,
the white background of the fabric printed with P-Fe complex dye achieved whiteness
above 70, and the iron ion content was less than 0.180%. This effectively addressed the
problem of color contamination on the white background of natural dye printing. Further-
more, by eliminating the need for fabric mordant pretreatment, the printing process was
significantly streamlined.

Purpurin–Fe2+ complex dyes present promising potential for the printing of silk
fabrics, enhancing printing quality and color fastness while aligning with environmental
and sustainability standards. Future research endeavors should focus on refining dye
preparation methods, optimizing the printing process, and improving printing performance
to develop more efficient and eco-friendly silk fabric printing technologies.
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