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Abstract: We performed machine learning (ML) simulations and density functional theory (DFT)
calculations to search for materials with low lattice thermal conductivity, κL. Several cadmium
(Cd) compounds containing elements from the alkali metal and carbon groups including A2CdX
(A = Li, Na, and K; X = Pb, Sn, and Ge) are predicted by our ML models to exhibit very low κL values
(<1.0 W/mK), rendering these materials suitable for potential thermal management and insulation
applications. Further DFT calculations of electronic and transport properties indicate that the figure
of merit, ZT, for the thermoelectric performance can exceed 1.0 in compounds such as K2CdPb,
K2CdSn, and K2CdGe, which are therefore also promising thermoelectric materials.

Keywords: lattice thermal conductivity; thermoelectric material; machine learning; density
functional theory

1. Introduction

Materials with low lattice thermal conductivity (κL) have important applications
in thermal management and energy conversion by serving as thermal insulation and
barrier coatings, or as thermoelectrics. In particular, thermoelectric (TE) materials can
directly convert between thermal and electrical energy [1–8], offering potential solutions
for sustainable clean energy. To date, however, large-scale TE applications remain limited
due to the relatively low energy conversion efficiency of known materials. Improving their
efficiency and finding suitable TE materials that function at different temperatures remain
important tasks in materials science research.

The TE performance can be quantified by the figure of merit value ZT = S2σT/κ,
where S is the Seebeck coefficient (the induced voltage in response to a temperature gradi-
ent), σ is the electrical conductivity, T is the temperature, and κ is the thermal conductivity.
One approach to enhance ZT is by increasing the power factor (S2σ) through the band
engineering of carrier concentration and mobility, among other factors [9–15]. Another
approach is to find materials with low thermal conductivity [16–18].

There are two major contributions to thermal conductivity: κ = κe + κL. In general,
the electronic contribution κe closely follows the Wiedemann–Franz law [19], κe = LσT,
where L is the Lorenz number (2.44 × 10−8 WΩ/K2 for free electrons). κe also varies with
the charge carrier concentration n. On the other hand, κL has a distinct T dependence.
If the lattice contribution κL of a material is much lower than the electronic contribution κe
under certain n and T conditions, an optimal ZT ∼ S2/L > 1 can be achieved due to the
Wiedemann–Franz law. Therefore, designing or searching for materials with low κL con-
tinues to be an active research area employing approaches such as in phonon engineering,
nanostructuring, and/or applying external strain or pressure [20–26].

Computational materials modeling has played an important role in providing pre-
dictions and critical insights into the thermal conducting behavior of materials [27–32].
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Traditionally, density functional theory (DFT) is the standard computational workforce for
accurate calculations of κL from first principles. However, its relatively high computational
cost limits large-scale investigations of κL in new materials. More recently, data-driven
machine learning (ML) approaches have become popular and powerful tools for materials
modeling and discovery [33–45]. This popularity and improvement in ML research largely
result from advancements in computer architectures and ML algorithms, as well as from
the increasing availability of open materials databases. ML algorithms can learn from
training data by identifying connections through linear or non-linear relationships between
target properties and input features. Once trained, ML models can achieve highly efficient
and often accurate large-scale predictions.

In this study, we utilized combined machine learning (ML) predictions and density
functional theory (DFT) calculations to discover materials with low lattice thermal con-
ductivity. Specifically, we developed ensemble tree ML models with input features based
on chemical formulas and atomic configurations to quickly estimate the κL of a given
material. For promising low-κ materials identified by our ML models, we further validated
the results by performing DFT calculations to evaluate κL directly from first principles.
In particular, we found that the chemical compositions A2CdX (A = Li, Na, and K; X = Pb,
Sn, and Ge) of orthorhombic crystal symmetry exhibit ultra-low lattice thermal conductivity
(κL ∼ 0.1–1.0 W/mK). Our DFT calculations of the transport and thermoelectric properties
further indicate that some of these materials like K2CdPb can exhibit a ZT ≥ 1.0 near room
temperature, and are therefore promising for low-temperature thermoelectric applications [46].

The rest of this paper is organized as follows: Section 2 presents the computational
details of machine learning (ML) models and first-principle density functional theory (DFT)
calculations. Section 3 presents the ML and DFT predictions of low-κL materials and their
thermoelectric properties. Finally, Section 4 concludes the paper by summarizing our
main findings.

2. Computational Methods
2.1. Machine Learning Simulation

Data Acquisition and Feature Creation—Our machine learning (ML) models aim to
predict the target property of lattice thermal conductivity κL for a given compound. The ML
training dataset was sourced from the TE Design Lab, which is a virtual platform hosting
a database of calculated thermoelectric properties [47]. From this database, we selected a
total of 1900 compounds with κL in the range of 0–1100 W/mK. For all compounds in the
selected dataset, we then used theMatminer package (version 0.7.8) [48] to generate 61 input
features based on their chemical formulas and atomic configurations [49]. These features
can be broadly categorized as structural features and elemental features. Specifically, seven
structural features include the space group, volume per atom, packing fraction, unit-cell
density, bond length, bond angle, and cohesive energy. Moreover, 18 elemental features
include the atomic mass, atomic radius, atomic number, periodic table group, row number,
block number, Mendeleev number, molar volume, boiling point, melting temperature,
Pauling electronegativity, first ionization energy, covalent radius, and volume per atom
from ground state, as well as the average number of s, p, d, and f valence electrons. Since
our dataset contains compounds ranging from unary to quinary materials, each elemental
feature can be expanded by calculating the minimum, maximum, and weighted average of
the constituent chemicals, resulting in a total of 54 (=18 × 3) elemental features. Overall,
61 (=7 + 54) features were used in the training of the ML models.

We note that several features, such as average atomic mass and volume (which is
related to atomic radius), are relevant parameters for estimating κL in known empirical
formulas [50,51]. Therefore, κL is also expected to be proportional to the mean sound
velocity vm (or the Debye temperature ΘD) cubed. It has been shown that ML models can
accurately predict vm and ΘD using features simply derived from chemical compositions
and crystal symmetry [52]. Therefore, it was anticipated that the ML models trained here
with the 61 features under study could perform well in predicting κL [49].
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Model Training and Validation—Our supervised ML tasks utilized Random Forest as
the underlying algorithm [53,54]. Random Forest is an ensemble method consisting of
multiple decision trees. Each tree is trained on a randomly selected subset of features and
samples. The Random Forest algorithm then averages the results of all trees to make the
final prediction, which generally reduces the overfitting problem associated with a single
decision tree. Random Forest ML models are relatively easy to train and often produce
highly accurate results. To further reduce overfitting, we also pre-pruned the trees by
limiting their depth. Specifically, we used 90% of our input data as the training–validation
set and applied the GridSearchCV technique from the scikit-learn library [55] to determine
the optimal tree depth via 10-fold cross-validation. The remaining 10% of the input data
served as the unbiased test set to evaluate the final model performance. After training and
evaluation, we then used the ML model to predict the lattice thermal conductivity κL.

2.2. First-Principle Calculation

For promising low-κL materials identified by ML models, we further performed first-
principle density functional theory (DFT) calculations to validate their thermoelectric
properties. Our calculations are based on the Vienna Ab initio Simulation Package (VASP,
version 5.4.4) [56,57], which is a highly efficient and accurate plane-wave pseudopoten-
tial DFT code. We adopted the projector augmented wave (PAW) potentials [58,59] and
utilized the Perdew–Burke–Ernzerhof generalized gradient approximation (GGA-PBE)
functional [60]. The plane-wave cutoff energy was set to 500 eV, and a fine Γ-centered
Monkhorst–Pack grid of 19 × 19 × 19 points was used for Brillouin zone integration [61].
For a given crystal structure, we first fully relaxed the lattice parameters and atomic po-
sitions. The convergence criteria for the electronic and ionic relaxation loops were set to
10−8 eV per unit cell and 10−4 eV/Å, respectively.

After structure relaxation, we computed the thermoelectric properties (S, σ, and κe)
using theBoltzTraP2 package (version 20.7.1) [62], which is based on Boltzmann transport
theory with a constant relaxation time approximation. The lattice thermal conductivity (κL)
was obtained through first-principle phonon calculations using the Phonopy (version 2.11.0)
and Phono3py (version 2.4.0) [63,64] packages, which are based on finite-displacement
supercell approaches. Phonopy computes the phonon spectra at the harmonic or quasi-
harmonic level. Phono3py evaluates phonon–phonon interactions and κL from the Peierls–
Boltzmann equation [65]. In the supercell calculations, the atomic displacement was set to
0.02 Å, and the real-space interaction cutoff distance was set to 4.0 Å. For the second-order
(harmonic) and third-order (anharmonic) phonon calculations, 3 × 3 × 3 supercells with a
5 × 5 × 5 k-mesh and 2 × 2 × 2 supercells with a 9 × 9 × 9 k-mesh were employed, respec-
tively. A phonon q-point sampling mesh of 21 × 21 × 21 points was used. The theoretical
crystal structure in this study was visualized using VESTA software (version 3.4.8) [66].

3. Results and Discussion

Figure 1a shows the distribution of κL for the 1900 compounds in our training dataset
from the TE Design Lab [47]. Since the range of the distribution spans nearly five orders of
magnitude, it is plotted on a base-10 logarithmic scale. Eventually, ML models were trained
to predict log(κL). For the accuracy and generalizability of our ML models, we ensured that
our dataset was diverse in chemical composition (from unary to quinary compounds) and
crystal structure (with 140 different space groups). In particular, among the 1900 samples, 7
were unary, 418 were binary, 1143 were ternary, 328 were quaternary, and 4 were quinary.
These compounds contained 61 different atomic elements. The frequency of each element
appearing in the compound list is represented by the false-color intensity plot in Figure 1b;
gray means that the element is not present.
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Figure 1. (a) Histogram for the 1900 training samples of lattice thermal conductivity (κL) selected
from the TE Design Lab [47]. The distribution spans nearly five orders of magnitude and is plotted
on a base-10 logarithmic scale. (b) False-color intensity plot showing the frequency of each element in
the 1900-sample training dataset. Elements not present in the list are shown in gray. The figure was
created using the open-source software Periodic Trend Plotter (accessed on 1 November 2024) [67].

As discussed in Section 2, our ML models are based on Random Forest trained with
61 features [49] generated by the Matminer package [48]. The coefficient of determination
R2 was used to evaluate the model performance:

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − y)2 , (1)

where yi, ŷi, y are the actual value (for the i-th entry), the predicted value, and the mean
of the actual values, respectively. R2 ranges from 0 to 1, with R2 = 1 indicating a perfect
prediction. Figure 2 shows the resulting ML model performance on predicting log(κL).
The blue and yellow circles represent data from the training–validation set (90%) and the
test set (10%), respectively. A red dashed line is also plotted as a guide to the ideal line
where the predicted values match the actual values. Our model achieved an R2 = 0.96 for
the training–validation set and R2 = 0.88 for the test set, indicating that our ML model
provides a fairly accurate prediction of log(κL).

Figure 2. EvaluationMDPI: The 0.5 below 0.0 is missing a minus sign, please modify the image. of
the Random Forest model in predicting the logarithmic value of lattice thermal conductivity, log(κL).
The training and test sets consist of 90% and 10% of our total dataset (1900 samples), respectively. When the
machine learning prediction perfectly matches the actual value, the data point will fall on the red dashed
line. The model achieved relatively high R2 scores of 0.96 and 0.88 for the training and test sets, respectively.
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Random Forest models also provide information on feature importance in ML pre-
dictions. Among the features under study, the atomic bond length was found to be the
most significant factor affecting κL. In an ideal gas model, lattice thermal conductivity is
approximated as

κL =
1
3

v2
s cvτs, (2)

where vs is the phonon velocity, cv is the specific heat, and τs is the phonon relaxation
time. Among these three parameters, the phonon relaxation time is related to the bond-
strength anharmonicity [68–70], which is correlated with bond length. In particular, a longer
bond length is prone to causing anharmonic vibrations, as the interatomic force constant
decreases with increasing bond length. Anharmonicity then facilitates collisions between
different phonon modes. As anharmonicity increases, the phonon relaxation time decreases,
which in turn leads to a reduction in lattice thermal conductivity.

We note that the strength of anharmonicity can also be evaluated with the Grüneisen
parameter:

γ =
V
ω

∂ω

∂V
, (3)

where V is the crystal volume, and ω is the phonon frequency. Within the harmonic
approximation, the thermal expansion is zero on average. In the presence of anharmonicity,
the phonon frequency can vary as the volume changes with temperature. Therefore,
a larger Grüneisen parameter indicates stronger anharmonicity and a lower lattice thermal
conductivity. In fact, based on the Debye–Callaway model [50,51], the lattice thermal
conductivity can be approximately evaluated as

κL ≈ Mv3
m

TV2/3γ2
1

N1/3 , (4)

where M, vm, T, V, γ, and N represent the average mass, the mean speed of sound,
the temperature, the average volume per atom, the Grüneisen parameter, and the number
of atoms per primitive unit cell, respectively. The above formula shows that κL is inversely
proportional to γ2 and V2/3. Indeed, in addition to bond length, the volume per atom is
evaluated by our ML models as the second most important feature affecting κL. Overall,
the feature importance values align well with the above approximated models for κL,
demonstrating that our ML models are reasonable and adequate.

We then applied the ML models to predict materials with low κL. Recently, Zintl-
phase compounds have attracted significant attention due to their strong anharmonic
properties, which could lead to low lattice thermal conductivity [71–78]. The Zintl phase
refers to compounds formed by alkali metals (group I) or alkaline earth metals (group II)
combined with p-block metals or metalloids (from groups III–VI). Other recent studies
have also shown that Zintl-phase compounds can achieve ultra-low κL by introducing
a heavy element, cadmium (Cd) [20,79]. For these reasons, we focused on applying our
ML models to Cd-based Zintl-phase materials. Specifically, we considered A2CdX (A = Li,
Na, and K; X = Pb, Sn, and Ge) with orthorhombic symmetry and space group Ama2
(No. 40) [80]; Figure 3a shows the corresponding crystal structure for K2CdPb. As seen
in Table 1, the κL values predicted by our ML models for the nine compositions A2CdX
(A = Li, Na, and K; X = Pb, Sn, and Ge) range from 0.69 to 0.95 W/mK, indicating that all
these compounds are potential low-κL materials.

To validate the ML predictions, we further performed first-principle calculations to
directly compute κL and other thermoelectric properties for the nine compounds under
study. We first focused on K2CdPb [80], for which its primitive cell structure is shown
in Figure 3a. To ensure an accurate calculation of κL, we conducted a convergence test
for the neighbor interaction cutoff distance. Figure 3b,c show the convergence tests for
K2CdPb as functions of temperature and cutoff distance. Notably, the κL computed with
a cutoff of 4 Å is very close to the result obtained with a 5 Å cutoff. Therefore, for both
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accuracy and efficiency considerations, we adopted a cutoff distance of 4 Å for the other
compounds. Figure 3d shows the computed κL as a function of temperature for the nine
compounds A2CdX (A = Li, Na, and K; X = Pb, Sn, and Ge). Near room temperature, all
compounds exhibit a κL below 1.0 W/mK, which is in very good agreement with our ML
predictions. As the temperature increases, κL further decreases as more phonons are excited
and cause additional phonon scattering, leading to a reduction in κL. These results reveal
that the nine compounds under study are all low-κL materials for potential thermal management
and insulation applications. We further note that our reported κL∼0.3 W/mK for K2CdPb
and K2CdSn is consistent with previous DFT studies [80]. Meanwhile, we also found that
K2CdGe exhibits a comparable theoretical κL∼0.3 W/mK. This result is not surprising,
given the chemical similarity of the Pb, Sn, and Ge elements. Likewise, for the Li- and
Na-based compounds explored here, while our DFT calculations may underestimate their
κL values, they are also anticipated to be low-lattice-thermal-conductivity materials based
on their chemical similarity to the K-based compounds. In fact, depending on carrier
concentration and the underlying temperature, materials with ultra-low κL∼0.1 W/mK
or lower have been reported in the literature [81–84]. It would be an important future
task to verify our predictions both theoretically (e.g., with different DFT functionals and
supercell sizes) and experimentally, through the potential synthesis and characterization of
the proposed materials.

Figure 3. (a) Primitive-cell crystal structure of K2CdPb, with orthorhombic symmetry and space
group Ama2 (No. 40). (b) Lattice thermal conductivity κL of K2CdPb as a function of the neighbor
interaction cutoff distance in the temperature range of 300–1200 K. (c ) κL of K2CdPb as a function
of temperature for different cutoff distances. (d) κL computed with a cutoff distance of 4 Å for nine
different Cd compounds.
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Before discussing other thermoelectric properties, we address the small discrepancies
between the ML and DFT results in Table 1. First, we note that the ML models were trained
to predict log(κL) rather than κL itself. Therefore, a small error in the logarithmic value
can be amplified in the actual value. Second, the ML prediction in Table 1 is generally
slightly larger than the DFT calculation. One reason for this discrepancy is likely due to the
training data distribution. Specifically, while we were interested in discovering materials
with low thermal conductivity (i.e., log(κL) ≤ 0), most of the training data in Figure 1a
exhibit log(κL) ≥ 0. Therefore, one could potentially enhance the ML prediction accuracy
by training a weighted ML model. Indeed, when we trained additional ML models by
weighting the training samples with log(κL) ≤ 0 by a factor of 5 to 10, the predicted κL
values became smaller and aligned more closely with the DFT results, as seen in Table 1.
Notably, the performance of an ML model with a weight factor of 10 is not better than
that with a weight factor of 5. Therefore, the sample weight factor has an optimal range
and cannot be increased indefinitely. Finally, we note that some ML predictions from the
weighted ML models remained larger than the DFT results (e.g., for the sodium compounds
in Table 1). This discrepancy may be attributed to the fact that tree models only interpolate
so cannot predict values beyond the range of the training dataset. The apparent, albeit
small, differences between the ML and DFT predictions are likely associated with the
above factors.

Table 1. Machine learning (ML) and density functional theory (DFT) predictions of the lattice thermal
conductivity κL (in units of W/mK) for different Cd compounds. The ML models are based on
Random Forest. The terms “ML + Weight 5” and “ML + Weight 10” indicate a weighting factor of
5 and 10, respectively, on samples with log(κL) ≤ 0 when training the ML models, which places more
weight on the low-κL materials.

Methods K2CdPb K2CdSn K2CdGe Na2CdPb Na2CdSn Na2CdGe Li2CdPb Li2CdSn Li2CdGe

ML 0.69 0.79 0.8 0.84 0.76 0.87 0.95 0.71 0.77
DFT 0.295 0.346 0.323 0.022 0.119 0.086 0.032 0.215 0.028

ML + Weight 5 0.56 0.35 0.37 0.45 0.63 0.119 0.68 0.27 0.4
ML + Weight 10 0.469 0.29 0.62 0.43 0.37 0.58 0.76 0.4 0.22

We next turn our attention to the thermoelectric properties. Figure 4 displays the DFT
calculations for K2CdPb: Seebeck coefficient S [panel (a)], electrical conductivity divided
by the relaxation time σ/τ [panel (b)], and electronic thermal conductivity divided by
the relaxation time κe/τ [panel (c)], as a function of the carrier concentration n in the
temperature range 300–1200 K. In general, the Seebeck coefficient exhibits a more complex
temperature and carrier concentration dependence, but its behavior can be understood
qualitatively by considering that of a simple parabolic band [85,86]:

S =
8π2k2

B
3eh2 m∗T(

π

3n
)2/3. (5)

Here, kB, e, h, and m∗ are the Boltzmann constant, electron charge, Plank constant,
and carrier effective mass, respectively. Equation (5) dictates that a higher temperature T or
a lower carrier concentration n would result in a larger Seebeck coefficient S. These T and
n dependences are indeed consistent with those shown in Figure 4a, especially in the high-
carrier-concentration regime (n > 1020 cm−3). In contrast, the low-concentration regime
exhibits an opposite trend, where S is reduced at higher temperatures. This anomalous
behavior is caused by the bipolar effect [87–89], where thermal excitations generate both
electrons and holes, which contribute opposite signs and lead to an overall reduced S.
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Figure 4. Thermoelectric properties of K2CdPb from first-principle calculations: (a) Seebeck coefficient
(S), (b) electrical conductivity divided by the relaxation time (σ/τ), (c) electronic thermal conductivity
divided by the relaxation time (κe/τ), as a function of the carrier concentration n (in log scale) over
the temperature range of 300–1200 K.

The behavior of the electrical conductivity σ shown in Figure 4b is more straightfor-
ward. Specifically, σ is anticipated to correlate with n/m∗ and show only weak temperature
dependence. Additionally, the electronic thermal conductivity κe can be related to σ via the
Wiedemann–Franz law [19]: κe = LσT, where L is the Lorentz number (2.44 × 10−8 WΩ/K2

for free electrons). Figure 4c shows that κe roughly exhibits a linear relationship with re-
spect to T and n, which indeed closely follows the Wiedemann–Franz law. We note that
κe becomes significantly larger only near n∼1022 cm−3 or at high temperature. It remains
computationally very challenging to directly compute the relaxation time τ from first
principles. Meanwhile, in assuming a typical value of τ = 1 × 10−14 s (also commonly
employed in the literature), κe is less than 1–10 W/mK in most of the temperature range
and carrier concentrations under study. Thus, K2CdPb remains a low-κ material even after
taking into account the electronic contribution.

Finally, since low-κ materials can be good candidates for thermoelectric applications,
we also computed their figure of merit, ZT = S2σT/κ, where the thermal conductivity
κ = κe + κL includes both electronic and lattice contributions. Figure 5a–c show the ZT
values, respectively, for K2CdPb, K2CdSn, and K2CdGe, as functions of carrier concen-
tration n (in log scale) and temperature T. In all three compounds, the ZT values can
exceed 1.0. As an example to estimate the ZT value, for K2CdPb at T = 400 K and
n = 2 × 1020 cm−3, the relevant parameters from our calculations are S∼1.8 × 10−4 V/K,
σ∼0.1 × 105 1/Ωm, and κ = κe + κL∼1.0 W/mK. Together, these values lead to a figure of
merit ZT = S2σT/κ(∼3.24 × 10−8 × 0.1 × 105 × 400/1.0)∼1.3–1.4 for K2CdPb, making it
a promising low-temperature thermoelectric material. In contrast, K2CdSn and K2CdGe show
peak ZT values of ∼1.1 near n = 9 × 1020 cm−3 and T = 900 K, and they are more suitable
for thermoelectric applications at higher temperatures. For the other compounds based
on sodium and lithium listed in Table 1, the ZT values are less than 1.0, making them
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unsuitable for practical thermoelectric applications. However, they could still be potential
candidates for thermal insulation materials.

Figure 5. ZT values of thermoelectric performance from first-principle calculations for (a) K2CdPb,
(b) K2CdSn, and (c) K2CdGe as a function of the carrier concentration n (in log scale) over the
temperature range of 300–1200 K.

4. Conclusions

We developed machine learning (ML) models using Random Forest to efficiently
predict the lattice thermal conductivity (κL) of a given chemical compound. We also
conducted first-principle density functional theory (DFT) calculations to validate the ML
predictions. The results indicate that the nine Zintl-phase Cd compounds A2CdX (A = Li,
Na, and K; X = Pb, Sn, and Ge) with orthorhombic crystal symmetry all exhibit very low
lattice thermal conductivity, with κL ≤ 1.0 W/mK. Our DFT calculations of the figure of
merit, ZT, for thermoelectric performance further showed that K2CdPb exhibits a peak
ZT∼1.4 near 400 Kelvin, making it a promising low-temperature thermoelectric material.
Additionally, K2CdSn and K2CdGe were found to display ZT values of ∼1.1 at 900 Kelvin,
suggesting that they could be candidate thermoelectric materials at higher temperatures.

For Li2CdX and Na2CdX (X = Pb, Sn, and Ge), the ZT values are less than 1.0, indicat-
ing more limited practical thermoelectric applications. Nevertheless, their ultra-low lattice
thermal conductivity make these materials potentially useful for thermal management and
insulation applications. Overall, our study demonstrated that data-driven ML methods are
powerful tools for large-scale materials modeling and discovery. The experimental verifica-
tion of our ML and DFT predictions on the thermoelectric properties of the Zintl-phase Cd
compounds would be an important next step. Further theoretical exploration of additional
low-κL and high-ZT materials using a combined ML and DFT methodology will continue
to be an important area of future research.



Materials 2024, 17, 5372 10 of 13

Author Contributions: Conceptualization, C.-M.L. and C.-C.C.; methodology, C.-M.L., D.Y. and
C.-C.C.; software, C.-M.L.; validation, C.-M.L. and A.K.; investigation, C.-M.L., A.K., D.Y. and C.-C.C.;
data curation, C.-M.L.; writing—original draft preparation, C.-M.L. and C.-C.C.; writing—review
and editing, C.-M.L., A.K., D.Y. and C.-C.C.; supervision, D.Y. and C.-C.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the U.S. Air Force Office of Scientific Research (AFOSR) under
Award No. FA2386-21-1-4060.

Data Availability Statement: The data for training machine learning (ML) models and the resulting
ML code for predicting lattice thermal conductivity can be found online at the following weblink:
https://github.com/CMLUAB/ML_lattice-themal-conductivity (accessed on 29 October 2024). The
data for first-principle calculations are available upon request from the authors.

Acknowledgments: The calculations were performed on the Frontera supercomputer at the Texas
Advanced Computing Center. Frontera was made possible by National Science Foundation Award
No. OAC-1818253.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

[CrossRef] [PubMed]
2. Liu, W.; Hu, J.; Zhang, S.; Deng, M.; Han, C.G.; Liu, Y. New trends, strategies and opportunities in thermoelectric materials: A

perspective. Mater. Today Phys. 2017, 1, 50–60. [CrossRef]
3. Zevalkink, A.; Smiadak, D.M.; Blackburn, J.L.; Ferguson, A.J.; Chabinyc, M.L.; Delaire, O.; Wang, J.; Kovnir, K.; Martin, J.;

Schelhas, L.T.; et al. A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Appl. Phys. Rev.
2018, 5, 021303. [CrossRef]

4. Urban, J.J.; Menon, A.K.; Tian, Z.; Jain, A.; Hippalgaonkar, K. New horizons in thermoelectric materials: Correlated electrons,
organic transport, machine learning, and more. J. Appl. Phys. 2019, 125, 180902. [CrossRef]

5. Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of current high-ZT thermoelectric materials.
J. Mater. Sci. 2020, 55, 12642–12704. [CrossRef]

6. Hasan, M.N.; Wahid, H.; Nayan, N.; Mohamed Ali, M.S. Inorganic thermoelectric materials: A review. Int. J. Energy Res. 2020,
44, 6170–6222. [CrossRef]

7. Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A review on thermoelectric generators: Progress and applications. Energies
2020, 13, 3606. [CrossRef]

8. Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators:
Technologies and common applications. Energy Rep. 2020, 6, 264–287. [CrossRef]

9. Pei, Y.L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High thermoelectric performance realized in a BiCuSeO system by improving carrier
mobility through 3D modulation doping. J. Am. Chem. Soc. 2014, 136, 13902–13908. [CrossRef]

10. Lee, K.H.; Kim, S.I.; Mun, H.; Ryu, B.; Choi, S.M.; Park, H.J.; Hwang, S.; Kim, S.W. Enhanced thermoelectric performance of
n-type Cu0.008Bi2Te2.7Se0.3 by band engineering. J. Mater. Chem. C 2015, 3, 10604–10609. [CrossRef]

11. Lu, X.; Morelli, D.T.; Xia, Y.; Ozolins, V. Increasing the thermoelectric figure of merit of tetrahedrites by co-doping with nickel and
zinc. Chem. Mater. 2015, 27, 408–413. [CrossRef]

12. Jiang, B.; Yu, Y.; Chen, H.; Cui, J.; Liu, X.; Xie, L.; He, J. Entropy engineering promotes thermoelectric performance in p-type
chalcogenides. Nat. Commun. 2021, 12, 3234. [CrossRef]

13. Ma, Z.; Wei, J.; Song, P.; Zhang, M.; Yang, L.; Ma, J.; Liu, W.; Yang, F.; Wang, X. Review of experimental approaches for improving
zT of thermoelectric materials. Mater. Sci. Semicond. Process. 2021, 121, 105303. [CrossRef]

14. Ghosh, T.; Dutta, M.; Sarkar, D.; Biswas, K. Insights into low thermal conductivity in inorganic materials for thermoelectrics.
J. Am. Chem. Soc. 2022, 144, 10099–10118. [CrossRef]

15. Ding, C.H.; Duan, Z.F.; Ding, Z.K.; Pan, H.; Wang, J.; Xiao, W.H.; Liu, W.P.; Li, Q.Q.; Luo, N.N.; Zeng, J.; et al. XMoSiN2 (X = S, Se,
Te): A novel 2D Janus semiconductor with ultra-high carrier mobility and excellent thermoelectric performance. Europhys. Lett.
2023, 143, 16002. [CrossRef]

16. Zhu, T.; He, R.; Gong, S.; Xie, T.; Gorai, P.; Nielsch, K.; Grossman, J.C. Charting lattice thermal conductivity for inorganic crystals
and discovering rare earth chalcogenides for thermoelectrics. Energy Environ. Sci. 2021, 14, 3559–3566. [CrossRef]

17. Loftis, C.; Yuan, K.; Zhao, Y.; Hu, M.; Hu, J. Lattice thermal conductivity prediction using symbolic regression and machine
learning. J. Phys. Chem. A 2020, 125, 435–450. [CrossRef]

https://github.com/CMLUAB/ML_lattice-themal-conductivity
http://doi.org/10.1126/science.aak9997
http://www.ncbi.nlm.nih.gov/pubmed/28963228
http://dx.doi.org/10.1016/j.mtphys.2017.06.001
http://dx.doi.org/10.1063/1.5021094
http://dx.doi.org/10.1063/1.5092525
http://dx.doi.org/10.1007/s10853-020-04949-0
http://dx.doi.org/10.1002/er.5313
http://dx.doi.org/10.3390/en13143606
http://dx.doi.org/10.1016/j.egyr.2019.12.011
http://dx.doi.org/10.1021/ja507945h
http://dx.doi.org/10.1039/C5TC01731A
http://dx.doi.org/10.1021/cm502570b
http://dx.doi.org/10.1038/s41467-021-23569-z
http://dx.doi.org/10.1016/j.mssp.2020.105303
http://dx.doi.org/10.1021/jacs.2c02017
http://dx.doi.org/10.1209/0295-5075/acdb98
http://dx.doi.org/10.1039/D1EE00442E
http://dx.doi.org/10.1021/acs.jpca.0c08103


Materials 2024, 17, 5372 11 of 13

18. Tranås, R.; Løvvik, O.M.; Tomic, O.; Berland, K. Lattice thermal conductivity of half-Heuslers with density functional theory
and machine learning: Enhancing predictivity by active sampling with principal component analysis. Comput. Mater. Sci. 2022,
202, 110938. [CrossRef]

19. Chester, G.; Thellung, A. The law of Wiedemann and Franz. Proc. Phys. Soc. 1961, 77, 1005. [CrossRef]
20. Seko, A.; Togo, A.; Hayashi, H.; Tsuda, K.; Chaput, L.; Tanaka, I. Prediction of low-thermal-conductivity compounds with

first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Phys. Rev. Lett. 2015, 115, 205901. [CrossRef]
21. Yang, L.; Huh, D.; Ning, R.; Rapp, V.; Zeng, Y.; Liu, Y.; Ju, S.; Tao, Y.; Jiang, Y.; Beak, J.; et al. High thermoelectric figure of merit of

porous Si nanowires from 300 to 700 K. Nat. Commun. 2021, 12, 3926. [CrossRef] [PubMed]
22. Lin, C.M.; Chen, W.C.; Chen, C.C. First-principles study of strain effect on the thermoelectric properties of LaP and LaAs. Phys.

Chem. Chem. Phys. 2021, 23, 18189–18196. [CrossRef] [PubMed]
23. Wu, C.W.; Ren, X.; Xie, G.; Zhou, W.X.; Zhang, G.; Chen, K.Q. Enhanced high-temperature thermoelectric performance by strain

engineering in BiOCl. Phys. Rev. Appl. 2022, 18, 014053. [CrossRef]
24. Govindaraj, P.; Sivasamy, M.; Murugan, K.; Venugopal, K.; Veluswamy, P. Pressure-driven thermoelectric properties of defect

chalcopyrite structured ZnGa2Te4: Ab initio study. RSC Adv. 2022, 12, 12573–12582. [CrossRef]
25. Qi, H.; Qu, T.; Liu, Z.; Qiu, Z.; Li, C.; Yue, S.; Guo, J. Large enhancement of thermoelectric properties of CoSb3 tuned by uniaxial

strain. J. Alloys Compd. 2022, 908, 164404. [CrossRef]
26. Xia, M.; Zhao, L.; Chang, Y.; Liu, H.; Zhang, G.; Zhou, W.; Zhao, J.; Gao, J. Strain controlled thermal regulator realized in

two-dimensional black and blue phosphorene in-plane heterostructure. Phys. Rev. B 2024, 109, 104106. [CrossRef]
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