
Citation: Kyuchyuk, S.; Paneva, D.;

Manolova, N.; Rashkov, I.

Core–Sheath Fibers via Single-Nozzle

Spinneret Electrospinning of

Emulsions and Homogeneous Blend

Solutions. Materials 2024, 17, 5379.

https://doi.org/10.3390/

ma17215379

Academic Editors: Katarzyna

Winnicka and Katarzyna Olechno

Received: 27 September 2024

Revised: 30 October 2024

Accepted: 31 October 2024

Published: 4 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Core–Sheath Fibers via Single-Nozzle Spinneret Electrospinning
of Emulsions and Homogeneous Blend Solutions
Selin Kyuchyuk , Dilyana Paneva * , Nevena Manolova and Iliya Rashkov *

Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St,
Bl. 103A, BG-1113 Sofia, Bulgaria; selin.erdinch@polymer.bas.bg (S.K.); manolova@polymer.bas.bg (N.M.)
* Correspondence: panevad@polymer.bas.bg (D.P.); rashkov@polymer.bas.bg (I.R.)

Abstract: The preparation of core–sheath fibers by electrospinning is a topic of significant interest for
producing composite fibers with distinct core and sheath functionalities. Moreover, in core–sheath
fibers, low-molecular-weight substances or nanosized inorganic additives can be deposited in a
targeted manner within the core or the sheath. Commonly, for obtaining a core–sheath structure,
coaxial electrospinning is used. It requires a coaxial spinneret and suitable immiscible solvents
for the inner and outer solutions. The single-nozzle spinneret electrospinning of emulsions can
address these issues, but use of a stabilizing agent is needed. A third approach—preparation of
core–sheath fibers by single-nozzle spinneret electrospinning of homogeneous blend solutions of
two polymers or of a polymer/low-molecular-weight substance—has been much less studied. It
circumvents the difficulties associated with the coaxial and the emulsion electrospinning and is
thoroughly discussed in this review. The formation of core–sheath fibers in this case is attributed to
phase-separation-driven self-organization during the electrospinning process. Some possibilities for
obtaining core–double sheath fibers using the same method are also indicated. The gained knowledge
on potential applications of core–sheath fibers prepared by single-nozzle spinneret electrospinning of
emulsions and homogeneous blend solutions is also discussed.

Keywords: emulsion electrospinning; blend solution electrospinning; self-organization; core–sheath
fibers; core–double sheath fibers; core–shell fibers; antimicrobial and anticancer activity; biomedical
applications; agropharmaceuticals

1. Introduction

Electrospinning is a versatile electrohydrodynamic process that enables the prepara-
tion of continuous micro- and nanofibers by applying an electric field to a polymer solution
or melt [1–5]. The preparation of continuous defect-free fibers is contingent upon the
polymer exhibiting a molar mass and concentration that exceeds a certain threshold. This
ensures that the requisite condition for fiber formation is met, namely, effective entangle-
ment of the polymer chains in the spinning solution or melt [6]. In instances where the
aforementioned condition is not met, namely when the molar mass or polymer concen-
tration is below the prescribed limit values, no fibers are formed. However, micro- or
nanoparticles are produced instead. This electrohydrodynamic process is referred to as
electrospraying [1,7]. Research conducted on the applicability of electrospun non-woven
textiles has demonstrated that these materials have the potential for use in a number of
fields, including biomedicine, filtration and separation, the design of protective clothing
and sensors, in agriculture, food packaging and preservation, and nanoelectronics [8–30].

From an equipment viewpoint, the first and most straightforward electrospinning
technique is that which uses a single-nozzle spinneret and a static collector [31]. The
use of this equipment results in preparation of random monolithic polymer fibers. The
substitution of a high-speed rotating drum collector for the conventional static collector
facilitates the preparation of aligned monolithic polymer fibers. Typical electrospinning
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equipment comprises a high-voltage source, a pump for maintaining the solution flow
rate, and a syringe equipped with a single-nozzle spinneret and a rotating drum collec-
tor. A number of review articles address the conventional electrospinning equipment, as
well as the parameters that affect the electrospinning process and the morphology of the
monolithic fibers obtained [2,4,31–33]. Solution electrospinning is a more widely used
than melt electrospinning. Additionally, it is the sole method for preparation of micro- or
nanofibers from thermally unstable polymers. Moreover, this electrospinning technique has
successfully transitioned from laboratory-scale applications to industrial-scale production.
The parameters that affect the conventional electrospinning process and, consequently, the
morphology of the resulting fibers can be classified into the following categories: polymer-
related parameters (polymer molar mass and dispersity; polymer architecture, whether
linear or branched); solution-related parameters (polymer concentration, viscosity, surface
tension, conductivity); parameters of the electrospinning process [applied voltage, solu-
tion delivery rate, tip-to-collector distance, collector design, velocity rate of the rotating
drum collector, spinneret design (single- or multi-nozzle one)]; and parameters of the
environment (temperature, humidity, air velocity in the chamber) [4,34–36].

Since 2000, intensive scientific research has facilitated the accelerated development of
the electrospinning method. The efforts are focused on: (i) enhancement of the productivity
of the electrospinning process (fiber yield and production rate); (ii) preparation of non-
woven textile with desired complex architecture; and (iii) preparation of fibers with a given
complex architecture.

With respect to the enhancement of the productivity of the electrospinning process, a
number of adaptations to the electrospinning equipment have been developed that enable
multi-jet electrospinning [31,37]. The latter is divided into two main types: multi-nozzle
spinneret and needleless electrospinning [31,37]. In multi-nozzle spinneret electrospinning,
a number of feeding solutions are fed simultaneously through a series of single-nozzle
spinnerets, and the resulting fibers are subsequently deposited on a common collector [31].
The development of the needleless electrospinning has led to a substantial rise in the manu-
facture of non-woven fabrics. It comprises the electrospinning of a polymer directly from
an open liquid surface [37]. The needleless electrospinning technique has been adopted
by various industries [38]. The technology is currently being commercialized by Elmarco
s.r.o. (Liberec, Czech Republic) under the brand name “Nanospider”. The combination
of multi-nozzle spinneret electrospinning and centrifugal field generation has also been
identified as an effective tool for enhancement of the productivity of the electrospinning
process and reducing the time required for the preparation of non-woven textiles via
electrospinning [31,39,40]. A purposely designed multi-nozzle spinneret device rotates at
high velocity, and the cylindrical collector remains stationary (Figure 1a). This equipment
configuration enables the production of a non-woven textile composed of random mono-
lithic polymer fibers (Figure 1c). The purposely designed stationary collector consisting
of circularly arranged metal strips (Figure 1b) has enabled the efficient preparation of a
non-woven textile composed of aligned fibers (Figure 1d).

The preparation of a composite non-woven textile with complex architecture from
different polymers enables the combination and/or improvement of the properties of
the individual polymers. Two electrospinning techniques have been developed for the
preparation of a composite non-woven textile with complex architecture: sequential electro-
spinning and simultaneous electrospinning. Double- or multi-layered non-woven textiles
are prepared by sequential electrospinning or one-by-one electrospinning. It consists of
electrospinning of a spinning solution of a polymer which forms a layer with a specific
functionality, followed by electrospinning of a solution of another polymer which forms a
second layer with a distinct functionality (Scheme 1A). This method uses conventional elec-
trospinning equipment. It is possible to prepare double-layered fibrous materials, as well as
sandwich-like fibrous materials with alternating layers (Scheme 1A). In the case of simulta-
neous electrospinning (Scheme 1B), two different single-nozzle spinnerets are used, through
which two spinning solutions of two different polymers are fed simultaneously, subjected
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to high voltage, and the resulting fibers are deposited on a common collector [41,42]. The
resulting non-woven textile is composed of interwoven micro- or nanofibers derived from
the different polymers. A unifying term for this electrospinning technique is still lacking. Si-
multaneous electrospinning is also referred to as co-electrospinning, or dual electrospinning.
Noteworthy, the term co-electrospinning has also been used to describe blend, emulsion,
or coaxial electrospinning. In our opinion, the terms simultaneous electrospinning and
dual electrospinning are much more appropriate to distinguish this electrospinning tech-
nique from blend, emulsion, or coaxial electrospinning. The potential of simultaneous
electrospinning for the preparation of fibers loaded with two drugs, which may interact
chemically if they are in a common solution, has been demonstrated [41]. The feasibility of
fabricating mats with enhanced mechanical properties has been demonstrated through the
simultaneous electrospinning of two solutions comprising the high-melting polylactide
(PLA) and the low-melting poly(ε-caprolactone) (PCL), respectively, followed by annealing
of the resulting composite fibrous materials [42].
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The possibility of combining pairs, including polymer/polymer, polymer/oligomer,
and polymer/low-molecular-weight substances, which exhibit distinct natures and prop-
erties, at the level of a single micro- or nanofiber through the electrospinning process is
of particular interest. In order to prepare these architecturally complex fibers, two strate-
gies, designated here for brevity as the “in” and “on” strategies, are applied (Scheme 2).
The “in” strategy uses blend electrospinning technique, whereby a solution comprising a
fiber-forming polymer and an additive of a second, distinct polymer, oligomer, or bioac-
tive substance is simultaneously processed. The application of this strategy results in the
preparation of fibers comprising a continuous phase of the fiber-forming polymer and
a dispersed phase of the second polymer, oligomer, or low-molecular-weight bioactive
substance. This additive is predominantly situated within the fiber bulk. In order to prepare
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fibers in which the aforementioned additive is located only on the fiber surface, the “on”
strategy is employed. The developed techniques to implement the “on” strategy are as
follows: simultaneous electrospinning/electrospraying [41,44] and a two-stage technique
consisting in coating of electrospun fibers [45].
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By applying the technique of coating electrospun fibers, it is possible to prepare
fibers with a core–sheath(s) structure [46]. Core–sheath(s) fibers are of particular interest
for biomedical, cosmetic, and food packaging applications, as their main advantage is
that the core and the sheath(s) can be selectively and separately loaded with bioactive
substances [32,47,48]. Therefore, the complex architecture of this type of composite fiber
can provide an excellent platform for simultaneous or sequential release of bioactive
agents that are relevant to specific applications. The main part of the research on the
preparation of core–sheath(s) fibers has been carried out by the coaxial electrospinning
technique [2,49–53]. Another widely applied technique for preparation of core–sheath(s)
fibers is the emulsion electrospinning [50,54,55]. It has been demonstrated that for certain
pairs of polymer/polymer or polymer/low-molecular-weight substance, the single-nozzle
spinneret electrospinning of their homogeneous blend solutions enables the preparation
of fibers having core–sheath(s) architecture [56–63], and research in this area is scarce.
Furthermore, in contrast to the numerous review articles on the coaxial and emulsion
electrospinning techniques as a tool for preparation of core–sheath fibers, no review article
exists that provides a comprehensive summary of the advancements made in the design
of core–sheath(s) fibers by single-nozzle spinneret electrospinning of homogeneous blend
solutions.
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The objective of this review is to summarize the gained knowledge on the preparation
of core–sheath(s) fibers by single-nozzle spinneret electrospinning of homogeneous blend
solutions. The paper commences with a brief overview of the merits and shortcomings
associated with the most commonly applied techniques for obtaining core–sheath fibers:
the coaxial and emulsion electrospinning. The results on the potential applications of
core–sheath(s) fibers prepared by single-nozzle spinneret electrospinning of emulsions and
homogeneous blend solutions are also summarized.

2. Approaches for Preparation of Core–Sheath(s) by Electrospinning
2.1. Electrospinning Using Multi-Nozzle Spinneret (Preparation of Fibers with Core–Sheath,
Core–Double Sheath or Double Core–Sheath Architecture)

The preparation of core–sheath fibers by electrospinning using a double-nozzle spin-
neret (commonly referred to as “coaxial electrospinning”) represents the most extensively
studied approach for the fabrication of fibers exhibiting this particular architecture. In
recent years, the number of review articles devoted to coaxial electrospinning has been
considerable [4,46,50,64–66].

In order to conduct coaxial electrospinning, it is necessary to complicate the electro-
spinning equipment by including an auxiliary device that ensures the simultaneous supply
of the solutions that form the core and sheath, respectively (Scheme 3). The auxiliary coaxial
device is comprised of two distinct compartments, which are fed in a controlled manner
with spinning solutions via two pumps. The device also features a spinneret, which is
composed of two coaxially aligned nozzles. The inner nozzle is supplied with the solution
that constitutes the fiber core, whereas the outer nozzle receives the solution that forms
the fiber sheath. The application of a high voltage to the spinneret results in the formation
of a Taylor cone, in which the polymer solution that forms the fiber sheath envelops the
solution that forms the fiber core. Following the evaporation of the solvent during the
electrospinning process, dry composite core–sheath fibers are formed.
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An advantage of the coaxial electrospinning is that it enables the preparation of
composite fibers with the participation of polymers that are not electrospinnable on their
own [4,65]. Furthermore, coaxial electrospinning represents a promising technique for the
fabrication of core–sheath fibers, wherein an environmentally sensitive bioactive agent is
integrated into the core [64]. The sheath serves to safeguard the incorporated substance
from any unintended modifications to its chemical composition or functional activity.
Regarding controlled drug delivery, it is claimed that the coaxial electrospinning is an
effective technique for design of new dosage forms with a tailored drug release profile. The
feasibility of preparing hollow fibers via a coaxial electrospinning process, followed by the
removal of the material comprising the fiber core, has also been demonstrated [63,68–70].

The major drawback of coaxial electrospinning is the complexity of the equipment
required, necessitating the use of an auxiliary coaxial device and two pumps to supply
the two spinning solutions. This complicated electrospinning equipment is a prerequisite
for the increase in the parameters affecting the process and the preparation of fibers with
continuous core surrounded by a continuous sheath, respectively [65]. An example of this
is the core–shell flow rate ratio which is a crucial parameter for the successful preparation
of uniform core–sheath fibers. Other parameters are the polymer concentration, viscosity,
compatibility, and conductivity of the spinning solutions. It has been demonstrated that
when electrospinnable and non-electrospinnable polymers are used, the electrospinnable
polymer must be present in a sufficiently high concentration in its spinning solution to
ensure the formation of uniform core–sheath fibers. Therefore, in contrast to single-nozzle
spinneret electrospinning, in coaxial electrospinning, the number of parameters altering
the formation of a stable composite Taylor cone, and, consequently, of uniform core–
sheath fibers, increases. In order to find the optimal parameters, an empirical approach is
employed.

Spinnerets with a design that includes three nozzles have also been developed, re-
sulting in the production of core–double sheath fibers (triaxial electrospinning) or double
core–sheath fibers. Core–double sheath fibers have been prepared using three-nozzle
concentric spinneret and three distinct solutions fed by three pumps to the three-nozzle
concentric spinneret (Figure 2) [71].

The key parameter that affects the preparation of uniform core–double sheath fibers
by triaxial electrospinning is to provide conditions for the formation of a composite Taylor
cone composed of inner, intermediate and outer laminar flows, which remain in concentric
alignment throughout the electrospinning process. As noted by [4], all process parameters
that are key to the formation of a stable Taylor cone in coaxial electrospinning are also
valid in triaxial electrospinning, but in triaxial electrospinning their influence and control is
much more complicated.
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A spinneret with an eccentric two-nozzle configuration was utilized to prepare fibers
with a double core–sheath structure. This configuration consisted of two nozzles nested
within a common nozzle, which served to guide and organize the three fluids in a manner
that the resulting two cores in the fiber are surrounded with a sheath (Figure 3) [72].
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In conclusion, the electrospinning using a multi-nozzle spinneret enables the prepara-
tion of fibers with a core–sheath, core–double sheath or double core–sheath fibers structure,
depending on the number of nozzles used. A drawback of this technology is that the
control of the parameters is more complex than in single-nozzle spinneret electrospinning,
particularly in terms of preparing fibers with a uniform architecture. It is for this reason
that the industrial application of electrospinning using a multi-nozzle spinneret remains a
challenge.
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2.2. Single-Nozzle Spinneret Electrospinning of Emulsions

Single-nozzle spinneret electrospinning of emulsions (emulsion electrospinning) has
been considered as an alternative to the coaxial electrospinning for the preparation of
core–sheath fibers [46,50,55,73–80].

There are currently no data available regarding the preparation of fibers with more
complex architectures, such as core–double sheath structures, by emulsion electrospinning.
An advantage of the emulsion electrospinning over the coaxial one is that it is single-
nozzle spinneret-based, meaning that the conventional electrospinning equipment can
be used. This facilitates the straightforward transition from single-nozzle spinneret to
needleless multi-jet electrospinning [74] and the potential for industrial production of
core–sheath fibers. The achievements in the field of the emulsion electrospinning, as well
as the main parameters altering the formation of core–sheath fibers by this technique, are
discussed thoroughly in the following review articles [50,55,73]. A relatively large number
of examples of polymers (natural and synthetic) that have been used for preparation of
core–sheath fibers, as well as of additives added in the emulsions for providing the stability
of the latter, are given in the review article by Ghosh et al. [55].

The preparation of core–sheath fibers by electrospinning of emulsions water/oil (w/o;
dispersed phase–water, and continuous phase–oil) [75–77] or oil/water (o/w; dispersed
phase–oil, and continuous phase–water) [78,79] have been studied. For stabilization of
the emulsions, stabilizers are used: emulsifiers/surfactants (e.g., Tweens, Spans, etc.),
Pickering particles (e.g., nano silica, nano clay etc.), or biopolymers (e.g., soy proteins,
whey protein etc.). The formation of core–sheath fibers is based on the occurrence of phase
separation between the dispersed phased (the drops of the emulsion) and the continuous
phase under the action of the electric field during the electrospinning process (Figure 4).
In addition to the parameters that affect conventional electrospinning, such as process
parameters and environmental parameters, the emulsion parameters play a primary role in
the emulsion electrospinning. The emulsion parameters include: solvent nature, polymer
nature and concentration, viscosity, dispersed phase volume fraction, stabilizer nature and
concentration, and size of the drops of the dispersed phase [55].
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The necessity to use a stabilizer, particularly when it is a synthetic surfactant, is
regarded as a disadvantage of emulsion electrospinning for the fabrication of core–sheath
fibers. The removal of these types of stabilizers from the fiber material is often challenging,
which can subsequently result in complications pertaining to the biocompatibility of the
electrospun fibers [73]. Another shortcoming of emulsion electrospinning is the necessity
to consider a vast array of parameters inherent to a given emulsion in order to achieve the
formation of uniform core–sheath fibers.

2.3. Single-Nozzle Spinneret Electrospinning of Homogeneous Blend Solutions

The electrospinning of homogeneous blend solutions using a single-nozzle spinneret
has emerged as a feasible approach for preparation of composite core–sheath fibers from
particular polymer-based blend systems, wherein the limitations of coaxial and emulsion
electrospinning can be effectively addressed.

This approach is based on self-organization of the components in the core or sheath of
the fibers as a consequence of the occurrence of phase separation of the components during
the electrospinning process. Despite the extensive research on single-nozzle spinneret
electrospinning of homogeneous blend solutions [3,81], there is a scarcity of studies exam-
ining the process parameters and the polymer properties on the resulting fiber architecture.
Transmission electron microscopy (TEM) analyses for establishing fiber architecture are
lacking in the majority of electrospinning studies on homogeneous blend solutions.

This section provides an overview of the current knowledge regarding the preparation
of core–sheath(s) composite fibers from homogeneous blend solutions by single-nozzle
spinneret electrospinning. It is noteworthy that there is no proposed universal mechanism
for the formation of core–sheath(s) fibers by single-nozzle spinneret electrospinning of
homogeneous blend solutions. The mechanism depends on the nature and properties of the
used components and solvent system, and the parameters of the electrospinning process.
Furthermore, as aforementioned in contrast to the coaxial and emulsion electrospinning
that have been subject of numerous review articles, no review paper is available devoted
to the single-nozzle spinneret electrospinning of homogeneous blend solutions. Herein, a
critical overview is made on the state-of-the-art of the latter approach for preparation of
core–sheath(s) fibers.

2.3.1. Preparation of Core–Sheath Fibers

Depending on the nature of the used components, the pairs known that give core–
sheath fibers by electrospinning of their homogeneous blend solutions are divided in
this review into: (i) non-ionogenic polymer/non-ionogenic polymer or non-ionogenic
polymer/low-molecular-weight substance; and (ii) non-ionogenic polymer/polyelectrolyte
pair. This classification was made on the basis of the distinctive behavior of the poly-
electrolytes in the presence of an electric field which is a consequence of the presence of
ionizable functional groups in their structure.

Non-Ionogenic Polymer/Non-Ionogenic Polymer Pair or Non-Ionogenic
Polymer/Low-Molecular-Weight Substance Pair

For the first time, the approach of single-nozzle spinneret electrospinning of homo-
geneous blend solutions nanofibers with core–sheath architecture was applied using a
solution of polyaniline (PANI, 65,000 g/mol) and polystyrene (PS, 280,000 g/mol) or poly-
carbonate (PC, 21,900 g/mol) [PANI/polymer = 20/80 (w/w)] [56]. In the same study, it was
shown that the single-nozzle spinneret electrospinning of homogeneous blend solutions
of PANI and poly(methyl methacrylate) (PMMA, 120,000 g/mol) or poly(ethylene oxide)
(PEO, 200,000 g/mol) does not result in the formation of core–sheath fibers. Instead, it leads
to the production of fibers comprising isolated PANI domains arranged in bead-like struc-
tures. It was hypothesized that the phase morphology of the electrospun fibers depends
on the molar mass of the polymers as well as the incompatibility of the polymers used. In
this study, TEM analyses have been employed as the sole technique to demonstrate the
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core–sheath structure. Adequate analysis to ascertain the composition of the fiber core
and sheath is lacking. It has been suggested that the core is PANI, and the sheath is an
insulating polymer.

In their study, Wei et al. [82] examined the internal morphology of fibers prepared by
single-nozzle spinneret electrospinning of homogeneous blend solutions of polybutadiene
(PB) and PC. The objective of this study was to prepare nanofibers with tunable morphology,
such as core–sheath or co-continuous structure, by single-nozzle spinneret electrospinning
of homogeneous blend solutions. The effect of the polymer blend composition, polymer
molar mass, and solvent nature on the resulting fiber morphology was evaluated. The total
polymer concentration in the spinning solution at various PB/PC ratios is not specified in
the report. The authors asserted that the electrospinning of polymer blend solutions has
the potential to yield unique morphologies that may be used in a multitude of applications.
In order to investigate the phase morphology obtained, the following parameters were
varied: PB/PC weight ratio in tetrahydrofuran (THF) (90/10, 75/25, 65/35, 50/50, 35/65,
25/75 or 10/90); PC molar mass (21,900, 23,300, 27,000 or 30,600 g/mol) or PB molar mass
(420,000 or 2,500,000 g/mol) at PB/PC = 75/25 or 25/75 (w/w). The prepared fibrous
materials was only characterized in terms of fiber internal morphology by TEM. It was
found that at PB (420,000 g/mol) content equal or higher than PC (21,900 g/mol) content,
the single-nozzle spinneret electrospinning of homogeneous blend solutions of PB/PC
pair in the common solvent THF fibers with co-continuous structure are obtained having
interconnected nanolayers form PB and PC or strands and the nanolayers are aligned
in fiber length axis direction. At an excess of PC [PB/PC = 25/75 or 10/90 (w/w)], the
electrospinning of homogeneous blend solutions results in preparation of core–sheath fibers
and, as stated by the authors [82], the core is PB, and the sheath is PC. The formation of core–
sheath fibers is explained by the lower viscosity of PC compared to PB. The lower viscosity
of the entire blend system, both in the initial state and during the rapid evaporation of the
solvent, favors the polymer chains to have greater mobility, allowing PC chains to migrate,
merge, and form large domains (e.g., stratified structures) so that PB and PC phases are well
separated and, for example, form a core–sheath structure. In addition, the lower viscosity
can provide time for PB lower molar mass phase to migrate to the surface of the resulting
fiber, while the PB phase will localize in the center of the fiber, forming a core–sheath
structure. An excess of PB [PB/PC > 25/75] produces fibers with a co-continuous structure
rather than a core–sheath structure. This is attributed to a decrease in the ability of PC to
migrate due to the higher viscosity of the polymer solution (data on the viscosity of the
polymer solutions studied are lacking). It was found that the polymer molar mass alters
the fiber morphology at the same ratio between PB and PC (PB/PC = 25/75). A change
in morphology from core–sheath to co-continuous was observed when the molar mass of
PC increases from 21,900 to 23,300 g/mol. PC is the predominant component in the blend
solution at PB/PC ratio of 25/75 (w/w). An increase in the molar mass of PC results in an
elevated viscosity, which effectively hinders the formation of large stratified domains and
core–sheath structures. Concurrently, the mobility of PC chains is also diminished. As a
result, co-continuous structures are formed at a molar mass of PC above 21,900 g/mol.

For preparation of homogeneous blend solutions that have been subjected to single-
nozzle spinneret electrospinning, the following systems have also been studied: PB/PS,
PMMA/PS, PB/PC, PANI/PC, and PMMA/PC [83]. The polymer pairs, polymer molar
masses, and the resulting internal fiber structures are listed in Table 1. It has been found
that the formation of core–sheath structures depends on both thermodynamic (interfacial
tension, differences in solubility parameter of the components and their molar masses)
and kinetic factors (rheological properties of the spinning solution and mobility of the
components).
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Table 1. Polymer pairs, molar masses of the components, and the resulting fiber structure, as
referenced in ref. [83].

Polymer Pair Molar Mass of the
One Polymer Component

Molar Mass of the Second
Polymer Component Fiber Structure

PB/PS = 25/75 (w/w) 420,000 g/mol (PB) 280,000 g/mol (PS) co-continuous

PMMA/PS = 25/75 (w/w) 15,000 g/mol or 120,000 g/mol
(PMMA) 280,000 g/mol (PS) co-continuous

PB/PMMA = 25/75 (w/w) 420,000 g/mol (PB) 15,000 g/mol or 120,000 g/mol
(PMMA) co-continuous

PB/PC = 25/75 (w/w) 420,000 g/mol (PB) 21,000 g/mol or 30,600 g/mol
(PC) core–sheath

PANI/PC = 25/75 (w/w) 65,000 g/mol (PANI) 21,000 g/mol or 30,600 g/mol
(PC) core–sheath

PMMA/PC = 25/75 (w/w) 15,000 g/mol or 120,000 g/mol
(PMMA)

21,000 g/mol or 30,600 g/mol
(PC) core–sheath

The incompatibility and large difference in the solubility parameter of two polymers
favors the formation of well phase-separated nanofiber morphologies. The ability for
preparation of such structures is governed by kinetic factors because of the rapid evap-
oration of the solvent during the electrospinning process. In this regard, the low molar
mass of a polymer is of particular significance with respect to the formation of core–sheath
structures. This outcome is attributable to the enhanced mobility of the low molecular
mass component, which facilitates more effective phase separation and the development of
larger domains. The rheological properties are also a determining factor in the structure of
the resulting fiber. It has been proposed that the higher viscous material is localized in the
fiber core, while the lower viscous material is localized in the fiber sheath.

Since the reports of Wei et al. [56,82,83], there have been several studies on the prepa-
ration of core–sheath fibers by single-nozzle spinneret electrospinning of homogeneous
blend solutions comprising polymer/polymer or polymer/low-molecular-weight pairs.
These studies are discussed in brief below.

For a polyacrylonitrile-poly(vinyl pyrrolidone) (PAN-PVP) pair, water vapor has been
used as a phase separation inducing agent during the single-nozzle spinneret electro-
spinning of homogeneous blend solutions of the polymers in dimethylformamide (DMF),
yielding core–sheath fibers [84]. It was found that when the electrospinning process is
carried out in the absence of water vapor (at a specified humidity of 20%), phase separation
did not occur, and consequently, no PAN/PVP core–sheath fibers are observed. While the
experimental section of the paper indicates that the ambient humidity for electrospinning is
20% at low ambient humidity, it is notable that the authors have not specified the ambient
humidity for electrospinning in the presence of water vapor. The lack of a sufficiently
precise description of the conditions under which core–sheath fibers were obtained hinders
the reproducibility of the results obtained. There are also no data on the diameter of the
light aperture of the copper mesh used as a collector, through which water vapor passes
from the vessel of water heated at 80 ◦C to the area where the fibers are formed. The
solubility of water and dimethylformamide (DMF) in each other is high. Upon contact
with the rising water vapor, the spinning jet rapidly dissolves the vapor in the jet solvent.
Consequently, the water vapor prompts the water-insoluble PAN to migrate towards the
DMF-rich regions within the jet core, thereby forming core–sheath nanofibers comprising
a PAN core and a PVP sheath. The sheath composition was determined by X-ray photo-
electron spectroscopy (XPS) and the measurement of the water contact angle. PAN fibrous
material is hydrophobic (water contact angle of 128◦), while PVP mat is hydrophilic (water
contact angle < 5◦). Mats from PAN/PVP = 1/1 or 1/2 (w/w) are hydrophilic. This indicates
that the sheath of PAN/PVP fibers is enriched in PVP.

Core–sheath fibers from PVP/poly(vinylidene fluoride) (PVDF, 1 × 105 g/mol; PVP,
360,000 g/mol) with superhydrophobic surface have been prepared by single-nozzle spin-
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neret electrospinning of blend solutions using DMF/acetone = 8/2 (w/w) as a common
solvent system [59]. Core–sheath fibers were prepared for all PVDF/PVP weight ratios
studied (3/1, 2/1, 1/1, 1/2, and 1/3). At PVDF/PVP = 3/1, 2/1, and 1/1 (w/w), the sheath
of PVDF/PVP core–sheath fibers was found to be mainly composed of PVDF, while at
PVDF/PVP = 1/2 and 1/3 (w/w), they were composed of PVP. The composition of the
fiber sheath was evidenced by XPS. The results obtained by XPS have been in accordance
with the water contact angle data. When the PVDF content is equal to or greater than PVP,
the nanofibrous mats are hydrophobic with a water contact angle value above 120◦. This
indicates that PVDF is mainly concentrated in the fiber sheath. For PVDF/PVP mats with
high content of the hydrophilic PVP, the surface of the fibrous materials is hydrophilic, in-
dicating that the fiber sheath is mainly composed of PVP. The results obtained suggest that
core–sheath nanofibers with tailored composition of the core and sheath, as well as with
favorable hydrophilic-hydrophobic behavior, can be prepared by tuning the PVDF/PVP
ratio.

A methodology for the fabrication of core–sheath fibers is proposed, wherein the core
is constituted by an electrospinnable, non-ionogenic polymer (PVP or PAN), while the
sheath is formed by a polymer synthesized by in situ photopolymerization, either during
the electrospinning process itself or in a subsequent step where the photopolymerization
is conducted using an electrospun non-woven textile [85,86]. This has been attributed to
the migration of a low-molecular-weight monomer and/or photoinitiator present in the
spinning solution to the surface of the resulting fibers during electrospinning. The authors
have not isolated the synthesized polymers, and there are no data on the macromolecular
characteristics of the latter. Data on the presence of residual monomer in the electrospun
fibrous materials are also lacking.

The natural product beeswax (BW) is a mixture of low-molecular-weight saturated
hydrocarbons, free fatty acids, free fatty alcohols, and esters of fatty acids and fatty alcohols,
with myricyl palmitate (~70%) being the major component [87,88] which has hydropho-
bic behavior. Recently, Kyuchyuk et al. [61] demonstrated the possibility of one-step
hydrophobization of the fiber surface of the hydrophilic PEO fibers by single-nozzle spin-
neret electrospinning of homogeneous solutions of blends of this polymer with BW in
the common solvent chloroform. The beeswax used was of purity in accordance with the
European Pharmacopoeia. The core–sheath structure was observed by TEM (Figure 5),
and the sheath was evidenced to be BW by XPS. 5-Nitro-8-Hydroxyquinoline (NQ) was
selected as a model drug to demonstrate the potential of PEO/BW fibrous materials as
carriers of bioactive substances [61]. The good solubility of NQ in chloroform enabled its
incorporation in the solution containing PEO and BW. The analysis by TEM showed that
NQ does not alter the fiber architecture and they are core–sheath ones. To demonstrate that
the core of PEO/BW/NQ fibers consists of PEO and the sheath of BW, selective extraction
of PEO or BW in aqueous medium or in hexane, respectively, was performed (Scheme 4).
In aqueous media, PEO and NQ dissolve and BW remains insoluble. It was demonstrated
that after a 24 h stay in aqueous medium, PEO and BW leave the fibrous structure of the
mats and dissolve in the aqueous medium (Scheme 4A).

SEM observation of the fragmented structures obtained by soaking the PEO/BW/NQ
mat in aqueous medium for 24 h has shown that they resemble a fiber cut along its length
(Scheme 4A). To further demonstrate the core–sheath structure, BW was extracted by
soaking the PEO/BW/NQ mat in hexane for 24 h (hexane is a good solvent for BW, but
does not dissolve PEO and NQ). As seen from the SEM micrograph presented in Scheme 4B,
after the extraction, the mat is composed of uniform cylindrical fibers. The latter are
soluble in aqueous medium. The extraction results (in aqueous medium or in hexane) have
proven that the PEO/BW/NQ fibers are core–sheath ones, having of a PEO core and a BW
sheath. The formation of PEO/BW or PEO/BW/NQ fibers with core–sheath architecture
has been attributed to self-organization of BW molecules on the fibers surface during the
electrospinning process, driven by the incompatibility between PEO and BW, as well as by
the air hydrophobicity. Furthermore, the distinction in molar mass between PEO and BW is
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a significant factor. BW, as a mixture of low-molecular-weight substances, exhibits higher
mobility compared to PEO in the fiber-forming process during the electrospinning, whereby
it forms the fiber sheath, while PEO is responsible for the formation of the fiber core. The
preparation of core–sheath fibers from the PEO/BW system by means of single-nozzle
spinneret electrospinning of homogeneous blend solutions of the components is attractive
because it enables the one-pot hydrophobization of the PEO fibers surface. This is important
for expanding the applicability of hydrophilic PEO fibrous materials. PEO is regarded as
an invaluable and prospective polymer component in a multitude of pharmaceutical and
cosmetic formulations.
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Non-Ionogenic Polymer/Polyelectrolyte Pair

Polyelectrolytes are a class of polymers that contain functional groups along their
chain, such as polyethyleneimine, or as side groups [e.g., poly(acrylic acid), chitosan,
sodium alginate] that are capable of ionization in aqueous medium. Depending on their
charge, the polyelectrolytes are divided into polycations (e.g., chitosan, polyethyleneimine),
polyanions [e.g., poly(acrylic acid), sodium alginate], or polyampholytes/polyzwitterions
(e.g., N-carboxyethylchitosan, peptides). Moreover, a number of polyelectrolytes have
been demonstrated to possess biological activity. The biological activity of polyelectrolytes
renders them promising candidates for the development of novel polymer materials for cell
and tissue engineering, as well as in biomedical applications (e.g., drug carriers, wound
dressings) [89]. Polyelectrolytes of natural origin, including chitosan (CS), sodium alginate
(SA), and hyaluronic acid (HA), are of particular interest due to their biodegradability.

The preparation of composite core–sheath fibers is an intriguing approach to impart
bioactivity to electrospinnable, water-soluble or water-insoluble, biologically inert non-
ionogenic polymers. It has been found that, in aqueous solution, it is impossible to reach
a concentration of polyelectrolyte at which efficient entanglement of its macromolecules
occurs. This is due to the presence of ionic groups in the structure of polyelectrolytes and,
therefore, the presence of repulsive forces between the charges [90,91]. This is the reason
for the impossibility for preparation of fibers by electrospinning of an aqueous solution of
a polyelectrolyte.

The most studied approach for preparation of polyelectrolyte-containing fibers is the
electrospinning of an aqueous homogeneous blend solution of the polyelectrolyte and
an electrospinnable, synthetic, non-ionogenic, water-soluble polymer [45,92–94]. Another
approach is to use a solvent such as trifluoroacetic acid (TFA). This allows the preparation
of composite fibers from polyelectrolyte and biocompatible, biodegradable, water-insoluble
polyester [45,95]. There are studies on the possibility of forming composite core–sheath
fibers from polyelectrolyte/water-soluble polymer and polyelectrolyte/water-insoluble
polymer, but they are episodic and not systematic. They are briefly discussed below.

A large number of research groups have used the approach of electrospinning of an
aqueous solution of a polyelectrolyte and a synthetic, non-ionogenic, electrospinnable
polymer; but few have evaluated the architecture of the resulting fibers by TEM. The
initial reports on electric field-driven enrichment of the surface of non-ionogenic poly-
mer/polyelectrolyte fibers with polyelectrolyte chains have been for the following pairs:
PEO/PEO-peptide conjugate and PCL/PCL-b-poly[(2-dimethylamino) ethyl methacry-
late] [96], subjected to single-nozzle spinneret electrospinning of their homogeneous blend
solution in a common solvent. The enrichment with a polyelectrolyte has been evidenced
by XPS. However, these reports lack observations by TEM to determine whether the fibers
have a core–sheath structure.

In 2009, the first report was published on preparation of core–sheath fibers from
the non-ionogenic/polyelectrolyte system by single-nozzle spinneret electrospinning of
homogeneous solutions of the components [97]. Using PEO as a non-ionogenic polymer
and chitosan as a polyelectrolyte component Zhang et al. [97] demonstrated that the single-
nozzle spinneret electrospinning of aqueous homogeneous solutions of both components
in deionized water (in the absence of glacial acetic acid in the case of chitosan oligomers;
or with addition of glacial acetic acid when using a high molar mass chitosan) results in
preparation of core–sheath fibers. A positive high voltage supply source was applied. The
effect of PEO/chitosan ratio, chitosan molar mass (3000, 10,000, 50,000 or 200,000 g/mol)
and the temperature of the electrospinning process on the resulting fibers’ structure was
evaluated. PEO with a molar mass of 900,000 g/mol was used. It was found that for
the same molar mass of chitosan (10,000 g/mol), increasing the polycation content in the
spinning solution results in core–sheath fibers with a smaller core-to-fiber diameter ratio.
This was attributed to a thicker chitosan sheath in PEO/chitosan fibers as the polyelectrolyte
content increases. Regarding the effect of chitosan molar mass on the core–sheath structure
of the fibers, it was demonstrated that the fibers prepared using chitosan with the lowest
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molar mass (3000 g/mol) have the thickest chitosan sheath. This is attributed to chitosan
chain mobility. The low molar mass (3000 g/mol) of chitosan facilitates phase separation
in the blend system, allowing for the formation of a small core-to-fiber diameter ratio
due to the high mobility of the chitosan chains. As the solvent evaporates, PEO has the
potential to crystallize within the fiber. Additionally, it is known that PEO is prone to
crystallization and possesses a relatively low melting point, ranging from 66 to 70 ◦C. The
authors stated that at higher temperatures (equal or higher than 70 ◦C) core–sheath fibers
are not formed, but instead become monolithic fibers composed of a blend of PEO and
chitosan macromolecules. The fiber sheath composition was assessed by TEM equipped
with energy dispersive spectroscopy (EDS) by the presence of nitrogen on the fiber surface.
The presence of nitrogen (only present in chitosan structure) in the EDS spectrum indicates
that PEO/chitosan core–sheath fibers consist of a PEO core and a chitosan sheath.

Following this work, the research group of Nie et al. published several reports ad-
dressing the possibility for preparation of core–sheath fibers from a water-soluble non-
ionogenic polymer/polyelectrolyte blend using water as the common solvent for the
components [98–100]. The used polymer pairs, as well as the composition of the core and
the sheath of the resulting core–sheath fibers, are listed in Table 2. They used positive high-
voltage power source for electrospinning, and the sheath composition was determined by
XPS. It was demonstrated that the composition of the core and the sheath of the core–sheath
fibers from non-ionogenic polymer/polyelectrolyte depends on the polyelectrolyte nature.
Using the polycation CS, it was shown that the resulting core–sheath fibers are composed
of a core of the non-ionogenic polymer (PVA [98] or PEO [99]) and CS sheath. The use
of a polyanion (HA or SA) led to preparation of core–sheath fibers having a core of the
polyanion and a sheath of the non-ionogenic polymer (PVP [98], PVA [98], or PEO [98,100]).
The formation of core–sheath fibers during the electrospinning of homogeneous blend
solutions of non-ionogenic polymer/polyelectrolyte pair has been proposed to be driven
by the electric field. In non-ionogenic polymer/non-ionogenic polymer solutions, phase
separation between the components in the liquid spinning jet occurs during the solvent
evaporation when the concentration of the components reaches a threshold level, whereby
the diminished solvation effect of the solvent is no longer sufficient to protect the polymers
in the blend from phase separation. The phase separation process is terminated when the
concentration of polymers reaches a level at which their mobility is no longer permitted. In
the case of solutions of non-ionogenic polymer/non-ionogenic polymer systems, the range
of polymer concentrations at which phase separation occurs during electrospinning is rela-
tively narrow, with a correspondingly short phase separation time due to the rapid solvent
evaporation. Accordingly, for the preparation of fibers with core–sheath architecture, the
polymer mobility is of crucial importance. In non-ionogenic/polyelectrolyte solutions, the
applied electric field facilitates enhanced polyelectrolyte chain mobility.

Furthermore, the electric field has been demonstrated to expand the phase separation
window in the electrospinning process of blend polyelectrolyte-based systems. In this case,
phase separation occurs when an electric field is applied and can be stopped as the jet
solidifies during the electrospinning process.

For PEO/HA pair, single-nozzle spinneret electrospinning of homogeneous blend
solutions of the components using water as a common solvent and a highly positive electric
potential has been found to result in core–sheath fibers, with a core composed of the
polyelectrolyte and a sheath composed of the non-ionogenic polymer (Figure 6) [100].
An explanation has been found in HA polyanionic behavior. It has been hypothesized
that under the action of the positive electric potential utilized in the electrospinning, HA
macromolecules would exhibit a movement in a direction opposite to the electric field
lines, thereby inducing phase separation with PEO and the formation of core–sheath fibers
comprising a core of HA and a sheath of PEO. PEO with molar mass of 900,000 g/mol and
HA with molar mass of 8700 g/mol were used. The ratio between the two components was
varied (PEO/HA = 3/1, 1/1, or 1/3). TEM analysis revealed that core-to-fiber diameter
ratio shows an increasing trend with increasing HA content. Therefore, with increasing
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HA content, the core diameter increases. XPS analysis demonstrated that nitrogen content
on the surface of core–sheath PEO/HA fibers is merely 0.78% (in HA powder, nitrogen
content is 4.8%). This is close to that of PEO non-woven textile (0%), indicating that the
predominant composition of the sheath in PEO/HA nanofibers is PEO, with the majority
of HA present in the core of the fibers.

Table 2. Macromolecular parameters of the water-soluble, non-ionogenic polymer and the polyelec-
trolyte used for preparation of core–sheath fibers by single-nozzle spinneret electrospinning of their
homogeneous blend aqueous solutions described in ref. [98–100]; composition of the core and the
sheath.

Non-Ionogenic Polymer Component Polyelectrolyte Component Core Composition Sheath Composition

PVA (1)

(98,000 g/mol, degree of hydrolysis = 88%)
CS (1)

(3000 g/mol, 88% deacetylated)
PVA CS

PEO (2)

(900,000 g/mol)

CS (2)

(3000, 10,000, 50,000, or
120,000 g/mol)

PEO CS

PVP (1)

(1,300,000 g/mol)
HA (1)

(8700 g/mol)
HA PVP

PVA (1)

(98,000 g/mol, degree of hydrolysis = 88%)
HA (1)

(8700 g/mol)
HA PVA

PEO (1,3)

(900,000 g/mol)
HA (1,3)

(8700 g/mol)
HA PEO

PVA (1)

(98,000 g/mol, degree of hydrolysis = 88%)
SA (1)

(1.28 Pa/s)
SA PVA

(1) polymers used in [98]; (2) [99]; or (3) [100].
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Figure 6. Schematic diagram of preparation of PEO/HA core–shell nanofibers. Reprinted from
ref. [100]. Copyright (2016), with permission from Elsevier.

Using bovine serum albumin (BSA) as a polyelectrolyte, Won et al. [57] prepared
nanofibers with core–sheath architecture by single-nozzle spinneret electrospinning of
PVA and BSA using water as a common solvent. The core was of PVA, and the sheath
was of BSA. BSA is a biopolymer that contains both carboxyl and amino groups [101].
For the electrospinning, positive high voltage was used. The results of the TEM analysis
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indicate that at PVA/BSA weight ratios of 9/1, 7/3, and 5/5, the fibers exhibit a core–
sheath structure, with an increase in the thickness of the sheath as the BSA content in
the fiber composition rises. The authors suggested that in the case of electrospinning of
homogeneous PVA/BSA blend solutions, the formation of the core–sheath structure may
be attributed to phase separation in the polymer blends at an optimal applied voltage.
This phenomenon can be attributed to the fact that the lower molar mass BSA is capable
of undergoing a strong ionization process as a result of the applied voltage during the
electrospinning process. This leads to the rearrangement of the BSA in the outer layer
of the composite nanofibers, thereby forming a core–sheath structure. The presence of a
nitrogen atom on the fiber surface, as detected by XPS analysis, indicates the presence of a
BSA sheath. The intensity of this nitrogen peak increases with increasing BSA content in
the PVA/BSA composite fibers. TEM analyses of fibers prepared at PVA/BSA = 5/5 at 15,
22, or 29 kV indicate that the use of an inappropriate high voltage does not result in the
formation of core–sheath fibers, and for this polymer pair, the optimum voltage was found
to be 22 kV.

As aforementioned, the second approach for preparation of polyelectrolyte-containing
composite fibers is by electrospinning of a solution thereof in the presence of a biodegrad-
able and biocompatible, non-ionogenic, electrospinnable polyester. Since the polyester is
water-insoluble, it is necessary to find a suitable solvent system for preparation of a homo-
geneous blend solution from the polyester/polyelectrolyte system. For example, using TFA
as a common solvent, Xu et al. [102] prepared fibers with complex nanoscale surface topog-
raphy by single-nozzle spinneret electrospinning of homogeneous blend solutions of PLA
and CS. The experimental section does not specify whether poly(L-lactide), poly(D-lactide)
or a copolymer of L- and D-lactide were used. This is relevant to the crystallizability of
the polylactide: poly(L-lactide) and poly(D-lactide) are capable of crystallization, while
poly(D,L-lactide) is an amorphous polymer.

The molar mass of CS used was also not provided. It was not specified whether the
applied high voltage was positive or negative. Depending on the temperature at which
the electrospinning was conducted, nanofibers with core–sheath or island-like architec-
ture were obtained. Electrospinning at 25 ◦C and CS/PLA weight ratio from 90/10 to
10/90 results in preparation of core–sheath fibers and smooth surface topography. The
electrospinning at higher temperature of 35, 45, 50, 55, or 60 ◦C (a description of the
methodology employed to maintain these temperatures during the electrospinning process
is lacking in the experimental section) leads to the preparation of fibers with a rough,
island-like surface topography. TEM micrographs of core–sheath PLA/CS nanofibers are
shown in Figure 7A–D. Applying selective dissolution of PLA from island-like fibers in
dichloromethane, it was found by TEM that the morphology of the resulting structure is a
hollow interior with an outer continuous cellular structure (Figure 7E). It has been stated
that this is an indication that the “islands” are made of CS and the “sea” is composed of
PLA. For core–sheath fibers, the core is PLA and the sheath is CS, as evidenced by XPS.
Similarly to the PEO/CS system [97], the formation of core–sheath fibers from PLA/CS
has been attributed to phase separation resulting from the solvent evaporation during the
electrospinning process [102]. Another crucial factor has been identified as the preferential
migration of the positively charged chitosan chains to the surface of the charged spinning
jet, and thus to the fiber surface during the electrospinning process. Increasing the electro-
spinning temperature increases the evaporation rate of the solvent, and some of the CS
chains have no time to migrate to the spinning jet surface, so there is not enough time for
the CS component to cover the entire fiber surface and intermittent islands are formed.
This has been the explanation for the preparation of island-like fibers when electrospinning
is performed at a higher temperature.
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Figure 7. TEM images of electrospun PLA/CS. (A) PLA; (B) PLA /CS 70:30; (C) PLA /CS 10:90;
(D) CS; (E) PLA/CS70:30, 35 ◦C, etched by dichloromethane. Compared to neat PLA or CS, all
composite PLA/CS fibers display a core–shell prepared under room temperature. Sharp contrast
of bright and dark regions in the TEM images displays the morphology of a hollow interior but an
external continuous “cellular” structure, and proves the distribution of binary polymer PLA and CS
in the island-like fibers. Reproduced with permission from ref. [102]. Copyright (2017), American
Chemical Society.

In conclusion, the use of polyelectrolytes enables the obtaining of composite core–
sheath fibers comprising a non-ionogenic polymer/polyelectrolyte pair in a single step,
without the need for an auxiliary coaxial device and in the absence of stabilizing agents,
by conventional single-nozzle spinneret electrospinning of homogeneous solutions of the
components in a common solvent. This is attributed to the ability of the polyelectrolytes
to become electrically charged under the action of an electric field. Depending on the
charge of the applied high voltage (positive or negative) and the polyelectrolyte nature
(polycation or polyanion), core–sheath fibers can be prepared with a tunable core and
sheath composition: a core of a non-ionogenic polymer and a sheath of a polyelectrolyte,
or a core of a polyelectrolyte and a sheath of a non-ionogenic polymer. Having in mind
the biological activity of a significant proportion of the polyelectrolytes, it is reasonable to
hypothesize that the core–sheath fibers based on polyelectrolytes would display intriguing
properties with regard to biomedical applications. A summary of the current knowledge
regarding the potential biomedical applications of these fibers can be found in Section 3 of
this review.

2.3.2. Preparation of Core–Double Sheath Fibers

Kyuchyuk et al. [62,63] were the first to demonstrate the feasibility of preparing core–
double sheath fibers by single-nozzle spinneret electrospinning of homogeneous blend
solutions comprising the constituents of a core and two sheaths. This has been achieved
using homogeneous blend solutions of PEO, biocompatible and biodegradable aliphatic
polyester, and BW. PLA, PCL, poly(D,L-lactide-co-glycolide) (PLAGA), poly(butylene suc-
cinate) and PHB have been used as the aliphatic polyester. The use of poly(L-lactide) with
molar mass of 259,000 g/mol (PLA259k), which is lower than that of PEO (600,000 g/mol;
PEO600k) and higher than that of the low-molecular-weight substances in BW composition,
enables the preparation of core–double sheath fibers at all of the studied component weight
ratios [62]. The fibers are composed of PEO core, PLA inner sheath, and BW outer sheath,
as evidenced by the performed XPS and selective extraction of BW and PEO in hexane and
aqueous medium, respectively.
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The formation of this complex architecture has been attributed to the difference in
the components’ molar masses, and, consequently, to their different ability to migrate
to the surface of the spinning jet. The proposed approach to produce fibers with a core–
double sheath architecture, as discussed in [62], has been validated by replacing PLA in
the PEO/PLA/BW system with an alternative biocompatible and biodegradable aliphatic
polyester, such as PCL, PLAGA, PBS, or PHB [63]. TEM analysis has revealed that the
replacement of PLA with another polyester does not result in any alteration to the architec-
ture of the fibers, being a core–double sheath one [63]. The impact of the molar mass ratio
of PEO to the polyester on the composition of the core and inner and outer sheaths has been
also assessed. A novel approach was employed, whereby a consecutive selective extraction
of the outer and inner sheaths was conducted using hexane and THF, respectively, as the
solvent (Scheme 5). The solubility tests of BW pellets, PEO mats, and polyester mats have
shown that hexane is a good solvent of BW, and does not dissolve PEO600k and the used
polyesters. This has enabled the selective extraction of BW from PEO600k/polyester/BW
fibers by immersion of the fibrous materials in hexane, resulting in the removal of BW
outer fiber sheath (Scheme 5A,B). PEO mats are insoluble in THF. Concerning the solubility
in THF, the used polyesters are divided into THF-insoluble polyesters (PBS and PHB),
and THF-soluble polyesters (PCL, PLAGA, or PLA). For THF-insoluble polyesters (PBS
and PHB), the extraction in THF does not dissolve the inner polyester sheath of the fibers,
and core–sheath fibers are observed by TEM (Scheme 5A). For THF-soluble polyesters,
the extraction in this solvent resulted in dissolution of the inner polyester sheath, and
monolithic fibers composed of the PEO core of the original fibers are observed by TEM
(Scheme 5B). The application of the consecutive extraction has revealed that fibers with a
well-differentiated PEO core, polyester inner sheath, and BW outer sheath can be obtained
with a polyester molar mass lower than that of PEO. For mats that contain a THF-soluble
polyester (PCL, PLAGA, or PLA) the experimentally determined weight loss after treatment
with THF is very close to the theoretical one.
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(with THF) of core–double sheath fibers: polyesters insoluble in THF (A) and polyesters soluble
in THF (B). BW, beeswax; PEO, poly(ethylene oxide); THF, tetrahydrofuran. Reproduced with
permission from ref. [63]. Copyright (2024), John Wiley & Sons.

As seen from Figure 8, PEO600k/PLA259k/BW mats, which have passed the consec-
utive extraction with hexane and THF, respectively, are hydrophilic with water contact
angle of 0◦, evidencing that they are composed of monolithic fibers derived from the PEO
core of the pristine fibers. Similar results have been obtained for the core–double sheath
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fibers from PEO600k/PLAGA/BW and PEO600k/PCL/BW. For polyesters with a molar
mass higher than PEO, it has been found that there are polyester macromolecules in the
PEO core and PEO chains in the polyester inner sheath [63]. This has been attributed to the
restricted mobility of the polyester chains towards the surface of the forming fiber during
the electrospinning process, which results in some polyester chains becoming entrapped
within the fiber core.
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Figure 8. Scanning electron microscopy (SEM) (upper row) and transmission electron mi-
croscopy (TEM) (lower row) micrographs of a mat and of a single fiber, respectively, from
PEO600k/PLA259k/BW fibrous materials before (left column) and after extraction with hexane
(middle column), and with hexane followed by extraction with tetrahydrofuran (THF) (right column).
The mean fiber diameter values are given below each SEM image; inset: water contact angle values.
Magnification of the SEM micrographs: ×1000. Magnification of the TEM micrographs: ×10,000
(pristine), ×5000 (after extraction with hexane), and ×2500 (after extraction with hexane followed by
extraction with THF). Reproduced with permission from ref. [63]. Copyright (2024), John Wiley &
Sons.

To assess the feasibility of targeting the deposition of hydrophilic or hydrophobic
substances during the single-nozzle spinneret electrospinning of homogeneous blend
solutions of PEO600k/PLA259k/BW in either the hydrophilic core or hydrophobic sheath,
hydrophilic ZnO or hydrophobic ZnO(Si), respectively, have been used as model contrast
agents [63].

The aforementioned agents were incorporated into homogeneous blend PEO600k/
PLA259k/BW solutions, and the suspensions obtained were subsequently processed via
single-nozzle spinneret electrospinning. The presence of ZnO or ZnO(Si) does not impede
the formation of the core–double sheath architecture (Figure 9). The localization of zinc ox-
ide within the fiber is found to depend on the type of zinc oxide used. The hydrophilic ZnO
is preferentially detected in the hydrophilic PEO core of the fiber (Figure 9(a1,a2)), while the
hydrophobic ZnO(Si) is in the hydrophobic fiber sheaths (Figure 9(b3,b4)). Therefore, ZnO
and ZnO(Si) are appropriate for use as model contrast agents for the visualization of the
feasibility of targeted one-pot localization of a hydrophilic or hydrophobic substance dur-
ing the single-nozzle spinneret electrospinning of PEO600k/PLA259k/BW homogeneous
blend solutions in the core or sheaths, respectively.
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PEO600k/PLA259k/BW/NQ. This indicates that the existence of a polyester inner sheath 
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Figure 9. Transmission electron microscopy micrographs of a fiber from PEO600k/PLA259k/
BW/ZnO (1 and 2) or PEO600k/PLA259k/BW/ZnO (Si) (3 and 4); magnifications ×5000 (1 and 3) or
×10,000 (2 and 3). Schematic representation of the preferential location of ZnO (a) or ZnO(Si) (b) in
the fiber structure: PEO600k core (blue); PLA259k inner sheath (green); BW outer sheath (yellow);
nanosized ZnO or ZnO(Si) (black symbols). Reproduced with permission from ref. [63]. Copyright
(2024), John Wiley & Sons.

It has been demonstrated that the fibers architecture and polyester nature alter the
release of the model drug NQ [63]. The juxtaposition of NQ-released amount from the
following mats, PEO600k/BW/NQ (core–sheath fibers), PEO600k/PCL/BW/NQ (core-
double sheath fibers), and PEO600k/PLA259k/BW/NQ (core-double sheath fibers), has
revealed that it decreases in the order PEO600k/BW/NQ > PEO600k/PCL/BW/NQ >
PEO600k/PLA259k/BW/NQ. This indicates that the existence of a polyester inner sheath in
the core–double sheath fibers from PEO600k/PCL/BW/NQ and PEO600k/PLA259k/BW/
NQ results in retardation of NQ release, and a more sustained release has been registered
in the case of PEO600k/PLA259k/BW/NQ mats as compared to PEO600k/PCL/BW/NQ
mats. It has been assumed that the more sustained NQ release in the case of PLA inner
sheath is due to the higher molar mass of this polyester (ca. 259,000 g/mol) as compared to
PCL molar mass (ca. 69,000 g/mol).

From the literature survey, it can be concluded that the formation of core–sheath
fiber(s) by single-nozzle spinneret electrospinning of homogeneous blend solutions, as well
as the composition of the core and sheath(s), depends on the nature of the components used,
their molar masses, the solvent system used, and the parameters of the electrospinning
process.

3. Potential Applications of Core–Sheath(s) Fibers Prepared by Single-Nozzle Spinneret
Electrospinning of Emulsions and Homogeneous Blend Solutions

The preparation of core–sheath fibers using single-nozzle spinneret electrospinning of
emulsions and homogeneous blend solutions is a straightforward process that provides a
superior platform for systematic applied research.

The emulsion electrospinning has been a widely applied laboratory technique for
fabrication of a non-woven textile comprising core–sheath fibers with tailored proper-
ties for specific applications. Particular examples can be found in the review article by
Ghosh et al. [55] (Figure 10). With respect to prospective applications of non-woven textile
composed of core–sheath(s) fibers prepared by single-nozzle spinneret electrospinning
of homogeneous blend solutions, research in this field continues to be in its infancy. In
this section, the preliminary research steps that have been undertaken in this field are
delineated.
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3.1. Biomedical Applications

The evaluation of the behavior of PEO/HA nanofibrous membranes composed of core–
sheath fibers with an HA core and a PEO sheath, as prepared by single-nozzle spinneret
electrospinning of homogeneous blend solutions of the components, in contact with mouse
L929 fibroblast cells has shown that the mats are biocompatible and can find application in
the tissue regeneration [100].

The behavior of PLA/CS fibers having different surface topography, whether core–
sheath fibers with PLA core and CS sheath, or “island-like” fibers with CS “islands” on the
fiber surface (prepared by single-nozzle spinneret electrospinning of PLA/CS homogeneous
blend solutions), in contact with mouse preosteoblast MC3T3-E1 cells has been studied [102].
As shown in Figure 11, the quantity of the adhered cells on PLA/CS fibers with core–sheath
or “island-like” architectures is greater than that observed on PLA mats (control mats).
Furthermore, a more pronounced spreading morphology of the cells has been observed in
both types of PLA/CS composite mats.

A comparison of the two types of PLA/CS fiber architectures has revealed that cells
exhibit enhanced adhesion (as evidenced by a higher number of adherent cells and a more
pronounced spreading morphology) when in contact with island-like fibers. This has been
attributed to the combination of the presence of chitosan on the fiber surface and the rough
surface topography of the island-like fibers. It has been suggested that the synergistic effect
of these two factors may have a beneficial impact on cell adhesion and proliferation.

NQ possesses antibacterial and anticancer activity [103–106]. In order to demon-
strate the potential applications of fibrous materials from PEO/BW/NQ (core–sheath
fibers), PEO/PLA/BW/NQ (core–double sheath fibers), or PEO/PCL/BW/NQ (core–
double sheath fibers) prepared by single-nozzle spinneret electrospinning of homogeneous
blend solutions of the components, in vitro studies have been conducted in the biomedi-
cal practice on their behavior in contact with pathogenic microorganisms and/or cancer
cells [61–63]. The antibacterial activity has been assessed by determination of the inhibition
zones of fibrous disk samples against the Gram-positive bacteria Staphylococcus aureus and
Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus, and
their antifungal activity has been assessed against Candida albicans.

The results have demonstrated that the mats composed of core–sheath(s) fibers from
PEO/BW/NQ, PEO/PLA/BW/NQ, or PEO/PCL/BW/NQ exhibit antibacterial activity
(Figure 12), suggesting potential applications in the wound management. The assignments
of PEO/BW/NQ fibrous materials to the cancer cell lines HeLa (cervical adenocarcinoma)
and SH-4 (human melanoma), as well as the normal cell line BJ (normal human skin fibrob-
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lasts), have been evaluated by MTT test [61]. The results indicate that the PEO/BW/NQ
mats exhibit a detrimental impact on the viability of cancer HeLa and SH-4 cancer cells,
with HeLa cells exhibiting the most pronounced decline in viability. Regarding the normal
BJ human cells, the results have shown that PEO/BW/NQ fibrous materials are much less
cytotoxic. This indicates that PEO/BW/NQ fibrous materials have a selective activity: they
significantly reduce the viability of cancer cells while being biocompatible with normal
cells. Two staining methods, intravital staining with acridine orange/ethidium bromide
(AO/EtBr) and 4′,6-diamidino-2-phenylindole (DAPI) staining, have been used to ascertain
whether the anticancer activity of NQ-containing fiber mats and NQ solution against HeLa
and SH-4 cancer cells is associated with apoptosis induction in cancer cells (Figure 13) [61].
The results indicate that the integration of NQ into PEO/BW/NQ fibrous materials does
not affect the anticancer efficacy of the drug, and the latter continues to exert its anticancer
activity against human HeLa and SH-4 cancer cells through induction of programmed cell
death (apoptosis).
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Figure 11. SEM and LSCM micrographs (× 400) of cells grown and attached for 48 h on different
samples, stained with DAPI and TRITC-phalloidin. (A) pure PLA (A1,A2); (B) PLA/CS 70:30 with
core–shell structure (B1,B2); (C) PLA/CS 70:30 with island structure (C1,C2). Reproduced with
permission from ref. [102]. Copyright (2017), American Chemical Society.
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Figure 12. Digital images of the inhibition zones registered after a 24 h contact of PEO600k/PCL/
BW/NQ mats with Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli,
and after a 48 h contact with Candida albicans (lower row). For comparison, Petri dishes with grown
microorganisms in the absence of fibrous material are presented (upper row). Reproduced with
permission from ref. [63]. Copyright (2024), John Wiley & Sons.
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Figure 13. Fluorescence micrographs of AO/EtBr double-stained HeLa (a,c,e,g,i,k) and SH-
4 (b,d,f,h,j,l), and DAPI-stained HeLa (a1,c1,e1,g1,i1,k1) and SH-4 (b1,d1,f1,h1,j1,l1) incubated
in the presence of different fibrous mats or NQ solution for 24 h. Concentration of NQ in the
mats or solution = 16 µM/L. Control: Untreated HeLa (a,a1) or SH-4 (b,b1) cells. Fibrous mats:
PEO/BW = 70/30 (c,d,c1,d1), [PEO/BW = 70/30]/NQ (e,f,e1,f1), [PEO/BW = 60/40]/NQ (g,h,g1,h1),
and [PEO/BW = 80/20]/NQ (i,j,i1,j1); NQ solution (k,l,k1,l1). Magnification × 300; scale bar = 20 µm.
Reproduced with permission from ref. [61]. Copyright (2022), John Wiley & Sons.

3.2. Agricultural Applications

NQ and 5-chloro-7-iodo-8-hydroxyquinoline (CQ) have antibacterial and antifungal
activity against phytopathogenic microorganisms [107]. For this reason, mats consisting of
PEO/BW core–sheath or PEO/polyester/BW core–double sheath fibers containing one of
these 8-hydroxyquinoline derivatives were tested in contact with the following model phy-
topathogenic microorganisms: Pseudomonas corrugata (P. corrugata), Fusarium graminearum
(F. graminearum), and Fusarium avenaceum (F. avenaceum) [108]. As seen from Figure 14,
the NQ-containing mats exhibited well-defined zones of inhibition upon contact with the
pathogenic microorganisms. A comparable outcome was attained for fibrous materials
containing CQ. This provides evidence that NQ and CQ incorporated into core–sheath or
core–double sheath fibers preserve their antimicrobial efficacy against phytopathogenic
microorganisms and may offer prospective utility in green agriculture.
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3.3. Other Applications

Wei et al. [56] have claimed that nanofibers prepared by single-nozzle spinneret
electrospinning of homogeneous blend solutions based on a conductive polymer, such as
PANI, have potential applications in electronic or optical nanowires and sensors. In the case
of PANI/PC and PANI/PS core–sheath composite fibers, the formation of a core–sheath
structure is expected to provide conductive pathways or charge carrier mobility along the
fiber length due to the continuous PANI domains and to the induced orientation of PANI
chains caused by the whipping motion during the electrospinning process. In this way,
fibers with favorable conductivity can be obtained. In addition, PC and PS insulators can
provide better mechanical properties to overcome the inherent brittleness of PANI. As a
result, this type of core–sheath fiber combines the mechanical properties of the insulator
and the conductivity of PANI.

The photophysical properties of core–sheath fibers from the polyfluorene deriva-
tive/PMMA pair with a core from polyfluorene derivative and a PMMA sheath have been
evaluated [109]. The results obtained demonstrate that full color light-emitting fibers with
high luminescence efficiency can be obtained from the polyfluorene derivative/PMMA
pair. These core–sheath fibers have the potential to be utilized in the fabrication of sensors.

4. Conclusions

As evidenced by the provided summary, the preparation of core–sheath fibers via
single-nozzle spinneret electrospinning of homogeneous blend solutions is still at an early
stage of development. It is of interest due to the possibility of using conventional electro-
spinning equipment. This is a prerequisite for the single-nozzle spinneret electrospinning
of homogeneous blend solutions to be readily applicable in industrial applications for the
production of core–sheath fibers, for example, by needleless or multi-jet electrospinning.
Another advantage is the absence of stabilizing agents that are harmful to humans and the
environment. This makes the fibrous materials prepared by single-nozzle spinneret electro-
spinning of homogeneous blend solutions eco- and bio-friendly, and they can be used in a
variety of applications, including biomedical practice, food packaging and preservation,
and for the needs of green agriculture. With regard to the functionalization of the surface
of fibers obtained by electrospinning, it is of significant interest to explore the potential for
the formation of a sheath from non-electrospinnable polyelectrolytes of natural origin, such



Materials 2024, 17, 5379 26 of 30

as chitosan, HA, and SA, as well as from polyelectrolytes of synthetic origin with intrinsic
biological activity. As previously outlined, the single-nozzle spinneret electrospinning
of homogeneous blend solutions represents a suitable and readily feasible approach to
achieving this desired outcome. Future directions in the field of preparation of core–sheath
fibers by single-nozzle spinneret electrospinning of homogeneous blend solutions should
seek to gain deeper knowledge of the factors that govern the formation of fibers with this
type of architecture. There is also interest in expanding research into the applications of the
fibers obtained using this approach.
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