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Abstract: Porous 430L stainless steel disks made by tape casting with various pore-former sizes
and volume fractions were evaluated as substrates for solid oxide cell (SOC) fabrication by plasma
spraying. This work reports the substrate properties relevant to the SOC operation of disks made by
using extra fine metal powder with dense sintering to minimize the fine porosity between particles. In
contrast, the coarse porosity is introduced by the pore former. We found that the 60 µm pore former at
a 45 vol% fraction has the best application fit; it gives an adequate gas permeability of 3.11 × 10−13 m2

and an average open pore size of 45.90 µm. Compared to a commercial substrate with a similar
porosity perimeter/steel area ratio, the porosity and gas permeability are 1.6 and 3 times higher,
respectively. The detected maximum surface pore is 49 µm, allowing gas-tight electrolytes fabricated
by plasma spray deposition.

Keywords: sintering; 2D qualitative analysis; stainless steels; bulk diffusion; metal-supported solid
oxide cell

1. Introduction

Fuel cell technologies have proven effective in converting energy between chemical
and electrical forms without emissions. Among those technologies, solid oxide cells (SOCs)
operate at high temperatures, typically from 650 ◦C to 800 ◦C [1,2], and have the advantage
of being able to use both hydrogen and carbon-containing fuels [3] plus the highest efficien-
cies of any full cell type, approximately 60% [1,3]. Conventional SOCs are ceramic-based,
with one of the functional layers made thick enough to support the other cell layers me-
chanically [4]. Metal-supported solid oxide cells (MS-SOCs), on the other hand, utilize a
metal layer to support the electrochemically active cell layers, offering the advantage of
lower material cost and reduced ramping time from hours to tens of minutes [5,6] due to
high material fracture toughness and high thermal conductivity [7]. Some metal support
requirements include the following: (1) the thermal expansion coefficient of the ceramic
layers and support layer needs to be matched, especially for the electrolyte layer (typically
8 mol% yttria-stabilized zirconia, TECYSZ~10.5 ppm K−1) [8]; (2) it must allow gas diffusion
to the electrodes; (3) it must be oxidation resistant; (4) the support layer should not react or
have interdiffusion with other cell layers [9]. One of the options for the support layer is
430L stainless steel because the TEC (11.4 ppm K−1 [10]) is close to YSZ’s and has adequate
corrosion resistance.

When fabricating SOCs, the most used technologies are wet-ceramic-based, such as
tape casting [11], gel casting [12], and screen printing [13]. These methods require at least
three wet ceramic steps and often two sintering steps, each taking approximately one day
to complete [14]. Plasma spraying, on the other hand, is a process where it takes minutes to
complete each cell layer deposition, with no subsequent sintering step required [15]. It is a
proven technology, making thermal barrier coatings on turbine blades [16], and has also
been studied for use in SOC layer fabrication [17,18]. To apply the plasma spraying method,
the substrate surface should have adequate roughness and no large pores (ideally <40 µm,
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no more than 60 µm) that can cause defects in the subsequently deposited electrolyte
layer [19,20]. Combining metal support with plasma spraying together can reduce SOC
cost by approximately 50% due to the rapid processing and the use of a less expensive
material for the support structure [21,22]. However, metal supports introduce additional
challenges, including oxidation [23] and Cr poisoning or interdiffusion with the adjacent
electrode layer [24]. The porous substrate can be engineered with a low surface-area-to-
volume ratio to increase cell durability to slow down oxidation. It can be further protected
from oxidation or interdiffusion with the electrode by applying additional coatings on
material surfaces [25–27].

Most metal-supported SOCs use supports sintered from metal powder with a size of
10 s of µm [28–31]; due to the large particles and difficulty to achieve final sintering stage,
pore formers may not be required to obtain porosity for gas transport. A metal support
created from this large particle shows some small porosity and small steel features (fingers)
as shown in Figure 1. These small steel fingers are the weakest points where breakaway
oxidation can happen. This is due to local chromium depletion [32,33] where iron oxide
grows and blocks nearby porosity. Even without breakaway oxidation, the narrow porosity
can also be blocked by chromium oxide scale formation [34]; it also adds up the surface area
to the volume of the steel scaffold. This type of support is common in both in-house-made
and commercial substrates [35–40].
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Figure 1. Conventional metal substrates (MG1, Mott Corp) with irregularly shaped porosity showing
small steel features and small porosity such as those shown in the red circles.

In a previous study, a new strategy of using fine steel particles for dense sintering
and large spherical pore-former particles effectively reduced the surface area susceptible
to oxidation [41]. This work continues to investigate the impact of various pore-former
volume fractions and sizes on the sintered porous material. The evaluation metrics include
gas permeability before and after oxidation in air, normalized mass gain after oxidation,
open porosity size distribution and volume fraction, surface roughness, and perimeter-to-
area ratio.

Jie Lin et al. reported a new 430L metal support, fabricated by the phase inversion
method to create aligned porosity using a powder size and sintering condition (d0.5 = 10 µm,
1250 ◦C, 3.5 h) [42]. Despite the high-power density of 1079 mW/cm−2 and 6 × 10−11 m2

permeability obtained, however, the resulting structure of the non-channeled part is still
loose, with lots of powder packing porosity left, and there is no long-term operation result
reported. Jason Lee et al. [43,44] demonstrated tape casting and sintering to make a porous
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mass transport layer used in PEMEC which also emphasizes mass transport, but the results
still show much dead-end fine porosity with 37.6% porosity and a 0.15 perimeter-to-area
ratio by image analyzing their samples (5 µm titanium powder). Their 60 µm pore-former
sample has 43.8% porosity and a 0.11 perimeter-to-area ratio. So, besides SOC application,
this sintering strategy can also benefit PEMEC as a porous mass transport layer but will
also benefit the denser structure proposed by this work. Steven Pirou et al. developed a cell
stack with a very high volumetric power density of up to 5.6 kW/L [45], but the utilized
metal support only has about 10% porosity. The monoliths were sintered at 1290 ◦C for 6 h
to sinter both the ceramic electrolyte and porous steel support. The porosity can potentially
be improved by using a larger pore former and increasing the coordination number around
pores as discussed below.

2. Materials and Methods

The metal powder used for this study is medium chromium alloy 430L (Sandvik
Osprey Ltd., Neath, UK); the pore formers are Poly(methyl-methacrylate) (PMMA) beads
with four sizes: d50 = 20 µm, 40 µm (Lamberti, Skedsmokorset, Norway), 60 µm, and
90 µm (Huaqing Natural Ingredients, Xi’an, China). The elemental composition and size
distribution of 430L SS powder are as follows: 16 wt.% Cr, 0.7 wt.% Mo, 0.60 wt.% Si,
balance Fe; d0.1 = 2.93 µm, d0.5 = 5.67 µm, and d0.9 = 10.72 µm. The particle size distribution
of the powders was analyzed by a laser particle size analyzer (Mastersizer 2000, Malvern
Panalytical, Malvern, UK). The results are shown in Figure 2. The tape casting slurry has
the following composition: 5 mL 18.9 wt% PVA (98–99% hydrolyzed low molecular weight,
Thermo Scientific, Waltham, MA, USA) solution, 7.5 mL powders, 0.5 mL 50 wt% PEI
solution (Mw~2000, Sigma Aldrich, St. Louis, MO, USA), 0.25 mL antifoam 204 (Sigma
Aldrich), and 5 mL distilled water, followed by 18 h ball milling and vacuum de-bubbling
before tape casting at 1 mm blade height with a moving speed of 2 mm/s. Additional
details on slurry composition development can be found in previous work [41].
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O-rings, which prevents side gas leaks. Compressed air flow through the sample is measured as a
function of pressure difference controlled by a pressure regulator.
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To measure the substrate shrinkage relative to green tape, the size of rectangular
tape strips was recorded as Lo, with width parallel to the casting direction and length
perpendicular to the casting direction. The sintered substrate sizes were recorded as L. The
shrinkage S was then calculated using Equation (1):

S = 1 − L/Lo (1)

A stylus profilometer (D120, AlphaStep, Milpitasn, CA, USA) measured surface pro-
files with 7 parallel 2.5-mm-long scans separated 0.5 mm at 0.1 mm/s and 5 mg contact
force. The surface roughness Ra evaluates how the surface height profile deviates from the
mean value:

Ra = 1/l
∫ l

0
|y(x)|dx (2)

In Equation (2), l is the length of the evaluated profile and |y(x)| is the height differ-
ence between the measured height and mean value at position x. A python script was used
to find the average pit width and depth for those pits deeper than 10–30 µm depending on
the pore-former size (10 µm for PF20, 20 µm for PF40, 30 µm for PF60 and PF90). Those
numbers would give more insight into the potential electrolyte deposition defects locally,
while Ra better describes the average profile.

Image analysis measured the substrate porosity and porosity-perimeter-to-steel-area
ratio using cross-sessional images and ImageJ software (1.54f 29). The images were obtained
using an optical microscope (Axio Scope, Zeiss, Oberkochen, Germany) and then converted
to binary with a threshold greyscale cut-off. Porosities were approximated by counting total
dark pixels that represent porosity over the number of total pixels, and porosity-perimeter-
to-area ratios were calculated by using mean porosity perimeter multiplied by the number
of pores, then divided by the bright area that represents steel.

Gas permeability was measured by an in-house fixture with a schematic shown in
Figure 2. The substrate was clamped between two square silicone rubber O-rings. The
permeation area diameter was 19 mm. A pressure controller (PCD-5PSIG-D5P, Alicat
Scientific, Tucson, AZ, USA) was used to apply various pressures from one side, and a gas
flow meter was connected to the atmosphere (M-50SCCM-D/5M, Alicat Scientific, Tucson,
AZ, USA) to measure the gas flow rate through substrates. Five points from 0 kPa to 4.1 kPa
were measured, and at least three substrates with the same pore former composition were
tested. Darcy’s law (3) was used to calculate the gas permeance of the empty sample holder
and holder with the substrate. Substrate permeability k was later calculated:

P = q/(∆p×µ) (3)

Ps = Pt × Pe/(Pe − Pt) (4)

k = Ps × A/L (5)

P is permeance; s, e, t subscripts note the permeance of substrate, empty fixture, and
fixture with a substrate, respectively; q is volumetric gas flow rate; ∆p is pressure difference
over substrates; µ is the dynamic viscosity of air; k is substrate permeability; A is permeation
area; L is substrate thickness. Both permeability before and after a 900 ◦C-24 h oxidation in
the atmosphere were measured.

In addition to gas permeability, substrate mass gain was recorded and normalized
by area:

.
m = ∆m/(r × V(1 − p)) (6)

p is porosity; V is substrate bulk volume; r is porosity-perimeter-to-steel-area ratio; ∆m is a
mass gain of the substrate after oxidation;

.
m is normalized mass gain by area.

Additional MG1 commercial stainless-steel filters are included as conventional support
as a comparison. These supports show a structure similar to the common existing solution,
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and we can experiment with more measurements rather than doing image analysis from
other work.

3. Results
3.1. Particles and Substrate Geometry

Figure 3 shows all pore-former particle size distributions measured by the laser diffrac-
tion method. It measures each particle’s size based on the diffraction caused by the sus-
pended particles and displays the results by showing the volume percentage distribution
of corresponding particle sizes. The particle size measurement ranges from 0.02 µm to
2000 µm. In Figure 3, all of the curves have single symmetrical peaks. This distribution
means small particles are more frequent, but there is a tail with fewer, much larger particles.
The steel particle distribution was reported in previous work [41] and more details can be
found in Figure S1. A detailed particle size distribution of pore formers can be found in
Figures S2–S5.
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Figure 3. Particle size distribution data for four sizes of PMMA pore former. From left to right, they
are PF20, PF40, PF60, and PF90.

In Table 1, PF20 and FP40 have a similar span of about 0.6, while PF60 and PF90 are
closer to 0.8. Both suppliers provide powder with a narrow powder size distribution. The
steel powder size distribution is not symmetrical. The difference between d0.9 and d0.5 is
greater than the difference between d0.1 and d0.5, and this shows that the coarser powder has
a larger size distribution than the fine powder, potentially caused by powder agglomeration.

Table 1. Summarized particle size distributors of powder used for this study.

d0.1 (µm) d0.5 (µm) d0.9 (µm) Span Specific Area (m2/g)

430L 2.93 5.67 10.72 1.38 0.183
PF20 14.14 19.19 26.21 0.63 0.332
PF40 28.26 37.99 50.91 0.60 0.162
PF60 40.96 59.10 85.21 0.75 0.106
PF90 62.26 94.21 141.2 0.84 0.067

Both suppliers’ steel particles and pore formers have spherical shapes, as shown in
optical microscope images in Figure 4. The as-cast green tapes are flat, rigid, and crumble
easily without much deformation by hand. For smaller pore former sizes like PF20, both
the air (top) and plate (bottom) sides show uniform pore former distribution, but as the
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particle size increases, the plate side starts to show less pore former, and a thin layer of
steel powder covers the plate side. This issue is most prominent for PF90 tapes, as shown
in Figure 4b. The left side of Figure 4b shows a dense layer of steel powder that is in focus;
on the right side, there are blurry pore formers out of focus that are located in the plane
further away from the focal plane. The tape’s plate side with less pore former has less open
porosity after sintering, reducing gas permeability.
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Figure 4. Optical microscopy image of the as-cast PF40 tape top side showing spherical metal powder
and PMMA beads (a). An optical microscope image of as-cast PF90 tape on the plate side shows a flat
layer of steel powder covering the PMMA beads on the left side, while the right part of the image has
the steel powder layer removed, which is out of focus in the background (b).

The lack of a large pore former on the plate side is possibly due to the larger PMMA
particles extending through multiple laminar flow regions during the tape casting process,
resulting in the particles experiencing additional lateral shear force from the doctor blade
motion, pulling the larger pore former particles along the casting direction. When the
larger, lower-density PMMA particles encounter smaller, higher-density steel particles near
the slurry bottom, they roll over the steel particles, resulting in a net upward motion that
leaves the bottom portion of the tape devoid of the large pore-former particles. However,
smaller pore former particles that do not extend as far upward from the casting plate
experience less shear force from the doctor blade at the surface of the tape so that they
remain relatively stationary to the surrounding steel powder particles adjacent to the
casting surface. Nevertheless, a simple solution is applying an additional sanding step
(200 grit) to all PF40, PF60, and PF90 tapes to remove the steel layer until the pore formers
are visible.

Cross-sectional images of all substrates are shown in Figure 5. When using PF20 as
the pore former, the porosity is isolated, with some granularity at 25% pore former content;
as the volume fraction increases, the pore becomes irregular and starts to form a more
connected porosity network. The small porosity and steel fingers observed in conventional
metal supports start to be more observable as the performer content increases. When using
PF40, PF60, and PF90 as the pore former, the individual spherical pores are visible at 35%,
and as the pore-former size increases, the pores are more isolated, since the number of pore
former decreases with increased particle size. At 55% pore-former content, all samples start
to show small steel fingers, formed at the necking between two spherical pores. As the
pore-former size increases, the number of steel fingers decreases, and the size increases.
Small porosity is only present at the necking between major pores.
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Figure 5. Cross-sectional optical micrographs show a microstructure comparison of PF20 to
PF90 substrates.

3.2. Substrate Internal Structure Properties

Figure 6a shows the shrinkage of various green tape compositions after sintering
at 1200 ◦C for 4 h. Measuring the shrinkage can be helpful in calculating green body
dimensions to achieve the desired sintered part dimension. For PF20, the shrinkage
increases linearly as the pore-former fraction increases. The lowest shrinkage is slightly
larger than the tape without pore former. For larger pore-former sizes like PF60 and PF90,
the shrinkages are relatively consistent regardless of the pore former fraction, and they are
all smaller than those without pore former. The PF40 results are similar to those of PF60
but have a more significant shrinkage increment with the pore-former volume fraction.
The data on higher pore-former contents were not included because the tape becomes very
fragile after the binder has been removed.

The different shrinkages between PF20 and larger pore formers imply that the PF20
particles are not large enough to maintain their pore shapes individually, and the PF20
pores in Figure 5 are less spherical than those of PF40 and beyond. This result agrees
with the previous study [46,47]: porosity tends to close unless the number of surrounding
particles exceeds a critical value. The pore-former size controls the number of particles
surrounding the porosity (coordination number). Based on the observed results, the critical
number is between the coordination number for the PF20 and PF40 pore-former particles.
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Figure 6. Substrate shrinkage (a) and final porosity (b) with various pore former sizes and volume
fractions. The substrate-porosity-perimeter-to-steel-area ratio and corresponding porosity for all
pore-former fractions are shown in (c).

The solid-state sintering according to Coble [48] can be divided into three stages: the
initial stage of interface and neck formation between solid particles; the intermediate stage
of grain growth and grain boundary formation, while pores are still connected as a network;
and the final stage of densification when pores are isolated and reduced. To reduce porosity
in green bodies, the stress from surface tension (σs) which reduces pores should be greater
than the stress from interface energy (σi) that expands pores. These two stresses can be
described as follows [49]:

σs = d(4πr2γs)/d(r)/(4πr2) = 2 γs/r (7)
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σi = d(nl2γir)/d(r)/(4πr2) = nslγi/(2πr2) (8)

where r is the pore diameter, γs is the solid–gas surface tension, γi is the solid interface
tension, ns is the coordination number of grains surrounding the pore, and l is the arc
length of the grain boundary in the solid phase.

When introducing pore formers into a green body, there are two types of pore porosity:
pore-former porosity directly coming from pore formers and smaller packing porosity
between packing particles. The pore-former porosity radius rp is directly dependent on
the pore-former size, and the packing porosity radius rs can be approximated as 0.4 of
the packing particle radius [50]. As the pore-former size increases while the surrounding
particles maintain the same size, the surface tension σs decreases at an inverse relation with
rp. The coordination number increases as the pore surface area increases proportionally
with rp

2. So, the interface stress is relatively consistent because the coordination number in
the numerator and rp

2 in the dominator increase at the same time.
By proposing using smaller steel particles in this work, when compared to the larger

steel particle, rs will be smaller. So, in the final densifying stage, the amount of material
and distance of solid-state diffusion is lesser compared to larger packing particles, and it
takes less time to reach the final density.

The substrate porosity and perimeter-to-steel-area ratio are shown in Figures 6b and 6c,
respectively, with additional MG1 commercial stainless steel filters as a comparison. This
type of support shows a structure similar to the common existing solution, and it is easier
to compare them by directly using this support and going through the same measurements
with the new supports from this study. The porosity-perimeter-to-steel-area ratio can
quantitatively tell how the porosity is distributed. Larger values mean smaller porosity
and more steel is exposed to gas, which will make the support more susceptible to dropped
permeability after chromium oxide formation and breakaway oxidation after a longer oper-
ation time. Overall, PF20 tapes have lower porosity at the same pore-former content, which
agrees with the result of the highest shrinkage. PF40 shows transitional behavior between
PF20 and larger pore formers, indicating that some particles in the PF40 still cannot form
stable pores. The PF60 and PF90 results show similar porosity; these sizes do not have
a significant impact on shrinkage or porosity. The porosity-perimeter-to-steel-area ratio
in the 2D cross-sectional image approximates the surface-to-volume ratio in the 3D solid,
assuming that the porosity is isotropic, based on isotropic shrinkage. From this result, PF60
with 35–45% volume fraction and PF90 with 35–55% volume fraction have equal or lower
surface area per volume and more porosity than MG1.

All of the lines shown in Figure 6 are fitted with a linear model to find the slope and R2

values; the results are summarized in Table 2. When comparing the slope of shrinkage with
different pore formers, there is a decreasing trend, with PF20 having the highest slope of
0.2478, and PF90 having the lowest slope of 0.0138. Since all of the pore formers used have
a range of size distribution, the larger the average size, the lower the amount of stable pores
created by small pore formers; hence, the shrinkage is less dependent on the pore-former
fraction. In the plot of PF90, the second data point is smaller than other data points and the
slope is close to 0; this could explain why the R2 of PF90 is not very close to 1 like the other
three pore formers. The dependency of porosity on pore-former content in green bodies
with various pore-former sizes does not show a clear trend with increasing pore-former
size. There is a jump from 65 to 106 when the PF20 changes to PF40, and the slope slowly
decreases to 73 as the pore-former size increases. The gentle slope of PF20 can be explained
by the smaller size; some small porosity is not stable. However, the decreasing trend from
PF40 to PF90 is not straightforward. One possible explanation is that for the same volume
and mass of pore formers, a smaller pore former has a larger specific area. In a green body,
the effective stable pore volume created by pore formers is greater than the pore former’s
particle volume. The packing porosity around the pore former should also be considered.
This extra volume can be approximated to be proportional to the surface area of individual
particles. Since PF40, PF60, and PF90 can all create stable porosity from individual particles,
the total volume of stable porosity in PF40 should be greater than PF60, followed by PF90
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after accounting for the neighbor packing porosity. This idea can also explain why the
shrinkage from those larger pore formers is smaller than that without pore former. The
perimeter ratio slope on substrate porosity decrease with increasing pore former sizes can
be expected. As shown in Figure 5, the porosity becomes less complicated with increasing
pore former sizes.

Table 2. Summarized linear fit of lines in Figure 6.

Pore Former Shrinkage Porosity Perimeter Ratio

slope R2 slope R2 slope R2

PF20 0.2478 0.9944 65.095 0.9614 0.0029 0.9974
PF40 0.1427 0.9331 106.56 0.963 0.0023 0.9958
PF60 0.0437 0.9995 90.397 0.9849 0.0019 0.9933
PF90 0.0138 0.7958 72.877 0.983 0.0017 0.9872

3.3. Substrate Surface Profiles

Figure 7 shows the full results of measured Ra, pit width, and pit depth. Ra is
the parameter that determines early plasma deposition efficiency; small Ras yield low
deposition efficiency as the incident material gets carried away by plasma gas [51]. A large
Ra indicates large surface height variations; in the case of tape cast support, it is often
caused by large open pits. Material from plasma spray can get deposited into the pits,
causing discontinuity and offsets in the deposited layers. This is crucial for electrolyte,
which needs to be gas-tight. Previous work showed that a range between 2 µm and 8 µm
can give the desired deposition quality [19].
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Figure 7. Surface profile analysis results of top-face roughness (a), bottom-face roughness (b), top-
face average pit width (c), bottom-face average pit width (d), top-face average pit depth (e) and
bottom-face average pit depth (f). The sample top surface profile of four different pore formers at
45 vol% is shown in (g).

For the top surface, the Ra of PF60 is about the same as or larger than that of PF20 but
smaller than PF40, while PF90 has the highest Ra. The Ra values of the bottom surface do
not show a clear relationship to the pore-former fractions for those sanded samples. The
greater Ra of PF40 than PF60 can be explained by the larger number of PF40 particles for
the same volume fraction, making the Ra higher. The average pit depth and width of the
top surface increase as the pore former size increases. However, for the bottom surface,
such a relation is not clear, especially for the surface roughness and pit depth, possibly
because by sanding the bottom side, it is hard to control tapes to have the material evenly
removed. When deciding whether there was sufficient sanding, visual inspection was
used to see if there were sufficient PMMA beads exposed. Also, sandpaper is filled with
removed powder that can make local roughness different compared to areas sanded by
fresh sandpaper. The P220 sandpaper has a nominal size of 53 µm, which explains the
PF90’s 35% higher values in Figure 7e,f. Nevertheless, pit width and depth are still in the
acceptable range when up to 45 vol% pore former is used.

When comparing the profiles from the top and bottom surfaces, except the PF20 (the
unsanded sample), the Ra, pit depth, and width are different from the top surface. For
the top pit depth, the measured depth is relatively consistent regardless of the increasing
pore-former fraction; the pit width values showed a similar trend, except for PF90 at the
0.55 fraction. The profile from the bottom surface shows much more significant deviations
and less pit depth and width consistency across different pore-former fractions for each
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pore-former size. The differences between the top and bottom surfaces suggest the sanding
process modified the surface properties. During the sanding process, we noticed that the
sandpaper became less abrasive after the steel powder filled up the space between the sand
grits. This greatly affected the material removal rate as well as the scratch depth left on the
green tape, which will affect the surface properties. The surface profiles change from site to
site as the sandpaper condition changes. For reliable sprayed layers on those substrates,
the top surface should be used for deposition. Figure 7g shows the example surface profiles
from various pore former sizes; with a larger pore former, there were fewer but wider and
deeper pits detected. The large pit depth from the PF20 bottom side at the 0.25 fraction is
possible due to a detected pinhole.

3.4. Substrate Oxidation and Gas Permeability

Figure 8a shows the gas permeability of substrates before and after oxidation. For the
raw substrates, PF60 and PF40 are the most permeable substrates; PF90 permeability is
slightly lower than that of these two pore formers. Because PF90 has larger particles, the
particle count of PF90 is smaller than that of small pore formers, so there is less chance for
the pore former to form a connected pore network with PF90, resulting in less permeability.
PF20 has less permeability at all pore former contents because the porosity is lower.

Youssef et al. [52] presented a way to calculate the fluid permeability of a porous media.
They made the approach by dividing and simplifying the pore network into spherical pores
connected with straight channels. In their model, the number and size of the channels
mainly control the material permeability. The conductance of fluid through a cylindrical
channel is proportional to the tube radius at a power of 4 [52]. The oxide formation with
the porosity can effectively reduce the channel diameters available for fluid transport,
hence lowering the permeability. For narrow tubes in PF20 and conventional substrates, a
decrease of 2 µm from oxide growth can be a large reduction by portion compared to large
diameter tubes. The dependency of the radius’ power of 4 further magnifies the impact.
So, we can observe there is a larger permeability drop in PF20 compared to larger pore
formers in Figure 8a. PF60 has the smallest permeability drop after oxidation; besides the
larger pore sizes, a more connected pore network than PF90 can also contribute to higher
gas permeability.

By using image analysis to measure the oxide layer thickness, all substrates, including
the substrate without pore former, have a similar oxide thickness of about 2 µm, like that
shown in Figure 8b. The values are comparable to the reported data of 2 µm at 800 ◦C for
300 h [53]. This result suggests that all pore-former sizes should give similar results. Also,
for the same pore former size with different volume fractions, the normalized mass gains
are similar, which validates the image analysis results. Such disagreement between the
oxide layer thickness and normalized mass gain requires further study in the future to give
a better explanation.

In Figure 8c, the PF20 has the highest unit area mass gain, followed by PF40. PF60
and PF90 give similar values. The actual mass gain for PF90 at 35% should be larger,
considering that some closed pores are not oxidized, but the surface-to-volume ratio is
based on total porosity. The PF20 mass gain has some large 25% and 45% variations. For
those samples, spots of extra oxide formation were observed, raising the average mass gain
and deviation. A possible explanation is that some spots have prominent points where
breakaway oxidation happened. Some data points from 25% and 45% are close to those of
35% and 55%, with more minor variations.

In conclusion, by evaluating the effect of various spherical PMMA pore-former sizes
and volume fractions on gas permeability, surface roughness, pit width and depth, as
well as steel surface-to-volume ratio, the PF60 at the 0.45 volume fraction gives the most
balanced performance as a metal support for plasma-sprayed solid oxide cells. With this
composition, we can achieve an improvement of 1.6 times for porosity and 3 times for gas
permeability compared to conventional metal supports. This study would also benefit
those who prefer to co-sinter metal supports with electrolytes to retain adequate porosity.
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Besides the application in solid oxide cells, this study also has the potential to benefit
applications such as oxygen separation membranes, catalyst support and metal water
filters for improved gas permeability and a reduced surface-to-volume ratio.
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Figure 8. (a) Substrate gas permeability before and after oxidation test. (b) Backscattered electron
image of oxidized 35% PF90 substrate, showing oxide-free closed porosity. (c) Normalized mass gain
per area with respect to pore former size and fractions.
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