Fibrillated Films for Suspension Catalyst Immobilization—A Kinetic Study of the Nitrobenzene Hydrogenation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of the Fibrillated Films
2.2. Catalytic Performance and Mass Transfer Limitations in Batch Reactors
2.3. Strategies to Improve Mass Transfer: Sandwich and Macro-Porous Films
2.4. Investigation of Reaction Orders and Rate Constants
2.5. Performance in Microreactor Flow Systems
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deutschmann, O.; Knözinger, H.; Kochloefl, K.; Turek, T. Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ozkal, E.; Llanes, P.; Bravo, F.; Ferrali, A.; Pericàs, M.A. Fine-Tunable Tris(triazolyl)methane Ligands for Copper(I)-Catalyzed Azide–Alkyne Cycloaddition Reactions. Adv. Synth. Catal. 2014, 356, 857–869. [Google Scholar] [CrossRef]
- Lizandara-Pueyo, C.; Fan, X.; Ayats, C.; Pericàs, M.A. Calcium carbonate as heterogeneous support for recyclable organocatalysts. J. Catal. 2021, 393, 107–115. [Google Scholar] [CrossRef]
- Miranda, P.O.; Lizandara-Pueyo, C.; Pericàs, M.A. Potassium fluoride: A convenient, non-covalent support for the immobilization of organocatalysts through strong hydrogen bonds. J. Catal. 2013, 305, 169–178. [Google Scholar] [CrossRef]
- Collis, A.E.C.; Horváth, I.T. Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 2011, 1, 912–919. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Sun, K.; Zhao, S.; Kim, Y.D.; Yang, Y.; Liu, Z.; Peng, Z. Identification of the Encapsulation Effect of Heteropolyacid in the Si–Al Framework toward Benzene Alkylation. ACS Catal. 2022, 12, 4765–4776. [Google Scholar] [CrossRef]
- Li, B.; Yu, Y.; Zhao, P.; Zhang, S. Triazole-Containing Dendrimer-like Core Cross-Linked Micelles that Stabilize Pd Nanoparticles as Heterogenized Homogeneous Catalysts for Room-Temperature Suzuki–Miyaura Reactions in Water. Chem. Asian J. 2016, 11, 3550–3556. [Google Scholar] [CrossRef]
- Gallei, E.; Schwab, E. Development of technical catalysts. Catal. Today 1999, 51, 535–546. [Google Scholar] [CrossRef]
- García-Sánchez, J.T.; Baldovino-Medrano, V.G. Elements of the Manufacture and Properties of Technical Catalysts. Ind. Eng. Chem. Res. 2023, 62, 7769–7838. [Google Scholar] [CrossRef]
- Whiting, G.T.; Chung, S.-H.; Stosic, D.; Chowdhury, A.D.; Van Der Wal, L.I.; Fu, D.; Zecevic, J.; Travert, A.; Houben, K.; Baldus, M.; et al. Multiscale mechanistic insights of shaped catalyst body formulations and their impact on catalytic properties. ACS Catal. 2019, 9, 4792–4803. [Google Scholar] [CrossRef]
- Baldovino-Medrano, V.G.; Le, M.T.; Van Driessche, I.; Bruneel, E.; Alcázar, C.; Colomer, M.T.; Moreno, R.; Florencie, A.; Farin, B.; Gaigneaux, E.M. Role of shaping in the preparation of heterogeneous catalysts: Tableting and slip-casting of oxidation catalysts. Catal. Today 2015, 246, 81–91. [Google Scholar] [CrossRef]
- Mitchell, S.; Michels, N.-L.; Pérez-Ramírez, J. From powder to technical body: The undervalued science of catalyst scale up. Chem. Soc. Rev. 2013, 42, 6094–6112. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Schwartz, V.; Li, M.; Rondinone, A.J.; Overbury, S.H. Support shape effect in metal oxide catalysis: Ceria-nanoshape-supported vanadia catalysts for oxidative dehydrogenation of isobutane. J. Phys. Chem. Lett. 2012, 3, 1517–1522. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, X.; Lv, L.; Li, F.; Liu, Z.; Kong, Q.; Li, C. Enhancing reducing ability of α-zein by fibrillation for synthesis of Au nanocrystals with continuous flow catalysis. J. Colloid Interface Sci. 2017, 491, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Guo, S.; Zhang, J. Au/graphene quantum dots/ferroferric oxide composites as catalysts for the solvent-free oxidation of alcohols. Mater. Lett. 2016, 183, 227–231. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Su, R.; Qi, W.; He, Z. Catalytic Membrane Reactor Immobilized with Alloy Nanoparticle-Loaded Protein Fibrils for Continuous Reduction of 4-Nitrophenol. Environ. Sci. Technol. 2016, 50, 11263–11273. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, G.; Zhang, L.; Li, B.; Wang, C.; Zhao, G.; Park, C.B. Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding. Eur. Polym. J. 2019, 119, 22–31. [Google Scholar] [CrossRef]
- Włochowicz, A.; Ṡacigała, R. Effect of molecular weight on the mechanical properties of polytetrafluoroethylene (PTFE). Br. Polym. J. 1989, 21, 205–207. [Google Scholar] [CrossRef]
- Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage—The transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 2018, 11, 3096–3127. [Google Scholar] [CrossRef]
- Braig, M.; Deissler, N.H.; Lüdeking, I.; Regnet, F.; Bevilacqua, N.; Zeis, R. FIB-SEM and ToF-SIMS Analysis of High-Temperature PEM Fuel Cell Electrodes. Adv. Mater. Interfaces 2023, 10, 2202430. [Google Scholar] [CrossRef]
- Mack, F.; Morawietz, T.; Hiesgen, R.; Kramer, D.; Zeis, R. PTFE Distribution in High-Temperature PEM Electrodes and Its Effect on the Cell Performance. ECS Trans. 2013, 58, 881. [Google Scholar] [CrossRef]
- Minami, A.; Maeda, Y.; Kageyama, Y. Sheet for Ozonolysis. JPH04235718A, 24 August 1992. [Google Scholar]
- Sassa, R.L.; Hobson, A.R.; Towler, J.C.; Bushong, J.H. Catalyst Retaining Apparatus and Method of Making and Using Same. WO1996034686A1, 7 November 1996. [Google Scholar]
- Abe, K.I.O.J.; Nakatsuji, T.M.O.J. Priority Claimed from JP11255878A. DE2936927C2, 7 March 1991. [Google Scholar]
- Wada, H. Preparation of Polyester Polyol with Low Viscosity. JPH11255878A, 21 September 1999. [Google Scholar]
- Wristers, H.J. Shaping and Sizing of Catalysts. US4224185A, 23 September 1980. [Google Scholar]
- Bernstein, P.; Coffey, J.P.; Varker, A.E.; Arms, J.T.; Goodell, P.D.; Clark, W.D.K. Polymeric Catalyst Structure. EP0057990A1, 18 August 1982. [Google Scholar]
- Bernstein, P.; Coffey, J.P.; Varker, A.E.; Arms, J.T.; Clark, W.D.K.; Goodell, P.D. Particulate Catalyst and Preparation. US4358396A, 9 November 1982. [Google Scholar]
- Carvajal, D.; Arcas, R.; Mesa, C.A.; Giménez, S.; Fabregat-Santiago, F.; Mas-Marzá, E. Role of Pd in the Electrochemical Hydrogenation of Nitrobenzene Using CuPd Electrodes. Adv. Sustain. Syst. 2022, 6, 2100367. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120, 683–733. [Google Scholar] [CrossRef] [PubMed]
- Höller, V.; Wegricht, D.; Yuranov, I.; Kiwi-Minsker, L.; Renken, A. Three-Phase Nitrobenzene Hydrogenation over Supported Glass Fiber Catalysts: Reaction Kinetics Study. Chem. Eng. Technol. 2000, 23, 3. [Google Scholar] [CrossRef]
- Turáková, M.; Salmi, T.; Eränen, K.; Wärnå, J.; Murzin, D.Y.; Králik, M. Liquid phase hydrogenation of nitrobenzene. Appl. Catal. Gen. 2015, 499, 66–76. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Lizandara Pueyo, C.; Wengeler, L.; Huber, S.; Schunk, S.A.; Mormul, J.M.; Moulin, D.; Aschauer, S.J.; Boscagli, C.; Schmitt, M.; Schwab, M.G.; et al. Processes for Carrying out Chemical Reactions in Fluid Phase in the Presence of Films Comprising Catalyst Particles. EP3860757A1, 11 August 2021. [Google Scholar]
High Activity Pd/C | Middle Activity Pd/C | Low Activity Pd/C | |
---|---|---|---|
Activity | high | Middle | Low |
Pd loading | 5% | 5% | 5% |
BET surface area | 764 m2/g | 758 m2/g | 789 m2/g |
Pore volume | 0.60 cm3/g | 0.61 cm3/g | 0.63 cm3/g |
Grain size Dn10 | 0.754 μm | 0.728 μm | 0.943 μm |
Dn50 | 1.05 μm | 1.09 μm | 1.44 μm |
Dn90 | 2.66 μm | 3.07 μm | 4.18 μm |
Pd dispersion | 23.6% | 23.1% | 29.6% |
Pd surface area | 5.3 m2/g | 5.1 m2/g | 6.6 m2/g |
Pd particle size (hemisphere, chemisorption) | 4.7 nm | 4.8 nm | 3.8 nm |
High Activity Pd/C | Powder | 100 μm Thick Film | 250 μm Thick Film | 400 Thick Film |
---|---|---|---|---|
PTFE content | - | 7.5% | 7.5% | 7.5% |
Pd loading | 5% | 4.63% | 4.63% | 4.63% |
BET surface area | 764 m2/g | 604 m2/g | 654 m2/g | 717 m2/g |
Pore volume | 0.60 cm3/g | 0.47 cm3/g | 0.50 cm3/g | 0.55 cm3/g |
Pd dispersion | 23.6% | 20.5% | 23.8% | 24.1% |
Pd surface area | 5.3 m2/g | 4.2 m2/g | 4.9 m2/g | 5.0 m2/g |
Pd particle size (hemisphere, chemisorption) | 4.7 nm | 5.5 nm | 4.7 nm | 4.6 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscagli, C.; Lepre, E.; Hofmann, O.; Wengeler, L.; Schmitt, M.; Jevtovikj, I.; Lizandara-Pueyo, C.; Schunk, S.A. Fibrillated Films for Suspension Catalyst Immobilization—A Kinetic Study of the Nitrobenzene Hydrogenation. Materials 2024, 17, 5411. https://doi.org/10.3390/ma17225411
Boscagli C, Lepre E, Hofmann O, Wengeler L, Schmitt M, Jevtovikj I, Lizandara-Pueyo C, Schunk SA. Fibrillated Films for Suspension Catalyst Immobilization—A Kinetic Study of the Nitrobenzene Hydrogenation. Materials. 2024; 17(22):5411. https://doi.org/10.3390/ma17225411
Chicago/Turabian StyleBoscagli, Chiara, Enrico Lepre, Oliver Hofmann, Lukas Wengeler, Marcel Schmitt, Ivana Jevtovikj, Carlos Lizandara-Pueyo, and Stephan A. Schunk. 2024. "Fibrillated Films for Suspension Catalyst Immobilization—A Kinetic Study of the Nitrobenzene Hydrogenation" Materials 17, no. 22: 5411. https://doi.org/10.3390/ma17225411
APA StyleBoscagli, C., Lepre, E., Hofmann, O., Wengeler, L., Schmitt, M., Jevtovikj, I., Lizandara-Pueyo, C., & Schunk, S. A. (2024). Fibrillated Films for Suspension Catalyst Immobilization—A Kinetic Study of the Nitrobenzene Hydrogenation. Materials, 17(22), 5411. https://doi.org/10.3390/ma17225411