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Abstract: Since most hot and cold metal-forming processes originate from various casting processes, it
is important to test their susceptibility to the deformation of new materials. Cast rods of CuMg alloys
with a Mg content of 2, 2.4, 2.8, 3, 3.2, 3.6, and 4 wt.% were obtained in the continuous casting process
with pure copper as a reference material in order to obtain information on the material’s ability to
withstand 50% deformation. The materials in the as-cast state were subjected to solutioning, cold
drawing, and recrystallization. After each process, samples were taken and subjected to upsetting
tests with 50% deformation applied in a single operation. Additionally, materials in the as-cast state
were subjected to upsetting tests at 700 ◦C. The hardness and electrical conductivity of each sample
were analyzed. Selected samples were subjected to microstructural analysis. The obtained results
show an increase in hardness from 46 HB to 90–126 HB, and a further increase to 150–190 HB with
a quasi-linear decrease of electrical conductivity, which proved the influence of solid-solution and
strain hardening, respectively. The microstructural analysis proved that such deformation does not
cause microcracks. Furthermore, in the case of CuMg up to 3 wt.% of Mg, the alloying additive
completely dissolved after solutioning.

Keywords: CuMg; copper alloys; hot deformation; cold deformation; upsetting test; non-ferrous metals

1. Introduction

Conventional metal-forming processes are based on continuous or semi-continuous
casting processes followed by hot forming (rolling, extrusion, or forging usually preceded
by extrusion) or cold forming (rolling, drawing, or stamping) with either machining or
plating to obtain the final product [1–3]. There are alternatives such as near net shaping
manufacturing, which proposes the continuous casting of semi-final products that are
usually small, similar to the final product dimensions, and the subsequent hot forging
with finishing [4]. This approach eliminates the necessity of extrusion before the final
metal-forming process.

The applications of non-ferrous metals, being the products of various metal-forming
processes, are limitless in the present world and include, among others, the aviation and
space industry, the automotive industry, military applications, medical and consumer
goods, heat exchangers, electronics and electrical conductivity, and many others [5–7].
Many of these require the materials to be of both high-strength and high electrical con-
ductivity. Therefore, the use of steel for high-strength applications is often limited by its
extremely low electrical conductivity, and thus, steel alloys are mostly used as construction
materials or cores to increase the strength of overhead lines. It would be impossible to
use pure copper as an overhead cable due to its weight-to-strength ratio, and on the other
hand, it would be impossible to use just steel as a conductor in such lines due to their
electrical conductivity-to-weight ratio [8–10]. Similarly, it would not be possible to use steel
for trolley wires, and it would be complicated to use aluminum or aluminum alloys due to
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their low abrasive resistance, which would result in the constant need for wire replacement.
Some of the ways of increasing the mechanical or functional properties of materials are
non-conventional metal-forming processes such as the extrusion process with rotating die
(KOBO) [11], accumulative angular drawing (AAD) [12], close die precision forging [13],
die-less wire drawing [14], ultrasonic assisted wire drawing [15], or manufacturing metal
matrix composites (MMC) [16]. On the other hand, pure metals such as copper or alu-
minum are sufficient among many applications where the electrical or thermal conductivity
is of higher importance than the strength of the material [8,17,18]. However, in order to find
a balance between the mechanical properties and the electrical or thermal conductivity, it is
necessary to implement non-ferrous alloys. According to the Nordheim’s rule of mixtures,
introducing foreign particles of different atom diameter during alloying would decrease the
electrical conductivity of the matrix material even if the alloying element itself has higher
electrical conductivity [19].

The most common, best studied, and oldest copper alloys are brass, where the main
alloying element is zinc [20], and bronze, where the main alloy additive is tin [21]. There
are, of course, grades of brass and bronze alloys that, apart from their main alloying
elements, consist of a substantial amount of other additives such as Pb, Al, Ni, etc.; their
purpose is either to increase plasticity, workability, and machinability, or to increase their
mechanical properties [18,21,22]. In recent years, many other copper-based alloys have been
designed, studied, and manufactured, such as CuNiSi alloys [23], CuAg alloys [24], CuSc
alloys [25], CuCrZr alloys [26], and many others [18]. According to the authors [23–26], the
abovementioned alloys are all described as high-strength due to being copper-based, and
with limited alloying additives; their electrical conductivity is also at a reasonable or high
level. However, the common use of these alloys is limited due to either the high price of
alloying additives or their low availability [27].

The demand for wrought high-strength copper alloys is increasing due to the large
amount of new applications such as 3D printing nozzles, welding tips, high-pressure heat
exchangers and radiators, or ITER divertors (International Thermonuclear Experimental
Reactor). Such applications require materials with high electrical and thermal conductivity
and high strength as they face extreme working conditions. Therefore, it is important
to conduct research on the alloys with cheaper alloying additives, which would still
provide high mechanical properties and electrical conductivity. An alternative might
be CuMg alloys with a higher than commercial Mg content, which, at the moment is
at the maximum of 0.7 wt.% [28]. Commercially used CuMg alloys were studied by
Calvillo et al. [29], who provided data proving that the ultimate tensile strength (UTS)
of these alloys with 0.2 and 0.5 wt.% of Mg can increase from 170 MPa and 210 MPa to
550 MPa and 740 MPa, respectively, after 16 passes using an equal channel angular press.
Recently, studies have been published on CuMg alloys with a higher than commercial
Mg content; i.e., even above 2 wt.%., Gorsse et al. [30] studied the possibility of the
precipitation hardening of CuMg alloys and showed evidence that precipitation hardening
is very effective in the case of two-phase CuMg alloys, since materials subjected to both
strain hardening and ageing can reach a Yield Strength (YS) of over 1000 MPa. However,
it was also proven that two-phase alloys consist of excessive amounts of α + β-phase
above 3.6 wt.% of Mg, which causes brittleness and the existence of microcracks after
subjecting the as-cast materials to cold deformation in the upsetting tests [31]. Such
microcracks and brittleness might limit the possibility of cold metal-forming without prior
heat treatment.

Therefore, when new materials such as high-Mg-content CuMg alloys are in question,
it is important to assess their susceptibility to deformation in various states, which is the
main purpose of this paper. The objective is to verify the deformability of CuMg alloys
obtained in the as-cast state by subjecting them to solutioning (causing supersaturation),
prior cold deformation, recrystallization, and both cold and hot deformation in the uniaxial
upsetting tests. Upsetting was chosen as it is a mechanical test that evaluates the behavior
of metals under compressive stress. It determines the workability of materials as metals
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that can withstand large amounts of deformation without cracking are considered more
workable, which is especially important when selecting materials for processes like forging.
The conducted tests will also provide information on the strain hardening of tested materials
being the effect of cold deformation [32]. Therefore, this paper will provide information
on the response of newly developed alloys to deformation regarding the evolution of its
properties and the existence of defects.

2. Materials and Methods
2.1. Chemical Composition of Selected Materials

The materials selected to obtain the main goal of the paper were cast rods from a
laboratory horizontal continuous casting line built by Termateal for AGH University of
Krakow (Termetal, Piekary Śląskie, Poland). The materials were obtained with identical
process parameters to maintain the stability and purity of the experiment. The batch
materials for the casting processes were ETP-grade copper of a declared purity of minimum
99.9 wt.% and magnesium of a declared purity of 99.99 wt.%. The diameters of the cast rods
were 14 mm and the casting speed was 0.1 m/min in each case. However, the continuous
casting process is not the main focus of this paper and more detailed information on the
construction of the furnace and process parameters are available in the authors’ previously
published paper [3]. The chemical composition of materials was selected based on the phase
diagram of CuMg alloys [33] to represent both single-phase α alloys and two-phase α + β

alloys. Additionally, pure copper was also casted as reference material. The verification
of chemical composition is especially important since the melting temperature of Cu is
slightly lower (1084 ◦C) than the boiling point of Mg (1091 ◦C), and thus the evaporation of
alloying additive could occur [31]. In order to overcome this problem, the amount of Mg in
the case of all casted alloys was 5% higher than the desired amount. The nominal chemical
compositions are presented in Table 1.

Table 1. The nominal chemical composition of cast rods (wt.%) [28].

Element Cu Mg Other

Cu Minimum 99.9 Maximum 0.02 Max. 0.1

CuMg2 98 ± 0.05 2 ± 0.05 Max. 0.1

CuMg2.4 97.6 ± 0.05 2.4 ± 0.05 Max. 0.1

CuMg2.8 97.2 ± 0.05 2.8 ± 0.05 Max. 0.1

CuMg3 97 ± 0.05 3 ± 0.05 Max. 0.1

CuMg3.2 96.8 ± 0.05 3.2 ± 0.05 Max. 0.1

CuMg3.6 96.4 ± 0.05 3.6 ± 0.05 Max. 0.1

CuMg4 96 ± 0.05 4 ± 0.05 Max. 0.1

According to the CuMg phase diagram [33], up to approximately 3 wt.% of Mg,
the alloys are single-phase and two-phase above 3 wt.% of Mg. Therefore, the study
examines three alloys each with additional alloys casted at the 3 wt.% of Mg boundary and
pure copper.

The chemical composition of the obtained materials was measured and analyzed
with an arc spark spectrometer SPECTROTEST TXC35 (SPECTRO Analytical Instruments,
Kleve, Germany). The device uses optical emission. The analyzed sample is vaporized
from the surface with an electrode by an arc spark discharge. While vaporized, the atoms
and ions are excited into the emission of radiation. The radiation is passed to the optics
of the spectrometer through optical fiber, where it is dispersed into spectral components.
Based on the wavelengths and the intensity of radiation the data are recalculated using a
stored set of calibration curves and the obtained results are presented as percentage con-
centration. Each rod was machined to the axis of the rod’s cross-section and by conducting
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five measurements on each of the rods the average values of Cu and Mg were calculated.
The elements other than Cu and Mg were omitted in the further analysis as their amount
was insignificant.

2.2. Upsetting Tests

Upsetting is currently widely used in metal forming to improve the mechanical prop-
erties of metal products; however, there are several disadvantages regarding the process
such as the formation of cracks [31,32]. The materials obtained in the as-cast state were
subjected to several state modifications as presented in Figure 1 in order to obtain infor-
mation on how to prevent formation of said cracks. Regarding the cold deformation of
CuMg alloys in the as-cast state, an extended analysis was conducted in the previously
published paper [31], and it was therefore decided to focus on new data instead of re-
peating the same experiments. Due to planned cold deformation in the drawing process
and the resulting diameter reduction it was important that the initial casted rod had a
diameter of 14 mm. It allowed for all the samples to have the same cylindrical shape and
identical dimensions.
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Figure 1. The schematic research program.

The samples after each of the depicted state modifications are in Figure 1. Heat
treatment processes were conducted using the resistance furnace (Czylok, Jastrzębie-Zdrój,
Poland) and/or prior deformations were subjected to cold deformation in upsetting tests
on the MTS 880 hydraulic press (MTS Systems Corporation, Eden Prairie, MN, USA).
The samples in the as-cast state were additionally subjected to hot deformation at 700 ◦C
by applying the heating furnace (Severn Science Ltd., Bristol, United Kingdom) during
the upsetting test as presented in Figure 2. The extensions for press tables were made
of quenched steel with the cooling medium applied inside to prevent the boiling of the
hydraulic oil. The surface of the press tables during both hot and cold upsetting tests was
covered with boron nitride as lubricant, which is known to withstand the temperatures
of up to 1000 ◦C in the air atmosphere [34]. The temperature of the furnace chamber
was constantly monitored with thermocouples. The samples during hot upsetting were
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heated along with the furnace (at the rate of approximately 5 ◦C/min) and when the
temperature of 700 ◦C was obtained each sample was held at that temperature for 1 h
prior to deformation to ensure that the whole sample was heated homogenously. The
samples were cylindrical with a diameter of 10 mm and a height of 15 mm and the applied
test velocity was 1 mm/min. The deformation applied regardless of the state of the
material was 50% in a single operation. The 50% deformation was chosen for two reasons.
Firstly, it provides sufficient amounts of data for further analysis using the Hollomon
equation. Secondly, in [31] it was discussed that during cold deformation of the two-
phase alloys in the as-cast state the cracks were visible when subjecting them to 50% of
strain. The point was to determine whether it would still be the case after solutioning
at 700 ◦C.
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Figure 2. The overview of the hot upsetting test stand; (a) the view with a closed heating furnace;
(b) the view with an open heating furnace and sample before upsetting placed on a press table.

Due to this research program, there were eight different materials tested in the initial
state, and after, the application of four various types of deformation (hot deformation and
cold deformation of three various states of material). Overall, thirty-two different types of
samples were subjected to deformation, the properties analyses and their evolution as well
as the microstructural analyses are described in the following subsections.

2.3. Microstrutural Analysis

The microstructural analysis was conducted on selected samples that would repre-
sent pure copper, single-phase alloy (CuMg2), two-phase alloy (CuMg4), and the alloy
that is approximately at the boundary between phases (CuMg3) in order to reduce the
amount of data. The analyses were conducted using Olympus GX51 inverted metallur-
gical optical microscope (OM) (Olympus, Tokyo, Japan) and Hitachi S-3400N scanning
electron microscope (SEM) (Hitachi Ltd., Tokyo, Japan). Regarding the CuMg alloys, the
refining of grain size according to the Hall–Petch equation and the presence of fine and
evenly distributed Mg-rich precipitates might significantly increase mechanical properties.
However, an excessive amount of precipitates and too fine grain might cause brittleness,
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which could result in lower plasticity and lower resistance to dynamic impact toughness.
By using OM, it was possible to determine the grain size at different states of materials after
deformation and the prospective existence of macroscopic cracks. Samples were polished
using Struers Labopol polishing unit (Struers, Ballerup, Denmark) and the etching solution
was FeCl3-HCl (5 g of Iron(III) chloride, 10 cm3 of Hydrochloric acid, 100 cm3 of ethanol).
By using SEM, it was possible to determine the presence of microcracks at the α + β eutectic,
which would be impossible to see without such high magnification. For the SEM analysis,
samples were flat, polished, and perpendicular to the electron beam. The accelerating
voltage was set at 10 kV, the working distance was set to 10 mm, and the magnification
was 3000×.

It is generally accepted that strain in an upsetting test is not perfectly homogeneous.
The analyses of microstructure and further discussed macroscopic properties (hardness
and electrical conductivity) were done at a high deformation zone, close to the middle of
each sample as presented in Figure 3 [32,35,36].
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2.4. Hardness and Electrical Conductivity

Upsetting is described as one of the forging methods [37], which, especially in
higher temperatures, may eliminate internal pores of the cast [38,39]. However, apply-
ing a high temperature may also affect the electrical conductivity of alloys [18]. On the
other hand, upsetting at the ambient temperature, regardless of the state of materials,
would provide cold deformation, and thus strain hardening, which would affect the
hardness of tested materials [31]. In order to assess the evolution of properties after
each sample was subjected to deformation, both hardness and electrical conductivity
were measured.

The electrical conductivity of materials was measured with a non-destructive test
(NDT) using an eddy current measuring device SigmaTest 2.069 (Foerster Instruments
Inc., Pittsburgh, PA, USA). Prior to each measurement, samples were placed in the air-
conditioned laboratory to maintain constant temperature and stabilize the thermal state of
the samples. This is important as the electrical conductivity of metals and alloys decreases
with the increase of temperature [40]. It is especially important when assessing samples
subjected to the various heat treatment processes. The frequency was set at 60 KHz and
each sample was subjected to five measurements.

Hardness was determined with the Brinell method, which provides better results
regarding high-strength hardened alloys. The results might have high standard devia-
tion if a microhardness assessment method such as the Vickers method was used. The
measurements were conducted with a Nexus3001 hardness tester (Innovatest Europe BV,
Maastricht, The Netherlands), that has a test force accuracy of 0.5% and a display resolution
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of 0.1 HB. The applied load was 187.5 kgf (approximately 1840 N) with 10 s of indenting
time and each sample was subjected to five measurements.

3. Results and Discussion
3.1. Chemical Composition of Selected Materials

The chemical composition of samples was selected based on a CuMg phase dia-
gram [33] to represent single-phase α alloys (CuMg2, CuMg2.4, CuMg2.8), two-phase α + β

alloys (CuMg3.2, CuMg3.6, CuMg4), and an alloy approximately at the boundary between
these two groups (CuMg3) with a reference material of pure copper. The results of chemical
composition analyses are presented in Table 2. The arc spark spectrometer used for the
analysis provides results of much more elements; however, since there were no alloying
additives other than Cu and Mg, their measured content was 0 ppm or close to 0 ppm.
Therefore, it was decided to present their sum as balance since it was not meaningful. The
average results presented in Table 2 include the dispersion of the measurements. The mea-
sured values were both repeatable and consistent with the nominal chemical composition
presented in Table 1 in the previous section. Due to the evaporation of magnesium [31],
even though the amount of alloying additive was 5% higher than nominal as mentioned
in the previous section, the measured values were slightly lower than desired but in the
desired nominal range.

Table 2. Average values of measured chemical composition of the tested materials.

Element Cu Mg Other

Cu 99.92 ± 0.011 0.001 ± 0.001 Bal.

CuMg2 98.0 ± 0.043 1.99 ± 0.025 Bal.

CuMg2.4 97.6 ± 0.031 2.37 ± 0.014 Bal.

CuMg2.8 97.2 ± 0.055 2.78 ± 0.027 Bal.

CuMg3 97.0 ± 0.049 2.99 ± 0.028 Bal.

CuMg3.2 96.8 ± 0.031 3.20 ± 0.021 Bal.

CuMg3.6 96.4 ± 0.038 3.58 ± 0.029 Bal.

CuMg4 96.0 ± 0.045 3.98 ± 0.026 Bal.

Furthermore, due to low values of dispersion of Mg in Table 2 it is assumed that the
materials did not exhibit macrosegregation, which could influence the further research
regarding upsetting tests and the evolution of properties [41–43]. Bearing that in mind, the
samples were subjected to further analyses.

3.2. Upsetting Tests

In order to verify the response of the materials to cold deformation in various states,
the samples were subjected to 50% upsetting tests. The results of these tests in the form
of stress–strain curves are presented in Figure 4 (supersaturated samples), Figure 5 (su-
persaturated and cold drawn samples), and Figure 6 (supersaturated, cold drawn, and
recrystallized samples). After cold upsetting was performed, the press tables extensions
with cooling systems and a heating furnace were attached to the press and hot defor-
mation was applied to the samples at 700 ◦C. The results of hot upsetting are presented
in Figure 7.
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In order to ease the analysis of the presented results in all of the cases (Figures 4–7),
pure copper is marked with a brown color, the single-phase CuMg alloys are marked with
a green color, the two-phase CuMg alloys are marked with a red color, and the CuMg3
alloy, which is in between according to the CuMg phase diagram [33], is marked with
a black color. A strain of 50% was applied as it provides a sufficient amount of data
for further analysis [31]. Cold deformed samples exhibited much higher stress recorded,
regardless of the state of material than samples subjected to hot deformation. This is in
agreement with other papers published on upsetting tests [44–46] where the authors claim
that lower temperatures allow higher plastic strain energy to be imparted even at a small
amount of strain. The effect of solid-solution hardening is undeniable as all alloys required
higher stress to be applied in order to obtain 50% deformation than pure copper [18].
Regarding CuMg alloys in comparison with pure copper, which is tested in the current
paper, the increase is approximately twofold. Even during hot deformation, the stress
required to obtain 50% of strain was two times higher in the case of all CuMg alloys than
for pure copper.

The collective data are presented in Table 3. Since the stress–strain curves are almost
perfectly represented in four clusters (Cu, single-phase alloys, CuMg3, two-phase alloys),
the data are divided into these four groups.

Table 3. The collective data of stress recorded at 50% of applied strain.

Supersaturated Supersaturated and
Cold Drawn

Supersaturated, Cold
Drawn, and Recrystallized

Hot Deformed at
700 ◦C

Group of materials Engineering stress recorded at 50% of strain (MPa)

Cu 508 559 608 64

Single-phase CuMg 949–970 961–992 903–941 116

CuMg3 1023 1049 1045 126

Two-phase CuMg 1136–1157 1130–1162 1137–1170 120

The existence of said clusters must be directly connected to the amount of α + β

phase in the alloys that should dissolve in elevated temperatures and be prevented from
occurring during cooling due to rapid quenching [47]. This is especially since when no
heat treatment was applied in [31] and the alloys were subjected to upsetting in the as-
cast state, this phenomenon did not occur. What needs to be noted is the fact that the
applied heat treatment did not affect pure copper in the way the alloys were affected.
The stress needed to obtain 50% of cold deformation of pure copper increased after re-
crystallization, whereas in the case of single-phase CuMg alloys it decreased significantly,
and in the case of CuMg3 and two-phase alloys it remained at similar levels as after
cold drawing.

According to the presented stress–strain curves, the elastic deformation region and YS
increased significantly after cold drawing in regard to just supersaturated samples. The
YS decreased again after applying recrystallization heat treatment, and the starting point
of plastic deformation was at the level similar or slightly lower than the supersaturated
samples. This suggests that the recrystallization parameters were selected properly, the
grain size should decrease, and mechanical properties of materials should decrease as
well [48,49].



Materials 2024, 17, 5467 11 of 18

For further analysis of the cold deformed samples, the strain hardening exponent
and the strength coefficient proposed by Hollomon [50] were calculated according to
Equation (1) and presented collectively in Figure 8,

σs = K × εt
n (1)

where σs is the deformation resistance, K is the strength coefficient, εt is the true strain, and
n is the strain hardening exponent.
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For each of the tested materials, an average R2 coefficient of determination values is
presented at the top of the graph in Figure 8. These calculated values show very high levels
of accuracy of prediction as they are close to or above 0.99 in the range of 0 to 1.

The calculated n-values, which represent the formability of materials, show that after
just solutioning the formability decreases from 0.56 for Cu to 0.36 for CuMg alloys with
the highest Mg content. Therefore, it suggests that if it was technologically possible pure
copper would reach even higher mechanical properties than CuMg alloys if given enough
strain. These data are in agreement with results obtained for the CuMg alloys in the as-cast
state [31]. The differences disappear after applying cold drawing, or cold drawing and
recrystallization. The n exponent is drastically lower after cold drawing, in comparison to
supersaturated or recrystallized samples, which shows the limitation of deformability of
copper and copper alloys.

The K-value represents the theoretical true strength of the materials if a true strain
equal to 1 would be applied. Since cold drawing applies initial strain and obtains higher
YS value its maximum level is therefore limited. This is why the K-values after cold
drawing are the lowest of all the tested samples. However, in comparison with Cu, the
increase of K-values is between 72% and 116% depending on the Mg content, while for
the supersaturated and recrystallized samples it is in the range of 71–97% and 48–86%,
respectively. The changes in calculated values show that CuMg alloys are highly responsive
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to heat treatment and their properties can be altered by it. However, higher mechanical
properties are limited by lower formability [31,51].

The authors in [31,52] observed that alloys with higher amount of α + β phase when
subjected to cold deformation in the as-cast state tend to crack. The macroscopic result of
these cracks was visible on the upsetting stress–strain curves as the stress at some point
stopped rapidly increasing—there was a breaking point visible [31]. The authors in [53]
claim that by applying the heat treatment the fracture strength in compressive tests can
be increased by almost 80% and fracture strain by almost 100%. Since no sudden changes
throughout the stress–strain curves occurred for any of the alloys studied in this paper it
might suggest that no significant cracks occurred during the conducted tests and thus the
applied heat treatment resulted in dissolving most or a significant amount of precipitates.
This will be verified further in the next subsection.

3.3. Microstructural Analysis

Figure 9 depicts the microstructure of the selected samples after the upsetting tests
depending on the Mg content and the applied state modifications (the heat treatment and
initial cold deformation). Additionally, the microstructure of pure copper is also presented
for reference. Regardless of the magnesium content, no cracks were found in any of the
samples after the heat treatment was applied prior to upsetting. This proves the high
plasticity of all samples and the possibility of shaping these materials without loss of
cohesion as opposed to samples subjected to cold deformation in the as-cast state [31].
Using optical microscopy, it can be observed that with increasing magnesium content,
the grain size decreases. This phenomenon may be caused by the formation of more
numerous crystallization nuclei in the form of intermetallic phases. This may make the
grains smaller, as more crystals are formed at the early stages of solidification. Additionally,
a larger number of these phases hinders the diffusion of atoms in the solid state, which
inhibits further grain growth [54]. Such reasoning may be confirmed by assessing the SEM
images of samples subjected to upsetting at 700 ◦C. In the case of SEM analysis of cold
deformed samples, it can be stated that subjecting CuMg alloys with 2 and 3 wt.% of Mg
to solutioning and thus in the supersaturated state caused the phases rich in Mg to be
completely dissolved. Consequently, these phases are also dissolved in the case of cold
drawn and recrystallized samples. Whereas, in the case of CuMg4 alloys, the dissolution
was only partial and the dark α + β phase is clearly visible. According to the CuMg phase
diagram, the second phase is Cu2Mg. The darker color is the result of the SEM analysis,
which was conducted using backscatter electrons (BSE), and thus, the elements or phases
with the lower atomic number are darker [52]. Additionally, the Mg-rich phases of CuMg4
samples were fragmentized after subjecting them to cold upsetting when the sample was
in the cold drawn state. It was not present in the supersaturated or recrystallized state.
It might suggest that two-phase CuMg alloys may have limited deformability, even after
prior solutioning was applied. Out of all the analyzed states of materials the grain size
was the smallest in the recrystallized state, regardless of the Mg content. The reason
for that may be the fact that such heat treatment preceded by cold deformation leads to
significant grain refining in the materials microstructure. It is caused by the formation
of dislocations and recrystallization that leads to new, fine grains being formed [55]. The
process is further enhanced by the addition of Mg, which inhibits the grain growth and
stabilizes the fine-grained structure.
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3.4. Hardness and Electrical Conductivity

The analysis of the macroscopic properties of CuMg alloys subjected to cold defor-
mation in various states was focused on electrical conductivity expressed as % IACS
(International Annealed Copper Standard) and hardness measured using Brinell’s method.
IACS percentage is the percentile value where 100% is equal to the electrical conductivity
of pure copper in the annealed state. Figure 10 presents the results of electrical conductivity
measurements after subjecting the samples to upsetting tests. The standard deviation of
conducted measurements is marked as error bars; however, in many cases it was so low
that it is barely visible. The values for pure Cu are always around 100% IACS, while the
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values for CuMg alloys decrease quasi-linearly with the increase of Mg content according
to Nordheim’s rule of mixtures [19]. The measured values for cold deformed samples are
almost identical, while hot deformed are significantly higher. This was confirmed for many
non-ferrous metals and alloys and is especially visible when cold deformation is higher
than 40%, regardless of the orientation of measurement (axial/radial) [56]. It also explains
why the cold drawn samples were recorded with the lowest electrical conductivity values.
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The authors in [57] explain the difference in electrical resistivity between the deformed
and recrystallized samples and the difference in stacking fault energy. They claim that
the difference between the values decreases as the stacking fault energy increases. Since,
in this study, the electrical conductivity of recrystallized samples is almost identical to
cold drawn and supersaturated samples it would suggest that the stacking fault energy is
significantly high.

The differences between various states were not that substantial in terms of electrical
conductivity; however, in terms of hardness, the measured values varied significantly
after subjecting the samples to cold upsetting at 50% strain. The calculated average values
with standard deviation marked as error bars are presented in Figure 11. Regarding pure
copper, all cold deformed samples were measured at approximately 90 HB and the hot
deformed at 46 HB. The hardness of the hot deformed CuMg alloys was also lower when
compared to the cold deformed samples. The lower hardness of hot deformed non-ferrous
metals was explained by many authors as the increase of temperature, which leads to the
migration of grain boundaries as well as the movement of dislocations and consequently,
promotes the softening effects [58–60]. The lack of strain hardening of the hot deformed
samples and the presence of solid-solution hardening is visible when assessing the hardness
after hot upsetting, as the results are almost identical as in the non-deformed as-cast state
samples [31]. The hardness of samples after cold upsetting tests differs in the case of
CuMg alloys. The hardness of recrystallized and supersaturated samples is significantly
lower than cold drawn samples after applying cold deformation of 50%. The difference is
approximately 20 HB regardless of Mg content. This means that by applying cold drawing
with a unit strain deformation (λ) of 1.2, the hardness of cold deformed samples increases
quasi-linearly in the function of Mg content by 10–15%. Higher hardness of materials after
prior cold drawing is linked to plastic deformation during which the increasing dislocations
within the grains undergo interactions and lead to the formation of dislocation pile-up,
which will impede the motion of dislocations. From the macroscopic point of view, the
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resistance to deformation increases and thus the strength of the materials increases as
well [51,61].
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The obtained results suggest that CuMg alloys are of high strength and reasonable
electrical conductivity. Additionally, by adding Mg as an alloying additive, the density of
the alloy will be lower than currently used alloys for high strength applications such as
CuAg, CuNiSi, or CuZr alloys. The electrical conductivity of CuMg alloys is lower than
CuAg alloys; however, the high price of silver limits the common use of these materials.
Nowadays, high-strength copper alloys are mainly used as trolley wires and contact lines,
cable terminals and connectors, brackets and handles for railway catenary systems, and
applications that require high abrasive resistance such as 3D printing nozzles, welding
caps, and tips [31]. The applications in these fields of the industry are where the CuMg
alloys might find the most use.

4. Conclusions

The aim of this paper was to verify the deformability of CuMg alloys in various states
(supersaturated, cold drawn, recrystallized) in cold upsetting tests and additionally in hot
upsetting for the as-cast state. The following conclusions were made:

The chemical composition of tested samples exhibited slightly lower than nominal
Mg content. During the metallurgical synthesis, the amount of Mg was 5% higher than
nominal, meaning that this amount of Mg must have evaporated during the process.

Applying the solutioning at 700 ◦C for 10 h caused the Mg-rich phases to dissolve
in the case of CuMg alloys with up to 3 wt.% of Mg. Samples with higher Mg content
exhibited fragmentation of Mg-rich phases after subjecting them to cold upsetting when
the samples were in the cold drawn state. This might suggest limited deformability of
two-phase CuMg alloys even after prior solutioning was applied.

After subjecting the CuMg alloys to solutioning, it was possible to conduct cold
upsetting with 50% strain without cracks or irregularities at stress–strain curves, and with
visible effects of work hardening. Therefore, the CuMg alloys can be subjected to cold
deformation after solutioning or hot deformation in the as-cast state.

There was almost a twofold difference between the hot deformed samples and the
cold deformed samples that were subjected to prior cold drawing in terms of material
hardness. It was caused by the softening effect of high temperature during hot upsetting
and increasing resistance to deformation during cold upsetting.
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Since the tested materials can be subjected to further artificial ageing, the research can
be further extended by applying various temperatures and times of ageing in order to assess
the response of CuMg alloys to deformation after subjecting them to the precipitation-
hardening process.
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