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Abstract: The presented problem considers the static temperature analysis of a three-layered, annular
plate with heterogeneous facings made of material with radially variable parameters. They are
defined by the accepted exponent functions. The plate is composed of thin metal facings and a thicker
foam core. The plate is loaded with a flat temperature field with a gradient directed across the plate
radius. Using the approximation finite-difference method, the eigen-value problem is solved in order
to calculate the temperature differences between plate edges, which cause a loss of plate stability.
Taking into account the different material and geometrical parameters, the critical temperature state
parameters are evaluated. The meaning of the mixed system of parameters connected with the plate
shape geometry, dimensions of the plate-transversal structure, and with the gradation of the material
in the radial direction on the thermal response of the composite plate have been found. Numerous
results of numerical calculations show the responses of the examined composite plate with facings
made of the heterogeneously directed material.

Keywords: composite FGM; three-layered annular plate; temperature field; critical state; finite-
difference method

1. Introduction

Heterogeneous materials for layers of composite plates enable the creation of new
structures designed for selected applications. Different material parameters, in combination
with the suitable mass arrangement, create distinct elements whose unique mechanical
and thermal loading properties can be predicted. For such systems, the action of the
temperature field can be controlled. An example is the response of the annular plate
subjected to the temperature gradient between the edges. Various applications of annular
plates, for example, in mechanical, civil, or nuclear engineering and also the aerospace
industry, require a search for new solutions that are appropriate for a given application.

We propose a three-layered annular plate with functionally graded material (FGM)
for the facings in this paper. Thermal loading influences plate stability since it changes the
geometrical parameters and load capacity of the plates. The main aim of the presented
investigations is to recognize the plate stability response to the static temperature field. The
building of a new plate structure with selected FGM layers—i.e., the facings—is the novel
element that widens our understanding of composite, heterogeneous plates in various
conditions. Applications could include cases where the annular plate experiences thermal
loads from the temperature fields around the plate’s inner and outer edges.

A selected analysis, which considers the vibration, buckling, and thermal loading
of multi-material annular plates, is presented. This work exhibits an extensive range of
studies and the application of different calculation techniques. A vibration and buckling
analysis of a sandwich square plate with an FGM metal plate core has been presented in
a previous work [1]. Here, the influence of geometry, material gradation, and the system
of boundary conditions have been taken into account. The gradation law changes the
transversal geometry of the distribution of the core metal material. The plate-buckling
response was shown, which is dependent on an acceptable analysis of the plate parameters.
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The influence of graphene platelets, which transversally reinforce the composite
annular plate that is located on the elastic foundation, on its stability is presented in a
previous work [2]. The influence of the geometry parameters of graphene dispersions on
plate thermal responses has been examined in detail. A functionally graded graphene
platelet reinforced with a nanocomposite annular plate subjected to thermal loading was
examined in earlier research [3]. Here, the asymmetric stability problem was analyzed.
The transversal plate structure consists of functionally graded graphene laminas that are
differently orientated. A detailed discussion was conducted on parameters for analyzing
the plates in various thermal environments.

The axisymmetric thermal buckling of FGM annular plates was analyzed in an earlier
paper [4]. A plate with variable thickness was thermally loaded across the plate-radial
coordinate. The effects of the geometrical, boundary, and thermal loading were studied.
The problem was solved using the finite elements. The influence of the Winkler foundations,
geometry, and material parameters on functionally graded piezoelectric annular plates has
also been investigated [5]. The problem of the three-dimensional free vibrations was solved
semi-analytically. FGM annular plates under rapid heating were also examined [6]. The
influence of thermal shock on plate vibrations depending on various parameters connected
with loading, plate geometry, and boundary conditions was analyzed. This work con-
firmed the significant effect of these parameters on the thermal response, especially for the
thin plates.

In addition, the frequency response of the annular sector and sector plates for various
FG materials has been subject to examination [7]. The effect of different geometric, material,
and boundary parameters on frequency values was determined. An analytical study on
the buckling of FGM annular plates with an elastic foundation is presented in ref. [8].
Using classical plate theory, the three models for thermal loading were analyzed for the
calculational process of the critical temperature of plates with various parameters. The
FGM annular plates under thermo-mechanical loads in the large deflection problem were
also examined in the literature [9]. The von Karman plate theory was used to analyze the
effect of plate parameters.

There is a special group of problems that consider heterogeneous plates, shells with
periodic geometry, or/and material distribution. Different problems, such as stability,
thermoelasticity, heat conduction, and temperature dependence, are solved using tolerance-
modeling techniques. Selected works have undertaken such investigations [10–16]. The pro-
posed methods for the solving of complex, multiparameter tasks reveal the special behavior
and detailed parameters of the microstructure elements, which constitute the examined
composite materials. Requiring the most attention is the key feature for the functional
gradation of materials, which is porosity. Models of sandwich elements porously, which
are heterogeneously subjected to thermal loading, are presented in previous works [17,18].
Here, the effect of the porosity of the functionally graded materials on thermal resistance
and strength capacity was shown.

In this paper, we present the problem of an annular plate that is composed of three
layers, among which are two outer ones that are made of FGMs; this configuration has now
entered into a wider group of actual problems that have been undertaken in numerous
works. The action of the specially targeted temperature field on the FGM plate facings
causes a buckling deformation of the plate structure for corresponding values of the critical
temperature differences between the plate edges. The presented investigation shows the
responses of the heterogeneous, annular plates due to the temperature fields occurring
around them. The temperature-critical difference, ∆Tcr, between the plate edges is a
main parameter in the presented evaluation. It identifies the static, critical state of the
thermally loaded plate. The static problems are solved semi-analytically with the use of
the finite-difference method. Numerous results show the temperature gradient effect on
the annular plate response and the participation of the nonhomogeneous facings in its
composite structure.



Materials 2024, 17, 5484 3 of 19

The presented approach is a new proposal to evaluate the annular response of com-
posite plates whose outer facings are not homogeneous. The special composition of the
plate-transversal structure, where only the metal facings are made of materials with func-
tional gradation, creates new possibilities for applications. The presented results show
the sensitivity of complex plate structures with temperature differences, which can exist
between plate perimeters, acting upon them. Detailed values of the critical temperature
differences, ∆Tcr, particularly those that are minimal, indicate numbers that can cause plate
buckling, a change in the plate preliminary geometry, and strength capacity.

2. Problem Formulation

The three-layered, annular plate is the object of this analysis. The plate is subjected to
temperature fields existing around the plate perimeter. The temperature difference between
plate edges occurs. It causes the loss of plate stability; the problem is static. A three-layered
plate is composed of thin metal facings and a thicker foam core. The facings are made
of heterogeneous material composed of two components. The participation and radial
distribution of each metal component are expressed by the value of VV parameter, which is
calculated according to Equation (6) for the functionally graded material (FGM) facings.

Both plate edges are clamped (C-C) or slidably clamped (SC-SC). The main analysis
is focused on the case of the clamped–clamped annular plate. A scheme for the plate is
presented in Figure 1. The plate core is made of polyurethane foam.
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(layer 2): (a) subjected to the stationary, axisymmetrical temperature fields (Ti and To) and (b) with 
different support systems, i.e., SC-SC or C-C. 
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Figure 1. Scheme for the three-layered annular plate composed of facings (layers 1 and 3) and a core
(layer 2): (a) subjected to the stationary, axisymmetrical temperature fields (Ti and To) and (b) with
different support systems, i.e., SC-SC or C-C.

The Figures given in this paper present the distribution of the values of critical tem-
perature differences, ∆Tcr, versus the value of the plate mode m, which describes the form
of the loss of the plate stability expressed by the number of buckling circumferential waves.
The results are mainly obtained with the application of the approximation finite-difference
method (FDM) during the analytical and numerical calculations. Some of the results are
compared with the ones calculated for a model built with the usage of the finite-element
method (FEM) [19].

The temperature field model is fixed, flat, and axisymmetric. There is no heat exchange
between the plate layers in the transversal directions. The material parameters do not
depend on the temperature values. The temperature difference between the plate edges
expresses two kinds of thermal gradient: positive, where the inner temperature Ti in the
plate hole is higher than temperature To around the outer plate perimeter (Ti > To), and a
negative one, in which an opposite temperature distribution exists (Ti < To).

A temperature distribution in the plate radial direction was adopted for smoothly
changing material parameters. In the radial plate direction, this distribution does not
significantly differ from the one that determines the temperature-radial change for an
isotropic plate. Next, the temperature T changes in the radial plate direction according to
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the logarithmic formulae presented in the following equation, which is based on the one
presented in previous work [20], which centers on a long cylinder with a circular hole, and
other papers [21,22]:

T = To +
Ti − To

ln ρi
ln ρ (1)

where ρ = r
ro

, ρi =
ri
ro

are dimensionless radius and inner plate radius, respectively.

3. Problem Solution

The solution is based on the equations for the annular three-layered plate, subjected
to the stationary temperate field, which is presented, for example, in refs [23–25]. The
technique for the solution of the annular plate stability problem is shown in detail in a
previous work [26]. The main elements of the solution are given as follows:

• The system of the static equilibrium equations is established.
• The cross-section of the plate structure is described using the broken-line hypothesis.
• The linear physical relations of Hooke’s law are used to assess the stress state in the

facings.

The relevant equations are expressed as follows:

σr1(3) =
Er

1 − ν2
r
(εr1(3) + νrεθ1(3)

)− Erαr

1 − νr
T(r, θ, z), (2)

σθ1(3)
=

Er

1 − ν2
r
(εθ1(3)

+ νrεr1(3))−
Erαr

1 − νr
T(r, θ, z), (3)

where Er and νr are Young’s modulus and Poisson’s ratio, respectively, which depend on
the plate radius of the facing material; αr is the thermal expansion coefficient depending
on the facing radius; and T is the temperature growth that changes in the plate radial
direction (1).

Here, the linear physical relations for the plate core layer are used, and the resultant
membrane forces corresponding to radial, Nr, and circumferential, Nθ , normal forces and
shear ones Trθ have been determined by the introduction of the stress function Φ. The
transverse radial, Qr2, and circumferential forces, Qθ2, for the plate core, are expressed, and
then the resultant forces, Qr and Qθ , of the whole plate are established.

After the algebraic operations, the following main equation that describes the plate
deflections can be presented, i.e.,

k1w′rrrr +
2k1

r w′rrr − k1
r2 w′rr +

k1
r3 w′r +

k1
r4 w′θθθθ +

2(k1+k2)
r4 w′θθ +

2k2
r2 w′rrθθ

− 2k2
r3 w′rθθ − G2

H′
h2

1
r

(
γ′θ + δ + rδ′r + H′ 1

r w′θθ + H′w′r + rH′w′rr

)
=

2h′
r

(
2
r2 Φ′θw′rθ − 2

r Φ′θrw′θr +
2
r2 w′θΦ′θr − 2

r3 Φ′θw′θ + w′rΦ′rr + Φ′rw′rr

+ 1
r Φ′θθw′rr +

1
r Φ′rrw′θθ

) (4)

where k1 = 2D, k2 = 4Drθ + νk1, δ = u3 – u1, γ = v3 – v1, H’ = h’ + h2, D = Erh3

12(1−ν2
r )

is the plate

rigidity, Drθ = Grh3

12 is the flexural rigidity of the facings, G2 is the Kirchhoff’s modulus of
plate core, h′ and h2 are the thickness of the plate outer layer and core, respectively, u1(3)
is the displacements of the points of the middle plane of facings in the radial direction,
v1(3) is the displacements of the points of the middle plane of facings in the circumferential
direction, and w is the plate deflection.

The finite-difference method (FDM) has been used in the approximation process of
the derivatives with respect to ρ via the central differences in the discrete points. Solving



Materials 2024, 17, 5484 5 of 19

the eigenvalue problem involves the critical temperature difference ∆Tcr calculated as the
minimal value of ∆T from the following equation:

det(MAPDG − ∆T MACT) = 0, (5)

where MAPDG and MACT are the matrices of the elements composed of geometric and
material parameters of the plate, respectively, the quantity b is the length of the interval
in the finite-difference method, the number m is the number of buckling waves, the stress
function Φ has been expressed for the C-C and SC-SC plate models treating it as a solution
to the disk state, and ∆T = Ti − To is a temperature difference.

4. FGM Model

Facing-material changes in the plate radial direction according to the power function
can be represented by the following expression:

VV =

(
ri

ri − ro
+

r
ro − ri

)n
, (6)

where ri and ro are the inner and outer plate radius, r is the plate radius, and n is the
number.

The character of the changes is modeled using Equation (6). The values of the plate’s
inner and outer radii and the number of exponents n define the distribution of facing
material. Material parameters, such as Young’s modulus Er, Kirchhoff’s modulus Gr,
Poisson ratio νr, and linear expansion coefficient αr of the plate material facings, are
defined with the usage of Equation (6) according to the notation:

W = W1 + VV(W2 − W1), (7)

where W1 and W2 are the values of selected material parameters Er, Gr, νr, and αr, and W
is the value of the material parameter of the facings, which is expressed for plate radius r.

Figure 2 shows the distribution of the VV parameter for different plate radii. Figure 3
represents the values of Young’s modulus Er, expressed by W parameter (7), for different
plate radii for five accepted numbers of exponent n equal to 0.2, 0.5, 1, 2, and 5. The facing
material is built of two metals: steel and aluminum. The values of Young’s modulus for
these two metals are equal to EST = 210,000 MPa and EAL = 70,000 MPa, respectively. The
curves show the participation of the two materials. The higher participation of steel is
observed for n = 5 but much smaller for n = 0.2.

Materials 2024, 17, x FOR PEER REVIEW 6 of 21 
 

 

Figure 2 shows the distribution of the VV parameter for different plate radii. Figure 
3 represents the values of Young’s modulus Er, expressed by W parameter (7), for different 
plate radii for five accepted numbers of exponent n equal to 0.2, 0.5, 1, 2, and 5. The facing 
material is built of two metals: steel and aluminum. The values of Young’s modulus for 
these two metals are equal to EST = 210,000 MPa and EAL = 70,000 MPa, respectively. The 
curves show the participation of the two materials. The higher participation of steel is 
observed for n = 5 but much smaller for n = 0.2. 

 
Figure 2. Distribution of the VV parameter versus plate radius . 

 
Figure 3. Distribution of Young’s modulus Er parameter versus plate radius . 

5. Plate Model Data 
Exemplary calculations have been carried out for the selected geometrical and mate-

rial plate parameters. All data are presented in Table 1. Both materials of the FGM plate 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1

VV

r

n=0.2 n=0.5 n=1 n=2 n=5

70,000

90,000

110,000

130,000

150,000

170,000

190,000

210,000

0.4 0.5 0.6 0.7 0.8 0.9 1

E r
, M

Pa

r
n=0.2 n=0.5 n=1 n=2 n=5

Figure 2. Distribution of the VV parameter versus plate radius ρ.



Materials 2024, 17, 5484 6 of 19

Materials 2024, 17, x FOR PEER REVIEW 6 of 21 
 

 

Figure 2 shows the distribution of the VV parameter for different plate radii. Figure 
3 represents the values of Young’s modulus Er, expressed by W parameter (7), for different 
plate radii for five accepted numbers of exponent n equal to 0.2, 0.5, 1, 2, and 5. The facing 
material is built of two metals: steel and aluminum. The values of Young’s modulus for 
these two metals are equal to EST = 210,000 MPa and EAL = 70,000 MPa, respectively. The 
curves show the participation of the two materials. The higher participation of steel is 
observed for n = 5 but much smaller for n = 0.2. 

 
Figure 2. Distribution of the VV parameter versus plate radius . 

 
Figure 3. Distribution of Young’s modulus Er parameter versus plate radius . 

5. Plate Model Data 
Exemplary calculations have been carried out for the selected geometrical and mate-

rial plate parameters. All data are presented in Table 1. Both materials of the FGM plate 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1

VV

r

n=0.2 n=0.5 n=1 n=2 n=5

70,000

90,000

110,000

130,000

150,000

170,000

190,000

210,000

0.4 0.5 0.6 0.7 0.8 0.9 1

E r
, M

Pa

r
n=0.2 n=0.5 n=1 n=2 n=5

Figure 3. Distribution of Young’s modulus Er parameter versus plate radius ρ.

5. Plate Model Data

Exemplary calculations have been carried out for the selected geometrical and material
plate parameters. All data are presented in Table 1. Both materials of the FGM plate facings
and plate foam core are treated as elastic and isotropic. The plate is subjected to a positive
or negative temperature gradient.

Table 1. Geometrical and material plate parameters.

Geometrical Parameters Data

inner radius ri 0.15 m, 0.2 m, 0.25 m
outer radius ro 0.5 m

facing thickness h’ 0.5 mm, 1 mm, 2 mm
core thickness h2 5 mm

Material parameters Data

Young’s modulus of steel EST 210 GPa
Young’s modulus of aluminum EAL 70 GPa

Poisson’s ratio of steel νST 0.3
Poisson’s ratio of aluminum νAL 0.34

linear thermal expansion coefficient of steel αST 12 × 10−6 1/K
linear thermal expansion coefficient of aluminum αAL 24 × 10−6 1/K

FGM facing material exponent n (6) 0.2, 0.5, 1, 2, 5
Kirchhoff’s modulus of polyurethane foam as core material G2 5 MPa

6. Accuracy Assessment

The finite-difference method (FDM), which was used in the calculation process, re-
quires an acceptance of the number of discretization points N. Figures 4–7 show the
comparison of values ∆Tcr for the selected plate examples between three N numbers equal
to 14, 26, and 35. Figures 4 and 5 show the results for the C-C plate model with h’ = 1 mm
and ρi = 0.4 of the plate subjected to a positive temperature gradient. Figure 4 presents the
comparison between the plates with the FGM facings defined by n = 0.2, 1, and 5. Figure 5
shows the comparison for plates with n = 0.5 and 2. Figs. 6 and 7 show the results for
the SC-SC plate model with h’ = 1 mm and ρi = 0.4 for a plate subjected to a negative
temperature gradient. Similarly, Figure 6 presents the comparison between plates with
FGM facings defined by n = 0.2, 1, and 5. Figure 7 shows the comparison for plates with
n = 0.5 and 2. Table 2 presents selected values. It can be observed that there are small
differences between the values calculated for N = 14, 26, and 35 for the C-C plate models.
Greater differences exist between values ∆Tcr obtained for the SC-SC plates calculated with
numbers N = 14, 26, and 35. To increase the visibility of the presented diagrams, only
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selected m numbers have been chosen for the SC-SC plate models: m = 5–7 for the results
presented in Figure 6 and m = 5–10 for the results shown in Figure 7. In general, the results
show high accuracy in the precise range up to 5% of the technical error, which is accepted
in numerical calculations of the values ∆Tcr for N presented numbers of discrete points. A
high accuracy is particularly observed for the C-C plate model. The number N = 26, which
fulfills the convergence of values ∆Tcr with number N = 35 for both the C-C and SC-SC
plate models has been accepted in the FDM calculations.

Materials 2024, 17, x FOR PEER REVIEW 8 of 21 
 

 

1 mm. The plate geometry is expressed by the inner radius i, which is equal to 0.4. A good 
agreement is observed for both the axisymmetric form of the buckling (m = 0) and the 
asymmetric form with one circumferential wave (m = 1), as well as for the asymmetric 
form with several circumferential waves (m = 9 and 11).  

 
Figure 4. Distribution of the critical temperature difference Tcr versus mode m for the C-C plate 
models with h’ = 1 mm, I = 0.4, and exponent number n = 0.2, 1, and 5 subjected to positive temper-
ature gradient for three FDM discretization numbers, i.e., N = 14, 26, and 35. 

 

15

17

19

21

23

25

0 1 2 3 4 5 6 7 8


T c

r , 
K

m

n=0.2 N=14
n=1 N=14
n=5 N=14
n=0.2 N=26
n=1 N=26
n=5 N=26
n=0.2 N=35
n=1 N=35
n=5 N=35

15

17

19

21

23

25

0 1 2 3 4 5 6 7 8


T c

r , 
K

m

n=0.5 N=14

n=2 N=14

n=0.5 N=26

n=2 N=26

n=0.5 N=35

n=2 N=35

Figure 4. Distribution of the critical temperature difference ∆Tcr versus mode m for the C-C plate
models with h’ = 1 mm, ρI = 0.4, and exponent number n = 0.2, 1, and 5 subjected to positive
temperature gradient for three FDM discretization numbers, i.e., N = 14, 26, and 35.
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Figure 7. Distribution of critical temperature difference ∆Tcr versus mode m for the SC-SC plate
models with h’ = 1 mm, ρi = 0.4, and exponent number n = 0.5 and 2 subjected to negative temperature
gradient for three FDM discretization numbers, i.e., N = 14, 26, and 35.

Table 3 presents the values of ∆Tcr calculated using two kinds of plate models built
using the FDM and FEM methods. Calculations for the homogeneous or heterogeneous
three-layered plates are presented in an article by Pawlus [19]. The full annulus FEM
plate model was built of shells and solid elements, which created a mesh of facings and
the core. The calculations were carried out at the ACC CYFRONET in Cracow using the
ABAQUS system (KBN/SGI_ORIGIN_2000/PŁódzka/030/1999). Presented in Table 3
is a comparison between the values of ∆Tcr, which shows a very good agreement both



Materials 2024, 17, 5484 9 of 19

for the C-C and SC-SC plate models. The plates were subjected to a positive temperature
gradient. The facings are homogeneous, either made of steel or aluminum. Their thickness
corresponds to h’ = 1 mm. The plate geometry is expressed by the inner radius ρi, which is
equal to 0.4. A good agreement is observed for both the axisymmetric form of the buckling
(m = 0) and the asymmetric form with one circumferential wave (m = 1), as well as for the
asymmetric form with several circumferential waves (m = 9 and 11).

Table 2. Critical temperature difference ∆Tcr for the C-C and SC-SC plate models depending on
discrete number N.

Critical Temperature Differences ∆Tcr, K/Mode m

Plate Model
n = 0.5 n = 5

N = 14 N = 26 N = 35 N = 14 N = 26 N = 35

C-C (Figures 4 and 5) 20.16/8 20.27/8 20.29/8 20.84/6 20.95/6 20.97/6

SC-SC (Figures 6 and 7) 272.82/5 287.65/5 291.21/5 155.40/7 161.17/7 162.49/7

Table 3. Critical temperature differences ∆Tcr for two cases, the FDM and FEM plate models,
supported by the C-C and SC-SC edges and composed of homogeneous facings made of steel
or aluminum.

Critical Temperature Differences ∆Tcr, K/Mode m

Plate Model
Steel Aluminum

FDM FEM [19] FDM FEM [19]

C-C
17.83/0 17.79/0 19.33/0 19.29/0
17.79/1 17.81/1 19.21/1 19.26/1

SC-SC

131.21/0 131.29/0 142.26/0 142.15/0
134.62/1 135.08/1 143.48/1 143.92/1
113.01/7

(117.23/9) 118.11/9 95.12/9
(96.83/11) 101.45/11

The underlined numbers represent the examples where the minimal value of ∆Tcr
exists. Some differences for number m relating to the buckling waves are observed for both
the C-C and SC-SC plate models. The numbers presented in brackets for the SC-SC FDM
plate model show the values of ∆Tcr for plate mode number m, which is consistent with
the mode of the FEM plate model.

7. C-C Plate Model

The results of the critical temperature difference ∆Tcr for the plate model supported
by the C-C edges are presented in Figures 8–13. The plate is subjected to a positive
temperature gradient. Figure 8 shows the distribution of ∆Tcr for different numbers m
of the circumferential waves. The results were calculated for various numbers n of the
exponent of Equation (6). The value of the dimensionless radius parameter ρi is equal to
0.4. The detailed values of the minimal value of ∆Tcr and the corresponding number of
mode m are presented in Table 4. The FGM facings decrease the value of ∆Tcr. The smallest
value is observed for n = 1, where the linear distribution of the material parameters along
the radial plate direction exists (Figure 3). Next, the axisymmetric form of the loss of plate
stability (m = 0) is observed. The results for the material model, described by n = 5, where
the participation of steel is high, are close to those obtained for steel facings.
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Materials 2024, 17, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 10. Distribution of the critical temperature difference Tcr versus mode m for i = 0.3. 

 
Figure 11. Distribution of the critical temperature difference Tcr versus mode m for i = 0.4 and a 
facing thickness h’ = 0.5 mm. 

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0 1 2 3 4 5 6 7 8


T c

r, 
K

m

steel
aluminum
n=0.2
n=0.5
n=1
n=2
n=5

19

20

21

22

23

24

25

26

27

0 1 2 3 4 5 6 7 8 9 10


T c

r,K

m

steel
aluminum
n=0.2
n=0.5
n=1
n=2
n=5

Figure 11. Distribution of the critical temperature difference ∆Tcr versus mode m for ρi = 0.4 and a
facing thickness h’ = 0.5 mm.



Materials 2024, 17, 5484 12 of 19
Materials 2024, 17, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 12. Distribution of the critical temperature difference Tcr versus mode m for i = 0.4 and a 
facing thickness h’ = 2 mm. 

  

18

28

38

48

58

68

78

0 1 2 3 4 5 6 7 8 9 10


T c

r,K

m

steel
aluminum
n=0.2
n=0.5
n=1
n=2
n=5

Figure 12. Distribution of the critical temperature difference ∆Tcr versus mode m for ρi = 0.4 and a
facing thickness h’ = 2 mm.

Materials 2024, 17, x FOR PEER REVIEW 15 of 21 
 

 

To summarize, the linear distribution of the two material components, which create 
the composite facings, is not advantageous for stabilizing the three-layered plate. Creating 
the structures with higher or less participation of the steel material, defined by exponent 
n = 5 or 0.2, respectively, increases the values of the critical temperature differences Tcr. 
It should be emphasized that the thickness of the facings is of high importance when un-
dertaking thermal-stability problems. There is a significant difference between plates with 
thicker and thinner facings. 

 
Figure 13. Distribution of the critical temperature difference Tcr

 versus mode m for different facing 
thicknesses h’. 

8. SC-SC Plate Model 
The thermal response of the plate model with the geometry shape expressed by i = 

0.4 and supported by the SC-SC edges is shown in Figures 14–18. Figures 14–16 present 
the critical temperature differences Tcr, which depend on buckling mode m for plates 
with different facing thicknesses, h’ = 1, 0.5, and 2 mm, respectively. The plates are sub-
jected to a positive temperature gradient. The exemplary, minimal values of Tcr are pre-
sented in Table 5 for the plate with a facing thickness h’ equal to 1 mm. The minimal values 
of Tcr are for a buckling mode with several m = 7, 8, and 9 circumferential waves. The 
minimal values are for the FGM facings characterized by exponent number n equal to 0.2. 
For n = 0.2 and 0.5, the values of Tcr are less than for aluminum facings. The facings thick-
ness h’ has a large effect on the plate’s thermal response.  

For small thicknesses of the facings, the critical form of the plate buckling is circum-
ferentially waved, but for thicker facings, it is an axisymmetrical (m = 0) one. For plates 
with very thin facings (i.e., h’ = 0.5 mm), all the examined FGM plates lose static stability 
in a waved form, where the minimal value of Tcr is less than for the homogeneous facings 
composed of either steel or aluminum. The results for the plates subjected to a negative 
temperature gradient are shown in Figures 17 and 18. Table 6 presents the values for the 
homogeneous and the FGM plates with h’ = 1 mm. All the minimal values of Tcr for the 

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8


T c

r, 
K

m

h'=0.5 mm n=1

h'=1 mm n=1

h'=2 mm n=1

h'=0.5 mm n=5

h'=1 mm n=5

h'=2 mm n=5

Figure 13. Distribution of the critical temperature difference ∆Tcr versus mode m for different facing
thicknesses h’.



Materials 2024, 17, 5484 13 of 19

Table 4. Critical temperature differences ∆Tcr and mode m for the C-C plate model with h’ = 1 mm
and ρi = 0.4 under a positive gradient.

Critical Temperature Differences ∆Tcr, K/Mode m

Steel Aluminum n = 0.2 n = 0.5 n = 1 n = 2 n = 5

17.79/1 19.16/2 17.04/2 15.78/1 15.35/0 15.98/0 17.64/1

A comparison between the plates with different geometry is shown in Figures 8–10.
For higher and smaller values of the inner radius of the plate hole (ρi = 0.5 and ρi = 0.3),
the minimal value of ∆Tcr is still for n = 1. For the smaller value of the inner plate radius
ρi = 0.3, the results for ∆Tcr are more similar (Figure 10). It is observed for plates with mode
m = 0 or 1 with an FGM distribution that n = 5 and 0.2 and n = 2 and 0.5. There are no
great changes (see the Er distribution in Figure 3). With an increase in the plate hole (see
Figure 9 for ρi = 0.5), the values of the critical temperature difference ∆Tcr are closer for the
homogeneous plates made of steel or aluminum and composite plate with n equal to 5.

The influence of the different thicknesses of the facings on the temperature difference
∆Tcr is shown in Figures 8 and 11–13. The effect of the facings thickness h’ provides the
temperature differences. With an increase in h’ (see Figure 12 for h’ = 2 mm), the distribution
of the values of ∆Tcr is more regular. The greater values of ∆Tcr are seen for plates with
steel facings or those made of composite material with n = 5. The smaller values of ∆Tcr are
for aluminum facings or composite ones with less participation of steel material for n = 0.2.
This regularity is not observed for thinner facings of h’ = 1 mm (Figure 8) or especially for
h’ = 0.5 mm (see Figure 11). Whereas, the values of ∆Tcr for plates with aluminum facings
are greater than for other plates. The linear distribution of steel and aluminum materials
(n = 1) influences the minimal values of the critical temperature differences ∆Tcr.

Figure 13 shows a comparison between the composite plates with facings, whose
thickness h’ is different, and the participation of materials is linear (n = 1) or with steel
dominating the composite (n = 5). The minimal values of ∆Tcr are observed for the thickness
of the facings equal to h’ = 1 mm. The nonlinear participation of the steel material (n = 5),
or thicker or thinner facings, increases the values of ∆Tcr.

To summarize, the linear distribution of the two material components, which create
the composite facings, is not advantageous for stabilizing the three-layered plate. Creating
the structures with higher or less participation of the steel material, defined by exponent
n = 5 or 0.2, respectively, increases the values of the critical temperature differences ∆Tcr.
It should be emphasized that the thickness of the facings is of high importance when
undertaking thermal-stability problems. There is a significant difference between plates
with thicker and thinner facings.

8. SC-SC Plate Model

The thermal response of the plate model with the geometry shape expressed by
ρi = 0.4 and supported by the SC-SC edges is shown in Figures 14–18. Figures 14–16 present
the critical temperature differences ∆Tcr, which depend on buckling mode m for plates with
different facing thicknesses, h’ = 1, 0.5, and 2 mm, respectively. The plates are subjected to
a positive temperature gradient. The exemplary, minimal values of ∆Tcr are presented in
Table 5 for the plate with a facing thickness h’ equal to 1 mm. The minimal values of ∆Tcr
are for a buckling mode with several m = 7, 8, and 9 circumferential waves. The minimal
values are for the FGM facings characterized by exponent number n equal to 0.2. For
n = 0.2 and 0.5, the values of ∆Tcr are less than for aluminum facings. The facings thickness
h’ has a large effect on the plate’s thermal response.
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Figure 17. Distribution of the critical temperature difference ∆Tcr versus mode m for h’ = 1 mm with
a plate loaded with a negative temperature gradient.
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Table 5. Critical temperature differences ∆Tcr and mode m for the SC-SC plate model with h’ = 1 mm.

Critical Temperature Differences ∆Tcr, K/Mode m

Steel Aluminum n = 0.2 n = 0.5 n = 1 n = 2 n = 5

113.01/7 95.12/9 89.38/8 92.93/7 101.08/7 110.11/7 113.05/7

For small thicknesses of the facings, the critical form of the plate buckling is circum-
ferentially waved, but for thicker facings, it is an axisymmetrical (m = 0) one. For plates
with very thin facings (i.e., h’ = 0.5 mm), all the examined FGM plates lose static stability in
a waved form, where the minimal value of ∆Tcr is less than for the homogeneous facings
composed of either steel or aluminum. The results for the plates subjected to a negative
temperature gradient are shown in Figures 17 and 18. Table 6 presents the values for the
homogeneous and the FGM plates with h’ = 1 mm. All the minimal values of ∆Tcr for
the FGM plates are less than those calculated for the homogeneous plates with steel or
aluminum facings. The values are comparable with the level equal to ∆Tcr = 105 K.

Table 6. Critical temperature differences ∆Tcr and mode m for the SC-SC plate model for h’ = 1 mm
with a plate loaded with a negative temperature gradient.

Critical Temperature Differences ∆Tcr, K/Mode m

Steel Aluminum n = 0.2 n = 0.5 n = 1 n = 2 n = 5

134.52/13 114.03/16 110.49/15 107.12/15 104.80/14 105.25/14 104.80/15

The minimal values of ∆Tcr are for the FGM plates with number n equal to 1 and 5.
The form of the critical deformation is characterized by a dozen or so waves, m = 14, 15,
and 16 (see also Figure 17). With an increase in the facing thickness h’, the value of ∆Tcr
increases (Figure 18). The greater differences between the values ∆Tcr for plates differing
with material distribution n = 1 and 5 are observed. The buckling shape moves m to a form
with less circumferential waves. For plates with very thin FGM facings, a high buckling
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deformation with more than twenty circumferential waves is observed. Here, the values of
∆Tcr are minimal.

To summarize, it is observable that the facings thickness h’ of the plate structure
geometry has an effect on the thermal plate responses and influences the minimal values of
∆Tcr. Moreover, the form of the critical buckling is different for plates with thin or thicker
FGM facings. The radial material distribution expressed by the exponent n changes the
thermal-plate reaction differently, depending upon the thickness of the outer plate layers.
Here, the direction of the temperature gradient also has meaning.

9. Conclusions

This paper presented a problem that focused on the evaluation of the static and thermal
responses of the composite annular plates with functionally graded material in the facings.
The plate is subjected to a temperature field directed in a radial direction from the outer
perimeter or to the hole of the plate. The examined annular plate with the FGM facings and
homogeneous core, used particularly in mechanical design, creates a new generation of
composite structures whose radially, smoothly changing material parameters can improve
thermal and mechanical capacity. The analyzed thermal, critical state is defined by the
values of the critical temperature differences ∆Tcr, and corresponding with them is the
mode buckling m form. The influence of the geometrical and material plate features on
the final buckling results is taken into account. Moreover, the support system and the
temperature gradient direction are included in the investigations.

The evaluation was conducted using numerical calculations based on the approxi-
mation method and finite differences and then adopted into the author’s program. The
presented figures and selected detailed results show the problem in terms of multiple
parameters, whose solution depends on the facing thickness, the radial distribution of the
FGM, the direction of the temperature gradient, the kind of plate support, and the plate
dimensions. For the representative plate with facing thickness h’ = 1 mm and dimensionless
inner radius equal to ρi = 0.4, the minimal values of the critical temperature differences
∆Tcr is, for the clamped–clamped (C-C) plate with linearly variable material parameters,
defined by exponent n = 1. For the plate whose edges are SC-SC, the slidably clamped plate
loses stability for much higher values of temperature differences ∆Tcr. The minimal values
for the discussed representative plate are, for example, with the FGM-facing materials,
for which aluminum parameters are predominant. Then, n is equal to 0.2. The buckling
shape is described in terms of several circumferential waves. The gradient of temperature
means the minimal values of critical temperature differences, especially for plates with
thicker facings.

The main general conclusions, which are formulated after the presented investigations,
are as follows:

• Material and geometrical parameters of the annular sandwich plates specify the values
of the critical thermal state.

• The return of the radial temperature gradient changes the responses of the annu-
lar plate.

• The linear distribution of the material parameters along the plate radius defined by
exponent n = 1 for the C-C annular plates is the one for whom the critical temperature
difference ∆Tcr is minimal or is close to the smallest. The greater thickness of the
facings can cause some disorder.

The analyzed investigation model for the temperature field is fixed and static. In
real-world conditions, the plate element can be subjected to variables, which involve a
time-dependent temperature field. The dynamic response of the FGM composite plate
seems to have interesting scientific and practical applications. It creates a cognition issue
that is worth investigating, which will be presented in a future article.
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The List of Abbreviations and Main Parameters
Abbreviations
FGM—functionally graded material
FDM—finite difference method
C-C—clamped–clamped plate support system
SC-SC—slidably clamped plate support system
Main parameters
ρi—dimensionless inner plate radius
h’—facing thickness
h2—core thickness
EST—Young’s modulus of steel
EAL—Young’s modulus of aluminum
αST—linear thermal expansion coefficient of steel
αAL—linear thermal expansion coefficient of aluminum
n—FGM facing material exponent, (see Equation (6))
G2—Kirchhoff’s modulus of polyurethane foam as core material
T—temperature
∆T = Ti − To—temperature difference
∆Tcr—critical temperature difference
N—number of discretization points
m—plate buckling mode
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14. Ostrowski, P.; Jędrysiak, J. Dependence of temperature fluctuations on randomized material properties in two-component

periodic laminate. Compos. Struct. 2021, 257, 113171. [CrossRef]
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