
Citation: Kim, T.; Kim, G.-J.; Kim, J.-I.;

Jang, K.-H. Antiferromagnetic Spin

Wave Amplification by Scattering in

the Presence of Non-Uniform

Dzyaloshinskii–Moriya Interaction.

Materials 2024, 17, 5585. https://

doi.org/10.3390/ma17225585

Academic Editor: Weili Zhang

Received: 26 October 2024

Revised: 6 November 2024

Accepted: 14 November 2024

Published: 15 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Antiferromagnetic Spin Wave Amplification by Scattering in the
Presence of Non-Uniform Dzyaloshinskii–Moriya Interaction
Taeheon Kim *, Geun-Ju Kim, Jung-Il Kim and Kwang-Ho Jang

Electro-Medical Equipment Research Division, Applied Electromagnetic Wave Research Center,
Korea Electrotechnology Research Institute, Ansan 15588, Republic of Korea; gjkim@keri.re.kr (G.-J.K.);
sky@keri.re.kr (J.-I.K.); khjang@keri.re.kr (K.-H.J.)
* Correspondence: thkim23@keri.re.kr

Abstract: In this study, we suggest a method to amplify spin waves (SWs) in antiferromagnets (AFMs).
By introducing a non-uniform Dzyaloshinskii–Moriya (DM) interaction, the potential barrier forms a
resonant cavity. SWs with an opposite chirality undergo scattering and are resonantly amplified at a
phase-matching condition. The calculation is performed in the insulating AFMs where the electric-
field-induced DM interaction and pseudo-dipole anisotropy broaden the parabolic-like SW band for
multiple resonant modes. Using a transfer matrix method, we also show numerically that scattering
between SWs contributes significantly to the SW amplification. Since the electric field selectively
amplifies the SWs with resonant frequencies, the proposed device works as an SW transistor and
rectifier. This finding will contribute to insulating AFM-based magnon devices where Joule heating
is, in principle, avoided.

Keywords: antiferromagnet; terahertz frequency; Dzyaloshinskii–Moriya interaction

1. Introduction

Spin waves (SWs) are collective excitations in magnetically ordered media, which
are called magnon because of their particle-like nature. Since SW carries information
similar to what the spin current does without a charge flow, it can be a good candidate for
low-dissipation devices in magnon spintronics [1–3].

SW has precessional polarizations, similar to electromagnetic waves. A ferromagnet
(FM) has only a single circularly polarized mode due to broken time-reversal symmetry,
while antiferromagnetic SWs have two circularly polarized modes due to the negative
exchange interaction. Using these properties, the phases of antiferromagnetic SWs have
been controlled [4–6], including manipulating the polarization [6–8] in the system with a
lack of inversion symmetry. Such AFM SWs, depending on two different polarizations, are
detectable via the inverse spin Hall effect [9,10] and can be utilized with magnon torques
for magnetization switching [11]. Thus, AFM-based magnonics are promising compared to
their ferromagnetic counterparts.

Despite the advantages of AFM spin waves, a major challenge lies in extending their
propagation length within a medium. A large amplitude for a given input power enables
stable and robust wave propagation over a long distance. One approach to overcome
this challenge is the use of low-damping materials, a strategy that has been extensively
studied [12–15]; however, this method is fundamentally constrained by the intrinsic prop-
erties of the materials themselves. Another approach focuses on extrinsically modifying
the propagation characteristics of SWs. It has been demonstrated in FMs and AFMs that
a current-induced spin-transfer torque (STT) can amplify SWs, altering their attenuation
length [16] and damping constant [17]. Through SW scattering [18], the SW dispersion
relations shift due to the Doppler effect [19], which enables resonant amplification of emerg-
ing SWs. However, SW scattering has been primarily implemented in FMs and has not
yet been established in AFMs. The realization of SW scattering by Doppler shift in AFMs
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seems to be difficult compared to that in FMs [18]; the equations of motion of AFMs are the
second order in frequency rather than the first order of FMs. This means that the negative
frequencies that play a key role in resonant scattering in FMs [18] are not manipulated to
the positive ones by an SW Doppler shift in AFMs.

Recognizing that implementing a Doppler shift in AFMs is not feasible, we propose
an alternative method to amplify antiferromagnetic SWs. This method leverages the
Dzyaloshinskii-Moriya (DM) interaction and pseudo-dipole anisotropy induced by an
electric field. Our target materials are Mott insulating AFMs, which are known to induce
both the DM interaction and pseudo-dipole anisotropy by electric fields [20–24]; the DM
interaction, which is known to induce the Doppler effect [18], similar to the STT [18,19],
causes an asymmetric modification of the SW dispersion relation, where the SW frequencies
are linearly shifted in the wavevector k direction by adding or subtracting the SW frequency
for favored or unfavored chirality, respectively [25,26].

The proposed device setup is shown in Figure 1. Antiferromagnetic- and ferromagnetic-
order parameters are defined as Néel order, l = (si − sj)/2 and m = (si + sj)/2, where each
spin is normalized by its magnitude si = Si/|Si|. We generate SWs from the fluctuation
of l at the left side, as indicated in the yellow box of Figure 1. The wire length is set to
be long enough so that the SW is not reflected from the end of the wire. The inset of
Figure 1 shows SW dispersion relations without and with DM interaction and pseudo-
dipole anisotropy. The dispersion relations (or a graph of frequency v against wavevector
k) relying on different chiralities (+ and − are right- and left-handed circularly polarized
SW modes, respectively) are separated into two frequencies v+(k+) (solid blue line) and
v−(k−) (dotted blue line) when the DM interaction is turned on, but they degenerate with-
out the DM interaction (black line). The SWs with the wavevector, k, with the positive sign,
propagate along the waveguide from region 1 to region 3. When the electric field is applied
in region 2, four emerging SWs, kI

−, kII
+, kII

−, and kI
+ for v < vk=0, are partially reflected

and transmitted at both boundaries, and they are amplified in the resonance condition
when (kI − kII)L/π is an odd integer. Here, the role of the pseudo-dipole anisotropy is
to secure the parabolic-like SW band by dragging SW bands upward in the presence of
the DM interaction (see the inset of Figure 1). For v < vk=0, the phase difference between
the SWs is proportional to v, leading to the generation of multiple resonant modes, but
for v > v0, the phase difference between two chiral SWs is almost linear to v, and a single
resonant mode is possibly generated. Due to the pseudo-dipole anisotropy, the bound state
is prevented throughout the wire; in the bound state, the propagating SWs are subject to
decay or tunneling [27,28].
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anisotropy where the DM vector and easy direction of anisotropy are along y axis. Thus, chiral-
dependent spin wave dispersion bands are formed (inset), where + and − indicate the right-handed
and left-handed circularly polarized waves (blue solid line and dotted line), respectively, in region 2.
The original band without the electric field is described as the black line. When the SWs propagate
from region 1 to region 2, it is split into two waves, with kII

+ and kI
− in region 2. In the resonant

condition (kI − kII)L = nπ, transmission T = |t|2, and R = |r|2 are dramatically enhanced in region 1
and region 3.

2. Results

The exchange energy J has a negative sign for AFMs, and the magnetic crystalline
anisotropy, Ky, is positive along the y axis. AFM texture is along the long x axis of the wire
and sandwiched by two electrodes with a length of L, and the voltage is applied between
two electrodes. The geometric inversion asymmetry may induce the DM interaction along
the y axis, according to Dij ∝ z × eij, where the z axis is normal to the interface, and eij is
the unit vector connecting neighbor spins si and sj [20,29]. We ignore the geometric DM
interaction to describe our scenario explicitly. Instead, when the electric field along the
z axis breaks the inversion symmetry, the electric-field-induced DM vector, DE, moves
effectively toward the y axis due to Dij ∝ Ezz × eij [20–24]. When |DE| is strongly induced,
the pseudo-dipolar anisotropy energy KE in the easy plane should be taken into account,
which is proportional to Ez

1/2 [20–24]. Here, the y component of KE is considered, assuming
that the AFM wire is a one-dimensional texture.

Under an exchange approximation where |J|≫Dy, Ky, and KE, we can assume that
the magnetic moments are linearly distributed in space, (li+1 − li)/d ∼ l’ = dl/dx and
(mi+1 − mi)/d ∼ m’ = dm/dx, where d is the interspacing of the nearest neighbor Néel
spins. The total energy E1D is set as

E1D = a/2|m|2 + A/2|l’|2 + B(m · l’ − l · m’)− Keff
2

(l · y)2 +
D̃y

2
y · (l × l′), (1)

where a, A, and B are the homogeneous, the inhomogeneous, and the parity-breaking
exchange constant, respectively [30]. These parameters are defined as A = d2 J = J, a = 4J,
B = dJ = J, and D̃y = dDy = Dy, where d is used as the unit length. The effective
anisotropy, Keff, is defined as the summation of the pseudo-dipole anisotropy, KE, and
crystalline anisotropy, Ky. The Landau–Lifshitz–Gilbert (LLG) equations on m and l are
derived from Equation (1):

.
l = (ωm − β

.
m)× l, (2a)

.
m = (ωl − β

.
l)× l, (2b)

where the effective magnetic fields ωm/γ = heff,m and ωl/γ = heff,l are defined as
the functional derivative of energy density: heff,m = −∂E1D/∂m = −am − Bl’ and
heff,l = ∂E1D/∂l = Al’’ + Bm’ + Kzlzz + l’ × D, respectively [30]. Here, we ignore the
phenomenological damping constant, β, reflecting the property of an insulator.

By taking the cross product of l in Equation (2a), we obtained the analytical rela-
tion between m and l: m =

.
l × l/(aγ). Setting the first order for small excitations

on l ∼ er + [lθ(x, t)eθ + lφ(x, t)eφ] in a spherical coordinate system and inserting m
into Equation (2b), the equation of motion for SW excitations on lφ and lθ are obtained:
..
lφ(θ) = (aγ2)(Al′′

φ(θ) − Kylφ(θ) ± Dyl′
θ(φ)), where the ± sign indicates the SW chiral-

ity. Using a plane wave ansatz ψ± ≡ lθ ± ilφ ∼
(

1
±i

)
ei2πv±t, it results in the time-

independent Schrödinger-type wave equations [31] and the non-degenerate SW dispersion
relations of AFM:

v±2 = (aγ0
2)[k2 A + Ke f f ,y ± 2kDy] (3)
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where the reduced gyromagnetic ratio γ0 = γ/(2π) is used. The parameters suitable for
antiferromagnetic insulators are set as J = −31.9 meV and Kz = 0.0005|J|. With these
parameters, the SW dispersion relations for AFM are plotted in Figure 2a–c as a function of
the DM interaction and Figure 2d–f as functions of the DM interaction and pseudo-dipole
anisotropy; since it shows a symmetric dispersion relation for v, as in Equation (3), we
omitted v−(k−) in Figure 2.
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Figure 2. The spin wave (SW) dispersion relations in regions 1, 2, and 3 and the effective SW band for
scattering, indicated by blue box. (a–c) SW dispersion relations as a function of the Dzyaloshinskii-
Moriya (DM) interaction. (d–f) SW dispersion relations as a function of the voltage-induced DM
interaction and pseudo-dipole anisotropy. Those interaction energies are characterized proportional
to α. In region 2, two SWs consisting of left-handed circularly polarized wave (−, dotted blue line)
and right-handed circularly polarized wave (+, solid blue line) bands are lifted. In the case of (a–c),
the DM interaction makes the SW band shift downward, and the effective bandwidth becomes
maximized at D = Dc and disappears for D >> Dc. However, due to the pseudo-dipole anisotropy
that adds an extra frequency to the SW band, the SW band is prevented from being below v = 0.

When |DE| and KE are induced by the electric field [20–24], they are simply formu-
lated with respect to J, DE = α|J|, and KE = α2

∣∣J∣∣, where α is proportional to the electric
field; even in a strong DE, the chiral structure is suppressed by KE because the instability
condition is defined as Dchiral =

√
2JKeff,y.

The effective SW band with + chirality for k > 0 (with − chirality for k < 0) is defined
as the frequency range from v+,min to v+,k=0 = vk=0 (from v−,min to v−,k=0 in Figure 1), as
indicated by the blue box in Figure 2, where v±,k=0 is the frequency at k = 0, and v±,min is
the minimum frequency.

Consider the SW dispersion relation relying on DM interaction. In Figure 2a,b, the
effective SW band width is proportional to D in a finite range: 0 < D ≤ Dc or 0 < α ≤ 0.22
and starts to decrease for D ≥ Dc because v+ and v− become partially imaginary. In the
end, the effective SW band disappears as D ≫ Dc or α = 0.1, where the phase difference
between two SWs is nearly constant (see Figure 2c). In all cases above, SWs within the
effective SW band could not transmit into region 2 because SWs in region 2 belong to
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the forbidden band of region 1 (see Figure 2a,b), where the SW tunneling phenomenon is
excluded [25,26].

However, as shown in Figure 2d–f, when the pseudo-dipole anisotropy is included,
the effective SW band in region 2 overlaps with the degenerate band of region 1 for
all ranges of α because the pseudo-dipole anisotropy energy adds frequencies of chi-
ral SW modes. In the ferromagnetic system, the SW dispersion relation is obtained as
(v ± 2Dy sin[ak])2 = (2J + Ky − 2J cos[ak])2 by replacing the sign of J with a positive. Here,
the spin wave frequency is not imaginary under the strong DM interaction. Instead, the
negative spin wave band becomes partially positive, and corresponding SWs undergo
scattering with each other [18].

Now, we solve the SW scattering problem using the transfer matrix method (TMM) [32].
The TMM is an excellent tool for solving the linearized wave equation; the SW dispersion rela-
tion without linear approximation is obtained as v±2 = (2J + Keff)

2 −4(J cos[ak]± D sin[ak])2,
and it is almost identical to Equation (3) for α = 0.1. For α > 0.1, another approach to calculate
the scattering problem is necessary for the non-linear Schrödinger equation.

At first, we consider wavefunctions ψII
± with a single wavevector kII =

∣∣kII
−
∣∣=∣∣kII

+

∣∣ at
two points, xa and xb: kII

+ for forward propagation and kII
− for backward propagation

(see the inset of Figure 1). When the polarization of incident SWs is parallel to the z axis
(see Figure 1), the phase differences between ψII

+ and ψII
− with respect to lz(= ψII

+ + ψII
−)

and lx(= ψII
+ − ψII

−) are 0 and π, respectively. They are decomposed into two complex
wave components, ψII

±(xa) and ψII
±(xb). Since the two functions ψII

± are required to be
continuous [18,32], they are connected by inner products with two matrix components; the

one is related to the phase evolution across a constant potential, MII
p =

(
ejkII

i l 0
0 (±)e−jkII

i l

)
,

and the other is the transfer matrix on the potential step,

MII
s (k

II
i , kII

i+1) =
1
2

(
1 + kII

i /kII
i+1 (±)(1 − kII

i /kII
i+1)

(±)(1 − kII
i /kII

i+1) 1 + kII
i /kII

i+1

)
The upper (the lower) one of (±) signs is attributed to the phase difference between

ψII
+ and ψII

− for lz (lx); for example, ei0 = +1 (eiπ = −1). When the incident SWs are linearly
polarized along the x axis, the upper and the lower signs should be reversed.

Overall transfer matrices from x = 0 to x = x0 are expressed as(
0

tII(x0)

)
= MII

(
1

rII(x0)

)
and

MII = MII
p (k

II
i=N, l)MII

s (k
II
i=N, kII

i=N−1) · · · MII
p (k

II
i=1, l)MII

s (k
II
i=1, kII

i=0)MII
p

where x0 is divided into N segments with uniform spacing; l and i is the segment number.
Therefore, t(x0) and r(x0) are defined as det(M)/M22 and M21/M22, respectively, where det
is the determinant of the matrix, and Mij is denoted by the element at row i and column
j [32].

Now, wavefunctions with two different k are taken into account: kII
+ and kI

− for forward
propagation and kII

− and kI
+ for backward propagation (see the inset of Figure 1). Since∣∣kI

−
∣∣=∣∣kI

+

∣∣= kI and
∣∣kII

−
∣∣=∣∣kII

+

∣∣= kII , two different wavevectors kI and kII are derived as an
inverse function of v(k):

kI(v) =
Dy

A
−

√(
Dy

A

)2
− Keff

A
+

v
Aaγ2

0

and

kII =
Dy

A
+

√(
Dy

A

)2
− Keff

A
+

v2
±

Aaγ2
0
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Therefore, wave components are divided by two folds as ψI
b = MIψI

a and ψII
b = MIIψII

a .
Thus, the total matrix is recast into

MIII =
(
0.5Mp(kI

i=N, l) · Ms(kI
i=N, kI

i=N−1) + 0.5Mp(kII
i=N, l) · Ms(kII

i=N, kII
i=N−1)

)
· · ·(

0.5Mp(kI
i=2, l) · Ms(kI

i=1, kI
i=2) + 0.5Mp(kII

i=2, l) · Ms(kII
i=1, kII

i=2)
)

where ψIII
b = MIIIψIII

a . Therefore, tIII(x0) and rIII(x0) are obtained from MIII, respectively.
Figure 3 shows two types of electric field profiles and corresponding tIII(x0) and rIII(x0)

calculated from v = v±,min to v = vk=0 for lz. First, consider tIII(x0 = L) and rIII(x0 = L) for
the electric field applied uniformly throughout the wire in Figure 3a,c. The electric field, E1
induces the DM interaction and pseudo-dipole anisotropy that corresponds to α = 0.1, as
shown in Figure 2f. Ms is the identity matrix because the off-diagonal component of Ms is
zero, and the diagonal components of M0 are not coupled with each other; for example,
Mp(kI, l) · · · Mp(kI, l) = Mp(kI, l)N

= Mp(kI, Nl) = Mp(kI, L), and thereby, the transfer
matrix is summarized as MIII = 0.5Mp(kI, L) + 0.5Mp(kII, L). As a result,

∣∣rIII(x0 = L)
∣∣= 0

and
∣∣tIII(x0 = L)

∣∣=∣∣cos ∆rel
∣∣ lead to oscillating patterns with the relative phase difference,

∆rel = (kI − kII)L, as the constructive (destructive) interference occurs when ∆rel/π is an
even (odd) integer, respectively. In addition, the oscillating period is not constant because
of parabolic-like SW dispersion relation of AFM, as shown in Figure 3c. The number of
oscillations is proportional to L because a number of SWs that take part in the interference
is proportional to L; in small L, SWs with low k could not achieve sufficient phase evolution
for the interference.
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Figure 3. Two types of electric field distribution and corresponding transmission coefficient t and
reflection coefficient r calculated from the frequency range from v = v±,min to v = vk=0 for lθ.
(a) Uniform electric field distribution. (b) Non-uniform electric field distribution. (c) t and r for the
uniform case. (d) t and r for the non-uniform case. In (a), two SWs with different wavevectors kI and
kII propagate without reflection, but in (b), the degenerate SW is split into two SWs in region 2, where
two reflection channels at boundaries are activated due to k change and play the role of a resonant
cavity. Here, the results for lθ are identical to those for lφ.

Second, consider tIII(x0 > L0) and rIII(x0 > L0) when the electric field distribution is given
as a barrier-like function in Figure 3b. Ms is not an identity matrix, and the reflection chan-
nels are activated at boundaries. MIII is simplified as MIII = 0.5Ms(kI

E1
, k0)Mp(kI, L)Ms
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(k0, kI) + 0.5Ms(kII, k0)Mp(kII, L)Ms(k0, kII), where Ms(kI(II), k0) and Ms(k0, kI(II)) are the
matrices at boundaries. It is confirmed that the numerical result is identical to the an-
alytically simplified equation (see open circles and solid line in Figure 3d). It suggests
that incoming and outgoing SWs outside the cavity have a negligible contribution to
amplification. As a result, tIII(x0 > L0) and rIII(x0 > L0) are calculated as

|tIII(x0 > L0)| =
∣∣∣∣∣
(
ik0
(
2 + cos(2(kII − kI)L) + cos(2(kII + kI)L)

)
kIkII + (kI2 + kII2) sin(2kIL) sin(2kIIL)

)
2i(cos(2kIL) + cos(2kIIL))k0kIIkI + (k0

2 + kI2)k+E1
sin(2kIL) + (k0

2 + kII2)kI sin(2kIIL)

∣∣∣∣∣
and

|rIII(x0 > L0)| =

∣∣∣∣∣∣
−k2

0
(
kII sin(2kIL) + kI sin(2kIIL)

)
+ kIkII

(
kII sin(2kII

E1
L) + kI sin(2kIL)

)
2i(cos(2kIL) + cos(2kIIL))kE0 kIIkI + (k0

2 + kI2)kII sin(2kIL) + (k0
2 + kII2)kI sin(2kIIL)

∣∣∣∣∣∣. (4)

Here, |tIII(x0 > L0) | and |rIII(x0 > L0)| curves are characterized with oscillating
patterns and resonant peaks (see Figure 3d); the oscillating maxima occur when ∆rel/π
is an even integer, which corresponds to the case in which two SWs have an in-phase
condition. The resonant amplification takes place at the frequency where ∆rel/π is an odd
integer or two SWs are of an out-of-phase condition (see Figure 4b).
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Figure 4. Spatially resolved spin wave (SW) propagation profiles using the propagating parameters,
ΦI, ΦII, ΦIII, and ΦIII − ΦI − ΦII. (a) In-phase condition where (kI − kII)L/π = 8. (b) Out-of-phase
condition where (kI − kII)L/π = 9. When ΦI and ΦII are in-phase, all SW components are added up to
maximize |ΦIII|, resulting in |tIII| > 1. However, SWs with out-of-phase conditions give rise to the
resonant amplification (

∣∣tIII
∣∣≫ 1 ) due to the SW scattering effect.

To understand SW spectroscopy explicitly, the spatially resolved SW propagation pro-
files are calculated using the propagating parameters, ΦIII(x0) = |tIII(x0)|exp(iarg(tIII(x0)))
for v+ = 1.035 THz and 1.15 THz (see Figure 4a,b), together with ΦI(x0) = |tI(x0)|exp(iarg(tI

(x0))) and ΦII(x0) = |tII(x0)|exp(iarg(tII(x0))). Here, arg(t(x0)) indicates the transmission
phase. In v+ = 1.035 THz, ∆rel/π = 8 is an even number, indicating an in-phase condition
between ΦI(x0) and ΦII(x0). However, both ΦI(x0) and ΦII(x0) have a non-resonant condi-
tion for the cavity, kIL/π = 10.34 and kIIL/π = 2.34. If they are resonant with the cavity
where both kIL/π and kIIL/π are even integers, they propagate with |t(x0 > 150 nm)| = 1,
|r(x0 > 150 nm)| = 0. Until x0 = 50 nm, spin wave propagation is similar to the non-
scattering case because Ms is an identical matrix. Therefore, ΦI(x0) and ΦII(x0) are in-phase,
and their summation is identical to ΦIII(x0), as shown in Figure 4a. For 50 nm < x0 < 150 nm,
a single SW with k0 is split into two SWs with kI and kII. They undergo the reflection and
the transmission at x = 50 nm. As a result, |ΦI(x0)| is larger because the wavevector kI

is lower than k0; in general, the transmission coefficient propagating from medium 1 to
medium 2 is defined as 2/(1 + k2/k1). This relation explains the reduced amplitude of
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ΦII(x0), where kII is larger than k0. Remarkably, ΦIII(x0) can be larger than the summation
of ΦI(x0) and ΦII(x0) because of the existence of SW scattering ΦIII(x0) − (ΦI(x0) + ΦII(x0)).
For x0 > 150 nm, two SWs experience transmission and reflection both at x = 50 nm and at x
= 150 nm, where SW scattering plays an additional role in |tIII(x0)|; |tIII(x0)| can be larger
than 1 (see Figure 3b). Even though two SWs are simultaneously resonant with the cavity,
or |tI(x0)| = 0.5 and |tII(x0)| = 0.5, |tI(x0)| + |tII(x0)| cannot be larger than 1 without
SW scattering.

Now, we discuss the out-of-phase condition of v+ = 1.15 THz where ∆rel/π = 9. At
x0 > 150 nm, |ΦIII| increases dramatically because SWs are resonant with each other;
abrupt changes in amplitude at x0 = 50 nm and x0 = 150 nm are shown in Figure 4b. It
proves again that ΦIII includes SW scattering by showing that ΦIII is identical to ΦIII − (ΦI

+ ΦII) for x0 > 150 nm. For example, ΦI and ΦII are canceled out, and the contribution to
the amplification is solely ascribed to two-SW resonance. Compared to SW resonance with
the cavity, resonance between SWs is characterized by a distinct phase evolution pattern.
When SW is resonant with the cavity, the phase shift is simply estimated by nπ, where n
is an integer. The phase shift at a SW-scattering resonant frequency that depends on L is
kIL/π + nπ or kIIL/π + (n + 1)π. Similar to the case of the uniform electric field, the number
of amplified SWs depends on L. The amplified SW frequency is tuned by the strength of
the electric field because it modifies the SW band structure. It implies that the electric
field plays the role of programmable SW modular for an incoming SW packet. Both in the
uniform and non-uniform electric field,

∣∣tIII
∣∣ and

∣∣rIII
∣∣ on lx and lz are identical with each

other, implying that when the SWs that polarized fully along the x or z axis are incident to
region 2, the same resonant effect is expected to occur.

Finally, we attempt to estimate the strength of the electric field required for applications.
Mott insulator AFM with transition metal compounds is known to have the characteristic
spin-orbit coupling energy ESO ~ 3 eV in Y3Fe5O12 garnet [21]. Therefore, the electric field
required for α = 0.1 is roughly obtained from the relation |E|= ESOα/(ed) ~ 0.3 Vnm−1,
where d is the distance between the nearest neighbor magnetic ions and is set as ~1 nm [21].
In our research, we have primarily focused on the THz regime. However, our findings
suggest that assuming the magnetic system is identical to the Mott insulating AFM, the
amplification of spin waves is achievable even in the gigahertz frequency range (see Table 1).

Recent research on the manipulation of the polarization has focused on the control of
relative phase between SWs with different chirality using non-collinear spin structures [6,7]
or inhomogeneous DM interaction steps [33]. However, this work shows that the coherent
scattering between two opposite chiral SWs triggers resonant amplification. Therefore,
both the amplitude and polarization can be controlled by operating multiple gates in one
medium if the electric field is properly controlled. As a result, the high-amplitude SW with
controlled polarization would be realized for applications for various magnon devices.

Table 1. The comparison of our work with existing AFM materials.

Our Work YFeO3 [34] NiO [35] α-Fe2O3 [36]

J −31.9 meV −2.48 meV −112.6 meV −107.6 meV

K 0.15 meV
(easy axis)

0.0115 meV
(easy axis)

−0.072 meV
(hard axis)

−0.002 meV
(hard axis)

Resonance
frequency 0.34 THz

0.299 THz
(low-frequency mode)

0.52 THz
(high frequency mode)

1 THz
0.148 THz

(low-temperature
phase)

3. Conclusions

In this work, we investigate two-SWs’ resonance and amplification under the uniform
and non-uniform electric field profiles. Since the electric field induces the DM interaction
and pseudo-dipole anisotropy simultaneously, SW bands are shifted laterally in the v − k
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space, and the broad effective SW band is secured. Apart from the uniform electric field
distribution where the transmitted coefficient |t| oscillates with the phase evolution,
∆rel = (kI

E1
− kII

E1
)L, the non-uniform electric field forms the reflection channel at both

boundaries and, thus, a resonant cavity. SW amplification is triggered by virtue of the
resonance effect between two SWs. Throughout the phase analysis for each SW propagation,
we conclude that the scattering component between two SWs has the main contribution to
the amplification.
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