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Abstract: The drilling of State-of-the-Art printed circuit boards (PCBs) often leads to shortened tool
lifetime and low drilling accuracy due to improved strength of the PCB composites with nanofillers
and higher thickness-to-hole diameter ratio. Diamond coatings have been employed to improve
the tool lifetime and drilling accuracy, but the coated microdrills are brittle and suffer from coating
delamination. To date, it is still difficult to deposit diamonds on ultrathin microdrills with diameters
lower than 0.2 mm. To avoid tool failure, the pretreatment was optimized to afford sufficient
fracture strength and enough removal of cobalt. Further, the adhesion of the diamond coating was
improved by employing an interlayer comprising SiC/microcrystalline diamond, which mitigates
stress accumulation at the interface. By these means, microdrills with diameters of 0.8 and 0.125 mm
were coated with adherent diamonds. In this context, the composite coating with the diamond/SiC
interlayer and a nanodiamond top layer featured enhanced adhesion compared to single nano-
or microdiamond coatings on the WC-Co microdrills. The composite diamond-coated WC-Co
microdrills featured improved wear resistance, resistance to delamination of the diamond coating, and
improved performance for drilling PCBs compared to micro- and nanodiamond-coated microdrills
without interlayer. In addition, a higher hole quality was achieved when the diamond-coated
microdrills were used. These results signify that the composite/nanodiamond coating features the
highest bonding strength and best drilling performance.

Keywords: diamond coating; microdrills; PCB; nanocrystalline diamond; wear resistance

1. Introduction

Printed circuit boards (PCBs) are ubiquitous in electronic devices ranging from con-
sumer electronics, such as computers, gaming consoles, smartphones, televisions, am-
plifiers, and diverse control electronics in cars, via industrial applications, i.e., control
devices for industrial processes, medical devices, such as hearing aids, heart rate monitors,
magnetic resonance imaging (MRI) and computed tomography (CT) scanners, and ventila-
tors, to LED lighting, charging, displaying, “internet of things (IoT)”, infrastructure, and
aerospace. In these areas, miniaturization is in progress in regard to device dimensions
and electronics [1,2]. For instance, this is the case for smartphones, wearable devices, and
tablets. Miniaturization poses several challenges; one of these challenges is the processing
and drilling of smaller holes into stronger PCBs [3].

A printed circuit board comprises a thin base board made of resin-bonded paper or
fiberglass (insulator). This baseboard is coated at one or both sides with a thin layer of
copper (conductor), which has been printed on the board into specific circuits. Components
need to be attached to the board, which necessitates drilling holes into the PCB at designated
locations. To obtain high reliability, these holes should be round, homogeneous, and
without debris (i.e., burrs) [1]. Drilling of these materials has become challenging [3], as
the materials for printed circuit boards have moved toward lightweight high-strength
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materials [4], resulting in higher wear of cutting and drilling tools during machining [5].
Further, the smaller hole diameters (and smaller microdrill diameters) lead to exacerbation
of microdrill failure, often due to fracture of the microdrill at the joint between the drill
shank and the drill body (flute) due to stress concentration [6]. To alleviate the issue of
accelerated wear, highly wear-resistant and high-strength materials, such as WC-Co, have
been established as cutting and drilling tools [7]. To improve durability and wear resistance
further and minimize build-up edge, diamond coatings can be applied to these tools [8],
and commercial diamond-coated cutting and drilling tools are available. However, the
growth of diamonds on WC-Co necessitates appropriate pretreatment, seeding procedures,
and specific growth parameters [9–11].

The pretreatment is necessary as Co at the surface catalyzes the generation of graphite
instead of diamond, resulting in deterioration of film adhesion and poor diamond qual-
ity [10,12]. A general pretreatment to avoid this is the application of Murakami solution, a
base that removes WC from the surface, roughening it, followed by treatment with Caro’s
acid, a solution that dissolves the cobalt from the surface. This process was patented
more than 30 years ago [13] and has been optimized for general cutting and drilling tools.
Other approaches are acid-base-acid etching in combination with interlayers or diffusion
barriers [14]. Problems arise when the cutting and drilling tools are miniaturized, as the
surface-to-volume ratio increases and the aforementioned etching decreases the fracture
strength of the composite hard metal due to “excessive” removal of the cobalt binder [15].
Therefore, researchers have investigated the optimal pretreatment parameters (etching)
for WC-Co microdrills [16]. For instance, Geng et al. [15] showed for a 0.5 mm diameter
microdrill (WC-Co, 12 wt% Co) that only 3 min etching with Murakami solution is enough
to etch sufficient WC from the surface, further etching did not lead to higher wt% of Co on
the surface. The subsequent acid etching yielded a “Co depletion layer” of 6.5 µm after 15 s,
and this layer would grow up to 15 µm after 120 s. Simultaneous with the formation of the
Co depletion layer, the fracture strength of the hard metal declines. Therefore, a balance
between etching length for Co depletion and fracture strength has to be found.

After the pretreatment, the WC-Co needs to be seeded with a nanodiamond seeding
solution with advantageous colloidal stability [17], as the seeding density affects the
adhesion of the diamond coating [18]. Subsequently, the growth process is of utmost
importance for the quality and adhesion of the diamond coating as well as the performance
in cutting or drilling operations. For WC-Co, diamond coating adhesion is, in general, weak
due to high residual stress stemming from the mismatch in thermal expansion coefficient
between the WC-Co substrate and diamond [19,20]. This stress is compressive, leading to
spallation of the diamond coating upon cutting or drilling due to stress concentration (at the
WC-Co/diamond interface) [21]. The build-up of thermal stresses is inevitable due to the
temperatures of chemical vapor deposition (CVD) diamond growth, albeit low-temperature
diamond growth with poor diamond quality is possible [22]. In this regard, interlayers can
reduce or mitigate thermal stresses that originate from thermal mismatch. Interlayers with
good interfacial bonding, high strength, and a thermal expansion coefficient (COE) between
diamond and hard metal are used for this purpose. Examples of such interlayers are
TiAlN [23], TiC and/or TiN [24], SiC [25,26], Al-Al2O3 [27], Al-AlN [27], Cr/CrN/Cr [20,28],
Cr2O3-Cr [29], CoB, TiMoTa [30], and multilayer TiN/Al2O3/TiCN [12,23,31,32]. The SiC
phase features a distinct advantage; namely, it can be grown in the hot filament chemical
vapor deposition (HFCVD) chamber at the same time as diamond is grown by introducing
a Si source (i.e., tetramethyl silane, TMS) into the reactive gas mixture [33]. The result
is a SiC/diamond composite, for which the content of diamond (or SiC) can be adjusted
by the flow rate of the Si source (or the concentration of the Si source in the gas phase)
or by the distance of the substrate from the filaments (temperature) [34–36]. This control
over the interlayer coating composition affords the ability to tailor the residual stress of
interlayers based on SiC/diamond composites and the associated adhesion and maximize
wear resistance. A further advantage is the fact that a pure diamond coating can be directly
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grown on the SiC/diamond composite coating, as the diamond grows on this interlayer
without an intermittent seeding step.

The surface finish of a diamond coating has a grave influence on the cutting and
drilling performance. Though it was shown that microcrystalline diamond coatings feature
higher wear resistance [37], the higher roughness of these coatings [38] and the higher fric-
tion coefficient (COF) [39] lead to perceived poorer performance of such coatings compared
to nanocrystalline coatings. Therefore, it appears favorable to deposit a nanocrystalline
diamond top layer on cutting tools in spite of the poorer overall wear resistance compared
to the microcrystalline counterpart. A further advantage of this kind of bilayer coating
with a nanocrystalline top layer is the ability to mitigate crack propagation often observed
in microcrystalline coatings [40,41].

In this report, WC-Co microdrills with diameters of 0.8 and 0.125 mm were used as
starting material for the deposition of diamond coatings and subsequent wear resistance
tests (drilling of PCBs). Initially, the pretreatment with Murakami solution and Caro’s
acid was scrutinized and optimized toward a balance between the Co depletion layer
and fracture strength of the hard metal. Then, a SiC/microcrystalline diamond interlayer
was deposited. Finally, the WC-Co microdrills coated with the interlayer were outfitted
with a nanocrystalline diamond top layer. The performance of this composite coating
was evaluated against nanocrystalline and microcrystalline diamond coatings deposited
directly after pretreatment on the WC-Co substrate, i.e., by Rockwell C indentation and by
drilling experiments, showing the wear and spallation of the diamond coatings.

2. Experimental Section
2.1. Materials

Flat WC-Co substrates with Co content of ca. 6 wt% (size 10 × 10 mm, model number
YG6X4130511) were purchased from Zhuzhou Diamond Cutting Tools Co. (Zhuzhou,
China). The microdrills (model number A129QV) with diameters of 0.8 mm (6 wt% Co)
and 0.125 mm (8 wt% Co) were supplied by Shenzhen Jinzhou Precision Technology Co.,
Ltd., Shenzhen, China. Both types of microdrills have a helix angle of 35 ± 2◦.

Potassium hydroxide (AR), potassium ferrocyanide (AR), and sodium dodecylben-
zenesulfonate (SDBS, AR) were purchased from Aladdin (Shanghai, China). AR denotes the
analytical reagent grade of the chemicals. Hydrogen peroxide aqueous solution (30 wt%)
was purchased from Shanghai Lingfeng Chemical Reagent Company (Shanghai, China).
Sulfuric acid (AR) (98 wt%) and nitric acid (AR) (65 wt%) were obtained from Dongguan
Dongjiang Chemical Reagent Company (Dongguan, China), and detonation nanodiamond
(DND) powder with a diameter of 100–110 nm was obtained from Shenzhen Tongli Micro
Nano Technology Co., Ltd. (Shenzhen, China). The hydrodynamic diameter and Zetapo-
tential determined by dynamic light scattering (Zetasizer Nano ZS, Malvern Panalytical
Ltd., Malvern, UK) were 124 nm and −38.9 mV, respectively.

2.2. Etching Process of the Cemented Carbide Substrates

Initially, the Murakami solution was prepared by adding 10 g potassium hexacyano-
ferrate and 10 g potassium hydroxide in 100 mL DI water. The WC-Co substrates were
immersed in the alkaline Murakami solution for varying etching times (between 0 and
20 min) while being agitated ultrasonically. Subsequently, the etched samples were scru-
tinized by scanning electron microscopy (SEM, for morphology) and energy dispersive
X-ray spectroscopy (EDS, for composition).

Similarly, the etching of microdrills with diameters of 0.800 mm and 0.125 mm were
carried out. Etching with the alkaline Murakami solution was carried out for 3, 6, or
9 min, followed by acid etching for 15 s. The acidic etchant was prepared by mixing
10 mL of concentrated sulfuric acid with 100 mL of hydrogen peroxide. The effect of the
alkaline etching time on the relative fracture strength of the microdrills was subsequently
scrutinized. A microdrill was placed in a test rig, where it was fixed at the drill shank.
Force was applied at the flute of the microdrill, leading to a displacement (bending of
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the flute) of the microdrill (a scheme of the experiment is depicted in Figure 1). Force
versus displacement curves were captured, and the critical load at fracture was noted for
the microdrills.
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Figure 1. Measurement setup for determination of stress–strain curves and fracture strength of micro-
drills.

2.3. Nanodiamond Seed Preparation and Seeding

0.1 g of DND powder and 2 g of sodium chloride were balanced and added into a
ductile iron tank for ball milling with a planetary ball mill. The ball milling was conducted
at 350 rpm for 180 min. After ball milling, 80 mL of concentrated nitric acid was added, and
the colloid was stirred for 3 h. Afterward, the oxidized nanodiamond samples were taken
out and centrifuged three times at 7000 rpm for 8 min. After each centrifugation step, the
supernatant was removed, and 30 mL of deionized water was added. After centrifugation,
100 mL 1 × 10−6 mol/L sodium dodecylbenzenesulfonate aqueous solution was added,
and the pH of the prepared colloidal solution was adjusted to 10. The hard metal samples
were seeded ultrasonically with this solution for 15 min, followed by carefully rinsing with
deionized water and blow drying with nitrogen.

2.4. Preparation of the Diamond Coatings on Microdrills

The microdrills were etched with Murakami solution for 3 min, followed by acid
etching for 15 s. Then, the microdrills were seeded ultrasonically with the nanodiamond
colloid. Afterward, the three different diamond coatings were grown. Nine filaments
made of tungsten were aligned horizontally, and the microdrills were aligned vertically.
The deposition parameters are listed in Table 1. The pressure during the chemical vapor
deposition process (CVD) was set to 1500 Pa. The final coating thickness was ca. 2.5 µm as
this thickness was suggested to yield a good compromise between the adhesion strength of
the coating and wear resistance [42].

Table 1. Deposition parameters used for depositing the three different diamond coatings on the mi-
crodrills.

Coating Type H2
(sccm) CH4 (sccm) TMS (sccm)

Filament-
Microdrill Distance

(mm)
Argon (sccm) Deposition Time (h)

Microdiamond 800 32 0 23 0 1.5 h
Nanodiamond 800 88 0 25 500 3 h

Dia/SiC interlayer + nanodia.
top layer 800

(Interlayer) 32 * 80 * 23 * 0 * 1 h *
(top layer) 88 # 0 # 25 # 500 # 2 h #

* deposition parameters for the diamond/SiC interlayer deposition prior to nanodiamond growth. # deposition
parameters for nanodiamond top layer growth.

After deposition, the morphology and composition were characterized by SEM, XRD,
and Raman. Raman spectra were recorded with the HORIBA LabRAM HR800 Evolution
Raman spectrometer (HORIBA Trading Co., Shanghai, China) using an excitation wave-
length of 633 nm. The surface morphology of the deposited diamond films was analyzed
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by field emission scanning electron microscopy (FE-SEM, Hitachi, S-4800, Tokyo, Japan).
The accelerating voltage was 5 kV. X-ray diffraction (XRD) patterns were taken in a θ/2θ
geometry (Rigaku MiniFlex 600 X-ray, Cu Kα radiation, Tokyo, Japan) with a scan rate of
8◦ min−1. Rockwell C indentation was conducted on the flat diamond-coated samples at
an applied indentation force of 1470 N.

2.5. Performance of the Diamond Coatings on Microdrills

The effectiveness of the diamond-coated microdrills (performance) was tested for
drilling holes in printed circuit boards (PCBs). The PCBs were either S1000-2M (Shengyi
Technology Company, Dongguan, China) or HL-832NSF (Mitsubishi Gas Chemical Com-
pany, Tokyo, Japan) for drilling with the 0.8 mm or 0.125 mm microdrill, respectively. The
composition of the S1000-2M is continuous filament fiberglass, copper, brominated epoxy
resin, and inorganic filler. The HL-832NSF is a bismaleimide-triazine (BT) resin. For drilling,
the Hitachi ND-6Y220E high-speed drilling machine was used. The drilling parameters for
the 0.80 mm diameter microdrills were 65 krpm, drop speed 40 mm/s, and PCB (S1000-2M)
thickness 0.80 mm. The drilling parameters for the 0.125 mm diameter microdrill were
180 krpm, drop speed 25 mm/s, and PCB (HL-832NSF) thickness 0.30 mm. The generated
holes and the wear (i.e., flank wear) at the microdrills were inspected by optical microscopy.

3. Results
3.1. Fracture Strength of Pretreated Microdrills

Initially, pretreatment was investigated on flat WC/Co substrate with ca. 6 at%
Co to ascertain the depletion of Co. SEM micrographs before and after treatment with
Murakami solution (5–15 min) and Caro’s acid is discussed in the Supporting Information
Figures S1 and S2, respectively. During the pretreatment process, the microdrills were
etched by Murakami solution, followed by Caro’s acid. To optimize the etching process,
the Murakami etching time was varied from 3 to 9 min while the acid etching time was
maintained at 15 s. Figure 2a shows the surface morphology of the etched (3 min Murakami
and 15 s Caro’s acid) WC-Co microdrill, while Figure 2b–d show the cobalt depletion at
the surface of the 0.125 mm microdrills measured by EDS after etching. Figure 2a shows
that after acid etching, the cobalt element between WC particles is removed. Similar results
are observed for the microdrills etched for 6 and 9 min with Murakami solution followed
by Caro’s acid etching for 15 s, as shown in Figure S3. Figure 2b–d shows that the cobalt
content at the surface of the WC-Co microdrills was depleted to 0.51% (3 min Murakami),
0.46% (6 min Murakami), and 0.45% (9 min Murakami). Therefore, a Murakami etching
time of 3 min is sufficient. Subsequently, the strength after treatment with different alkali
corrosion times was evaluated to find the alkali corrosion time that could ensure optimal
operation of the microdrills.
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Figure 3 shows the load–displacement curve of the microdrills with a diameter of
0.125 mm after treatment with different etching times. The load at fracture of the microdrills
decreased with the increase in alkali etching time, which is consistent with etching and
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embrittlement due to the removal of the WC phase observed previously [15]. Figure 3b
shows the load at fracture of the microdrill decreased further for the process of alkali
etching, followed by acid etching for 15 s. Notably, the effect of short-term acid etching
with Caro’s acid on the load at fracture of the micro drills is far greater than that of etching
with Murakami solution. The etching time with Caro’s acid was not varied as the cobalt
depletion layer has been established already after the short etching time of 15 s, and there
is virtually no change in fracture strength for longer etching times (see ref. [15]).
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The etched microdrills were evaluated for their stability during normal operation
(drilling). The gist of this evaluation is that only the microdrills treated with Murakami
solution for the shortest time (3 min) did not show failure, i.e., fracture of the microdrill at
the drill shank. Longer Murakami leaching times of > 3 min led to the microdrill’s failure
during normal operation, as detailed in Table 2. This failure of the microdrills during PCB
drilling is a common problem of filigree diamond-coated WC-Co microdrills [43], and
optimization of the etching process is thus of utmost importance for diamond deposition
and the use of microdrills.

Table 2. Microdrill (0.125 mm diameter) fracture with different corrosion parameters.

Murakami Etching
Time (min) Acid Etching Time (s) Fracture Load (N)

Failure of the
Microdrill During
Drilling of PCBs

3 15 0.34 No
6 15 0.26 Yes
9 15 0.21 Yes

3.2. Deposition of Micro, Nano, and Composite Intermediate Layer Coatings

After optimization of the pretreatment for the microdrills with 0.8 mm (Figure 4) and
0.125 mm (Figure 5), three different diamond films were coated on the microdrills, namely,
microcrystalline, nanocrystalline, and composite coating (diamond/SiC interlayer and
nanocrystalline diamond top layer). The reason for the composite interlayer, as well as
the analysis and optimization thereof, are discussed in the Supporting Information. The
accompanying Figures S3–S5 describe the optimization of the composite microcrystalline
diamond/SiC interlayer on flat WC/Co (6 at%) substrates. Figure S4 shows the SEM
morphology of the resulting composite layer at different gas compositions. Figure S5
shows the morphology of the optimized composite layer, the cross-section of the composite
layer, and the C (diamond) and Si (SiC) distribution by EDS mapping. Figure S6 shows
the XRD pattern of the composite coating, signifying the presence of SiC, WC, and dia-
mond. Further, morphology and cross-sectional SEM micrographs of the three different
coatings (microcrystalline, nanocrystalline, and composite interlayer with nanodiamond
finish) are shown in Figure S7, indicating an overall thickness of ca. 2.5 µm of all the
coatings. Specifically, the thickness of the microcrystalline, nanocrystalline, and composite
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(two-layer) coating was 2.4 ± 0.4 µm, 2.5 ± 0.1 µm, and 2.4 ± 1.6, respectively, indicating
a higher thickness deviation for coatings with microcrystalline diamond. The microdrills
were coated from the cutting tip down ¾ of the drill body toward the drill shank. Figure 4
shows diamond-coated microdrills (0.8 mm diameter) with the microcrystalline (MCD),
nanocrystalline (NCD), and diamond/SiC composite interlayer + nanodiamond top layer
(COM/NCD). The SEM micrographs taken from the flank face and chisel edge show a
homogeneous coating for all diamond coatings. Similarly, homogeneous diamond coatings
were found for micrographs taken 1/8 and 1/3 down the microdrill body. Similar results
were obtained for the 0.125 mm diameter microdrill shown in Figure 5.
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Figure 4. Growth of diamond on WC-Co microdrills (pretreatment 3 min Murakami, 15 s acid).
(a) Optical image of a microdrill with a diameter of 0.8 mm. SEM micrographs of the diamond
coatings along the microdrill (cutting edge, ca. 1.25 mm below the cutting edge, and ca. 4 mm
below the cutting edge). SEM micrographs for (b) the microdiamond, (c) nanodiamond, and
(d) SiC/nanodiamond coating on the WC-Co microdrill.
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Figure 5. Growth of diamond on WC-Co microdrills (pretreatment 3 min Murakami, 15 s acid).
(a) SEM of a microdrill with a diameter of 0.125 mm. SEM micrographs of the diamond coatings along
the microdrill (cutting edge, ca. 0.4 mm below the cutting edge, and ca. 0.8 mm below the cutting
edge). SEM micrographs for (b) the microdiamond, (c) nanodiamond, and (d) SiC/nanodiamond
coating on the WC-Co microdrill.
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Figure 6 shows the Raman spectra of the three coatings shown in Figure S7. Figure 6a is
the Raman spectrum of the microcrystalline diamond coating, which features a prominent
peak at 1334.96 cm−1, denoting the presence of diamond. The peak is sharp, signifying
the high quality of the diamond that has grown. However, the peak is shifted away
from the general diamond peak at 1332 cm−1 due to thermal stresses originating from a
mismatch in thermal expansion coefficient and intrinsic stresses. The average residual
compressive stress is −1.55 GPa, calculated by σ = −0.526 ∗ (vb − v) GPa [44], where vb
and v are the peak location of the diamond peak in a stressed state and the unstressed
peak location in Raman spectroscopy, respectively. This relatively high compressive stress
may lead to spallation of the coating under external stresses (i.e., cutting or drilling).
Other features in the Raman spectrum are the peak for trans polyacetylene (TPA) and
the D and G bands of graphene. Similarly, Figure 6b shows the Raman spectrum of the
nanocrystalline coating with a broadened peak at 1332.2 cm−1. The peak broadening is a
common occurrence for nanocrystalline coatings due to a higher abundance of defects in
the diamond crystallites. The average calculated compressive stress is −0.11 GPa, lower
than for the microcrystalline coating due to the higher abundance of grain boundaries
(intrinsic stress build-up, which is often tensile—believed to stem from snapping together
of the diamond grains during growth, counteracting the compressive thermal stress). The
diamond peak is weak compared to the graphite G band due to the higher sensitivity
of the G band in Raman [45]. However, this indicates a higher abundance of graphite
generated during the CVD diamond growth, likely located at the grain boundaries of the
nanocrystalline diamond. Finally, Figure 6c depicts the Raman spectrum of the composite
coating (diamond/SiC interlayer + nanodiamond top layer). The spectrum is similar to the
nanocrystalline diamond spectrum, except for the peak location of the diamond Raman
peak, which is shifted 2.5 cm−1 towards tensile stress (+1.34 GPa). As stated before, the
tensile stress stems from the growth process (snap-in) of diamond crystallites [46,47]. In
the case of the composite film, little compressive stress is built up at the WC-Co/composite
interlayer interface due to a mismatch in the thermal expansion coefficient. Therefore,
the tensile stress (intrinsic stress) of the secondary (nanodiamond) layer predominantly
contributes to the overall stress observed. It should be noted that the stress is an average
stress. Stresses are different at the interface of the cemented carbide with diamond (or the
interlayer) and inside the diamond film itself and depend on many factors (i.e., grain size,
doping, and other coating parameters) [48].
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Figure 6. Raman spectra of (a) the microdiamond coating, (b) the nanodiamond coating, and (c) the
diamond/SiC composite interlayer + nanodiamond top layer.

Figure 7 shows the XRD patterns of the three coatings, signifying the phase compo-
sition of the coatings. The different coatings are denoted ncd, mcd, and com/ncd for the
nanocrystalline diamond, microcrystalline diamond, and diamond/SiC composite coating
with nanocrystalline diamond top layer. Since the diffraction thickness of XRD is greater
than the diamond coating thickness of 2–3 µm, diffraction patterns of the WC-Co matrix
are detected beside the diffraction patterns for the diamond crystallites. Diffraction peaks
at 2 theta of 75.3◦ and 43.9◦ signify the diamond (220) and (111) crystal lattice planes,
respectively. The diffraction peaks at 59.72◦ and 71.4◦ denoting β-SiC (220) and (311) lattice
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planes, respectively, are only observed for the composite coating. The diffraction peaks of
the SiC (111) plane and the diamond (220) plane at 35.3◦ and 75.2◦, respectively, overlap
with the diffraction peaks of the (100) plane and the (200) plane of the WC alloy and cannot
be discerned here.
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Figure 7. XRD patterns of the microcrystalline diamond coating, nanocrystalline diamond coating,
and composite interlayer + nanodiamond top layer.

To evaluate the film adhesion, Rockwell C indentation tests were carried out on the
three different coatings, which were deposited on flat WC-Co substrates. Figure 8 shows
indentation craters after Rockwell C indentation with a load of 1470 N of the diamond-
coated WC-Co substrates. No spallation or debris formation has been observed. The
diamond remained attached to the WC-Co hard metal for all diamond coatings. In lieu of a
difference in detachment of diamond coating debris, crack propagation, and crack length
are indicators for adhesion strength of diamond coatings (see also: VDI 3198 indentation
test [41]) [9,49,50]. When considering radial crack lengths, the number of smaller cracks,
and the existence of a clearly visible circular crack in the vicinity of the indentation crater,
the poorest adhesion is observed for the microcrystalline diamond coating, which correlates
with the compressive residual stress and issues with crack propagation in microcrystalline
coatings due to the columnar growth of the crystallites [51]. The single-layer nanodiamond
coating shows improved adhesion, as only four larger cracks and a few barely visible
shorter cracks are visible. Still, the crack propagation (radial cracks) is rather large. The
best adhesion due to the presence of the shortest radial cracks was observed for the
composite/nanodiamond double-layer coating. The crack propagation zone is also small,
indicating that the adhesion of the diamond coating can be increased by using the composite
layer as a transition layer.
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Figure 8. Indentation craters of (a) microdiamond coating, (b) nanodiamond coating, and (c) dia-
mond/SiC composite interlayer + nanodiamond top layer after Rockwell C indentation with a force
of 1470 N. The coating is located on substrates of the flat WC-Co (pretreated with 3 min Murakami,
15 s acid).
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3.3. Performance of the Micro, Nano, and Composite Diamond Coatings for Drilling PCBs

During the drilling of PCBs, microdrills are expected to experience wear. Further,
poor adhesion of diamond coatings may lead to flaking and peeling of diamond coatings,
which may be exacerbated due to crack propagation. Therefore, the coating adhesion to the
microdrills and drilling performance were investigated. The drilling parameters and the
PCB material are delineated in the experimental section.

Figure 9 shows optical microscopy images of the three different diamond coatings
before drilling (0 holes) and after drilling 50 and 500 holes in the PCB. Similar to the SEM
micrograph in Figure 4, the initial vertical view optical microscopy image of the drill tip
shows homogeneous diamond coatings for all types of diamond coatings. After 50 drilled
holes, brighter areas on the cutting tip at the flank face (at and near the cutting edge) can
be discerned for the microdiamond coating. These brighter areas denote the peeling of
the microcrystalline coating due to cutting-induced stress (compressive) and the residual
compressive stress, resulting in weak adhesion of this diamond coating. Peeling of the
microcrystalline diamond coating is exacerbated with an increased number of holes drilled,
and after 500 drilled holes, most microcrystalline diamond is peeled off the flank faces of the
drill tip. Further, strong wear can be observed at the cutting edge as well as the chisel of the
drill tip. Slight build-up edges can be observed for this type of coated microdrill. Build-up
edge (Aufbauschneide) is a common phenomenon observed in the drilling and cutting of
metals with hard metals that can be avoided by low-friction materials like diamonds.
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Figure 9. Surface morphology of the diamond-coated microdrills (diameter 0.8 mm) after drilling 50
and 500 holes in the PCB. Drilling parameters: 65 krpm, drop speed 40 mm/s, and PCB thickness
0.80 mm.

The nanodiamond coating has been suggested to feature better adhesion, albeit wear
resistance is lower compared to microdiamond coatings. After 50 holes were drilled with
the nanocrystalline diamond-coated drills, the optical image of the drill tip shows several
small and bright areas at the flank face of the drill, denoting areas where the diamond
coating flaked off, yet no large area peeling of the coating is observed due to the lower crack
propagation of nanocrystalline diamond coatings compared to microcrystalline coatings.
Further, coppers sticking at the chisel and the cutting edges (build-up edges) can be
observed. The build-up edge is sometimes associated with a shortened tool lifetime and
poor drilling performance [52]. After 500 holes, several large peeled areas are observed,
and the build-up edge is exacerbated, signifying a decline in the coating’s performance.
Peeling of the nanodiamond coating might stem from compressive residual stress at the
substrate/nanodiamond interface induced by thermal stresses, akin to the microcrystalline
coating (even though the average residual stress of the coating is only slightly compressive).
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Compared to these findings, the composite coating (diamond/SiC interlayer & nanodi-
amond top layer) shows improved drilling performance and tool lifetime. After 50 drilled
holes, no flaking or peeling of the composite coating was observed, except for the chisel
area. At the chisel, a bit of copper also adhered due to the bare metal matrix. The cutting
edge appears sharp with a minute adhesion of copper from the PCB (minute build-up
edges). After drilling 500 holes, the cutting edge’s color became brighter, indicating the
wear of the nanocrystalline diamond coating. Still, neither peeling of the composite coating
at the cutting edge nor at the flank face was observed. Little build-up edges can be dis-
cerned. Further, the area at and near the chisel without the diamond coating has grown only
slightly, indicating good adhesion and performance of the composite coating compared to
the micro- or nanocrystalline coatings discussed before.

Figure 10 shows the drill tip of diamond-coated microdrills with a diameter of
0.125 mm before, during, and after drilling 300 holes in PCB. In contrast to the mea-
surement in Figure 9, the drill tip was measured with SEM to improve visibility and clarity
of peeling areas and wear on the drill tip of the microdrills. Again, the microdiamond
coating performs poorly, with flaking and peeling of a wide region of the coating during
the drilling of the first 50 holes. The peeling of the coating is concentrated near the cutting
edge at the flake face (due to stress concentration). Minor peeling and wear are observed at
the minor cutting edge. Build-up edges are observed at the chisel region of the microdrill.
Delamination of the microcrystalline diamond film is exacerbated after 300 drilled holes,
with the diamond coating peeled from the better part of the flake face and the chisel area.
For the nanodiamond coating, a similar wear pattern is observed, albeit the build-up edge
is severer.
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Figure 10. Surface morphology of the diamond-coated microdrills (diameter 0.125 mm) after drilling
50 and 300 holes in the PCB. Drilling parameters: 180 krpm, drop speed 25 mm/s, and PCB thickness
0.3 mm.

In contrast to the observed delamination of the single layer diamond coatings from
the 0.125 mm diameter microdrill, wear and delamination of the diamond coating is starkly
reduced for the composite coated microdrill after drilling 50 holes in the PCB. Obviously,
no delamination was observed after drilling 50 holes, while wear areas at the flake face in
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the vicinity of the minor cutting edge can be discerned. Similarly, wear is observed in the
chisel area (highly localized). Wear at the cutting edge or other flake face regions cannot
be discerned. After 300 drilled holes with this (composite) diamond-coated microdrill,
wear is observed at the cutting edge and flake face, but no delamination of the coating is
observed. Further, the bright region in the chisel region denotes the adhesion of copper
to the microdrill. Therefore, the composite coating exhibited the best wear resistance and
coating adhesion of the three coatings discussed in this article. It is important to note that
both sizes of coated microdrills did not fail due to fractures of the drill body from the drill
shank, which can be a problem for microdrills after the treatment with Murakami solution.

Figure 11 shows the appearance of the holes, which were drilled with the three
different diamond-coated microdrills (either 0.8 or 0.125 mm in diameter). First, the holes
obtained with the larger microdrill are discussed. Some burrs (red arrows) and some
debris/poorly cut chips are observed for the 50th hole drilled with the microcrystalline
diamond-coated microdrill. After the 500th hole, extensive burr formation is observed,
and the drilled holes are slightly ovoid. The poor drilling performance stems from poor
adhesion and wear resistance of the microcrystalline diamond coating on the drilling tool,
as the coating was already peeled after 50 holes, exacerbated after 500 holes, resulting in
build-up edges. A similar result is observed for the nanocrystalline diamond coating on
the microdrill, albeit the drilling performance is better after only 50 holes. A few burrs
can be observed here. However, after drilling 500 holes, burr formation is similar to that
of the microcrystalline coating. In contrast, the composite-coated microdrill exemplifies
improved drilling performance after 50 and 500 drilled holes. After 50 holes, no burrs can
be discerned. Further, burr formation after 500 drilled holes is minimal. This improved
performance is a direct result of the low friction of diamonds (build-up edges are less likely)
and the good adhesion of the composite coating (no delamination of the coating).
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Figure 11. Appearances of the holes drilled in PCB after drilling 50 and 500 holes with the same
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were prepared with the optimized pretreatment, and the composite coating was made using the
optimized TMS flow rate.
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Generation of filigree diamond-coated microdrills is difficult, and their stability and
diamond-coating adhesion are often limited. Therefore, microdrills with a diameter of
0.125 mm were coated using the same procedure with the three different diamond coatings,
and then, the drill performance of the microdrills was investigated. For both the micro-
crystalline and nanocrystalline diamond-coated microdrills, poor drilling performance was
observed already after drilling 50 holes, as burrs and debris are clearly visible. Burr and
debris generation is exacerbated after 300 drilled holes, while at this point, the hole gets ir-
regular (non-circular), signifying poor drilling performance. The poor drilling performance
of these two coatings stems from the delamination of both coatings from the microdrill
already after 50 drilled holes, as shown in Figure 10, and the loss of protection against the
build-up edge. In contrast, the composite-coated microdrills perform far better. The hole
drilled after using the same drill for drilling 50 holes features a high circularity, and no
burrs or debris can be discerned. Even after 300 drilled holes, the generated hole is circular
with only a few minute burrs. The improved drilling performance stems from the improved
adhesion of the composite film in combination with the excellent tribological properties
of the diamond coating (i.e., low friction) and minimization of build-up edges. Therefore,
the composite diamond-coated microdrill shows superior drilling performance. Note that
the coated microdrills did not fracture during this experiment due to the optimization
(or compromise between) fracture strength of the metal matrix and pretreatment time for
subsequent diamond growth.

4. Conclusions

For microdrills and other filigree cutting and drilling tools, a balance between the
etching duration for removal of Co from the surface of the WC/Co metal matrix and the
fracture strength of the metal matrix has to be struck. Therefore, the effect of etching
time on the cobalt content of the WC cemented carbide matrix in combination with the
fracture strength was studied, as well as the adhesion of diamond coatings after optimizing
the pretreatment parameters. The cobalt content on the surface of the alloy continued
to increase with prolonged Murakami etching. This increase effectively enhances the
subsequent cobalt removal by the Caro’s acid. For microdrills, the optimized etching
parameters were 3 min Murakami etching and 15 s Caro’s acid etching, ensuring a low
enough cobalt content at the surface for high-quality diamond growth while maintaining
a high enough fracture strength to mitigate fracture of the microdrills during operation.
Secondly, three different diamond coatings were deposited on the etched substrates, namely,
microcrystalline, nanocrystalline, and a composite comprising a diamond/SiC composite
interlayer and a nanocrystalline top layer. The bilayer composite coating featured the best
adhesion on flat WC-Co substrates as well as on the microdrills (diameter 0.8 and 0.125 mm).
Further, the composite-coated microdrills feature improved performance for drilling of
PCB compared to the single-layer diamond coatings, which stems from the improved
coating adhesion due to lowered thermal stresses at the substrate coating interface, lower
wear of the microdrills, and the low friction coefficient of nanodiamond finish, resulting in
improved drilling performance and higher hole quality.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ma17225593/s1, Figure S1: (a) SEM surface morphology of
as-received WC-Co substrate. (b) EDS spectrum of as-received WC-Co substrate. Figure S2: The
surface morphology of the WC-Co substrate after etching for (a) 5 min, (b) 10 min, (c) 15 min, and
(d) 20 min with Murakami solution. Below the SEM micrographs the corresponding EDS spectra
are shown. (e) Composition of the etched WC-Co substrates determined by EDS. Figure S3: SEM
morphology of a 0.125 mm WC-Co microdrill after Murakami etching for (a) 6 and (b) 9 min, followed
by acid etching for 15 s. Figure S4: Surface morphology of diamond/silicon carbide composite
films deposited on flat WC-Co sample after 1. etching for 15 min with Murakami and 15 s with
Caro’s acid and 2. seeding with milled DNDs. The TMS flow rates were (a) 20 sccm, (b) 40 sccm,
(c) 60 sccm, (d) 80 sccm, (e) and 100 sccm. Figure S5: Surface morphology of diamond/SiC composite
films made with 80 sccm TMS on flat WC-Co substrates observed with SE signal and BSE signal.

https://www.mdpi.com/article/10.3390/ma17225593/s1
https://www.mdpi.com/article/10.3390/ma17225593/s1
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(a) SEM micrograph of the composite captured with the SE signal. (b) SEM micrograph of the
composite captured with the BSE signal. Tilted angle SEM micrograph of the diamond/SiC composite.
(f) SEM micrograph (SE signal) and corresponding EDS maps showing (d) Si and (e) C. Below, two
EDS spectra are shown, signifying a Si-rich and a C-rich area of the SiC composite film. Figure S6:
XRD diffraction pattern of diamond/silicon carbide composite film deposited on the flat WC-Co after
the optimized pretreatment (15 min Murakami, 15 s Caro’s acid, and DND seeding) and TMS flow
rate 80 sccm during CVD coating). Figure S7: Surface and cross-sectional morphology of the three
coatings, namely, (a) microcrystalline diamond coating, (b) nanocrystalline diamond coating, and
(c) composite interlayer + nanocrystalline diamond top layer. References [13,33,50,53–57] are cited in
the Supplementary Materials.
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