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Abstract: Customizing and optimizing lattice materials poses a challenge to designers. This study
proposed a data-driven generative method to customize and optimize lattice material. The method
utilizes subdivision modeling to parametrically describe lattice morphologies and skeletons. Next,
the homogenization method is employed to analyze elastic moduli for collecting a dataset. Then, a
two-tiered machine learning (ML) framework is proposed to predict the elastic modulus for a forward
design. The first-tier model employs polynomial regression to estimate relative density, which serves
as an additional input feature for the second-tier model. The prediction accuracy of the second-tier
model is improved through the additional inputs. The forward and reverse design strategies offer a
flexible and accurate means of tailoring lattice properties to meet specific performance requirements.
Two case studies demonstrate the practical value of the framework: customizing a lattice material to
achieve a desired elastic modulus and optimizing the mechanical performance of lattice materials
under relative density constraints. The results show that the prediction accuracy of the elastic
modulus using the two-tiered ML model achieved an error of less than 10% compared to finite element
analysis, demonstrating the reliability of the proposed approach. Furthermore, the optimization
design achieved up to a 25% improvement in mechanical performance compared to conventional
lattice configurations under the same relative density constraints. These findings underscore the
advantages of combining generative design, machine learning, and genetic algorithms to navigate
complex design spaces and achieve enhanced material performance.

Keywords: generative design; lattice customization; parametric lattice design; machine learning;
data-driven lattice exploration

1. Introduction

The design and optimization of mesoscale lattice materials have become increasingly
significant in advanced manufacturing due to their exceptional mechanical and functional
properties. These materials, characterized by their periodic cellular architectures, offer high
specific stiffness [1], good strength [2], sound energy absorption [3], and even supernatural
properties, like a negative Poisson’s ratio [4]. Such attributes make them ideal for high-
end industrial applications, including airplane components [5], thermal management
systems [6], and medical implants [7]. However, customizing optimized parametric lattice
materials to meet specific performance criteria remains a considerable challenge.

Traditional design approaches are predominantly empirical, relying on iterative, man-
ual processes involving geometric modeling, parametric adjustments, and extensive numer-
ical analysis. These methods are time-consuming, costly, and often fail to fully exploit the
vast design space available for lattice configurations. The lack of a systematic methodology
for exploring and optimizing both the lattice configuration and the morphological features

Materials 2024, 17, 5599. https://doi.org/10.3390/ma17225599 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17225599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6416-6737
https://orcid.org/0009-0000-9065-6342
https://orcid.org/0000-0002-4874-7299
https://orcid.org/0000-0002-3122-6788
https://doi.org/10.3390/ma17225599
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17225599?type=check_update&version=2


Materials 2024, 17, 5599 2 of 22

of lattice materials limits innovation and hinders the development of solutions tailored to
specific application needs.

Recent advancements in computational design and artificial intelligence (AI) have in-
troduced a generative design paradigm that facilitates the customization and optimization
of lattice materials [8–11]. Generative design replaces manual design processes, enabling
the automatic and efficient generation of highly complex and optimized lattice struc-
tures. AI technologies, including neural networks [12], generative adversarial networks
(GANs) [13], and variational autoencoders (VAEs) [14], have expedited the generation of
high-performance lattice materials. For example, Lee et al. used a hybrid neural network
and genetic optimization methods combined with Bézier curves to optimize lattice profiles,
enhancing the elastic modulus [15].

Furthermore, data-driven design methods enable us to elaborate the relationship
between design variables and mechanical properties. This allows for forward property
prediction and an inverse lattice material with desired properties. Yayati et al., utilizing
a denoising diffusion-based model, accelerated the design process of a TPMS-like lattice
unit cell structure with desired mechanical properties outperforming traditional simple
cubic cells [16]. Challapalli and Li et al. utilized machine learning to design and optimize
lattice configurations, with their optimized lattice cells significantly outperforming octet
cells in terms of buckling loads and demonstrating enhanced compressive performance
in both experimental and simulation validations [17]. Despite these advancements, a gap
remains in fully integrating generative design, parametric modeling, and machine learning
for forward-to-inverse lattice material design.

In the generative design paradigm, digital geometry design determines the design
space of lattice material. Lattice materials can be considered as a combination of their
skeleton and morphology [18]. In terms of skeleton design, the spatial positions of lattice
material components and their connections have mainly been studied. For example, Chen
et al. enhanced the stiffness, expansibility, and energy absorption capabilities of materials
by designing self-similar concave tensile lattice configurations [19]. Ding et al. improved
the negative Poisson’s ratio effect of lattice materials by parametrically altering the bending
and twisting angles of lattice rods [20]. Guo et al. used a fast Fourier transform-based
homogenization method to explore the mechanical properties of mixed materials with
multi-lattice configurations based on triply periodic minimal surfaces (TPMSs), enhancing
compressive energy absorption and other properties [21]. Rahman et al. demonstrated
the potential of lattice materials to improve energy absorption and mechanical efficiency
by exploring various rod-based lattice configuration hybrid structures [22]. Compared to
skeleton design, strategies for refining lattice morphologies have evolved, ranging from
smoothing lattice nodes to parametrically modifying their shapes. Cao et al. found that
cross-sectional optimization improves the energy absorption and mechanical performance
of the rhombic dodecahedron lattice [23]. Bernard et al. demonstrated that non-circular
sections, such as squares or rectangles, markedly improved the resilience and energy
absorption of strut-based lattices [24]. Uddin et al. designed I-shaped rod sections that
improved the compressive performance of pyramid lattice structures and their resistance
to buckling and bending [25]. However, existing research often focuses on either the lattice
skeletal configuration or its morphological details in isolation, which restricts the potential
for holistic optimization.

To address these challenges, this research proposes a data-driven bi-directional frame-
work that synergizes generative design, machine learning, and optimization algorithms
for advanced mesoscale lattice material design. The core objective is to develop a uni-
fied approach that simultaneously optimizes both the skeleton and morphology of lattice
structures, enhancing their customization and performance across various applications.
Parametric SubD modeling is utilized for the detailed digital representation of the lat-
tice structure. A small sample dataset of mechanical properties is collected using the
homogenization method, which simplifies the complex lattice structure into an equivalent
homogeneous material for efficient analysis. To enhance predictive accuracy, a two-tiered
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machine learning framework is proposed. The first tier uses polynomial regression to
estimate relative density, which is then used as an input feature for the second tier, a
Random Forest model that predicts the elastic modulus. A genetic algorithm is employed
to customize and optimize lattice designs that meet the desired mechanical specifications
and restrictions.

The effectiveness of the proposed approach is validated through numerical simulations
and case studies, demonstrating its capability to produce optimized lattice structures that
satisfy or surpass desired performance criteria. By integrating generative design, machine
learning, and optimization into a cohesive framework, this research provides a comprehensive
solution for customizing optimized parametric lattice materials at the mesoscale.

2. Design Methodology

The proposed generative design strategy synergizes parametric design, machine learn-
ing techniques, and genetic algorithms to allow for the customization of high-performance
lattice material. This approach comprises two main phases: dataset collection and inverse–
forward lattice exploration of the lattice frame (depicted in Figure 1).
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Figure 1. Design framework.

In the first part, the initial lattice skeleton and morphology are digitally defined by a
set of geometric parameters [P1, P2, P3, . . . , Pn], and subdivision (SubD) modeling is used
to construct organic-shaped lattice units. Subsequently, a series of representative volume
elements (RVEs) for lattice material is generated by sampling combinations of geometric
parameters. The homogenization method evaluates their corresponding mechanical proper-
ties, such as Yong’s modulus, Shear modulus, and Poisson’s ratio, resulting in an expansive
dataset that maps geometric parameters to mechanical properties.

In the second part, the collective data are used to train machine learning (ML) models
to establish the relationship between mechanical properties and geometric parameters.
Driven by a genetic algorithm (GA), both forward and inverse designs of lattice materials
are implemented: forward design enables performance optimization, while inverse design
allows for the customization of lattice materials to achieve specific target properties.

2.1. Parametric Lattice Skeleton and Morphology Based on SubD Modeling

The methodology begins with the digital characterization of the lattice skeleton and
morphology, as seen in Figure 2. Firstly, the skeleton of a lattice unit is parametrically
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described; then, the mesh framework for the morphology design of the lattice material is de-
fined. Then, subdivision (SubD) modeling is used to construct smooth, continuous surfaces.
This method uses parametric subdivision surfaces to produce high-quality, smoothing
lattice material.
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Figure 2. Parametric modeling and SubD lattice units.

In this process, the Catmull–Clark algorithm is a highly effective approach for lattice
modeling, as it works well with both triangular and rectangular meshes. This method
iteratively calculates new vertex points by averaging the coordinates of the original ver-
tices from the initial mesh structure, as seen in Figure 3. For the modeling process, the
Rhino7-GrasshopperTM SubD component is used, which has an internal implementation of
the Catmull–Clark subdivision algorithm. Since this component automatically manages
the parameters of subdivision algorithms, users are unable access and edit the specific
parameters. But it allows one to influence the final subdivision result by controlling the
initial control mesh characteristics.
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Figure 3. Catmull–Clark algorithm explanation [26] (Copyright © 2024, Liu et al., under exclusive
license to Springer Nature Singapore Pte. Ltd.).

As seen in Figure 2, the process begins by constructing a lattice unit on a skeletal
framework, with each lattice strut wrapped in quadrilateral mesh. During the modeling
phase, the strut nodes and lattice material profiles are parameterized. Subsequently, the
meshes are subdivided into smaller sections based on the topology of a mesh-based lattice
unit, forming lattice units with organic shapes. As subdivision iterations increase, the
model becomes progressively smoother, as seen in Figure 4.
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The use of parametric subdivision technology not only extends the diversity of lattice
material but also significantly minimizes stress concentration [27]. By utilizing Rhino7-
GrasshopperTM SubD component, we obtained high-quality lattice models, converted into
.x_t and .stl format for additive manufacturing and finite element analysis, respectively.

2.2. Numerical Analysis Based on Homogenization Method

Following the modeling phase, the homogenization method is applied to evaluate the
mechanical properties of the parametrically designed lattice material. This method reduces
computational load by treating the complex lattice structure as an equivalent homogeneous
material, enabling the efficient analysis of macroscopic properties [28].

The application of the homogenization method involves two key steps: the definition
of an appropriate Representative Volume Element (RVE) and its numerical assessment
under periodic boundary conditions. As illustrated in Figure 5a,b, a cubic RVE can be
composed of a 3 × 3 × 3 lattice unit. This selection ensures stable macroscale mechanical
behavior, minimizing the size effect. This also accelerates the collection of the elastic
modulus of all samples.
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To achieve material homogeneity, periodic boundary conditions were established on
the RVE, as illustrated in Figure 5c. The faces of RVE on the X-Y-, Y-Z-, and X-Z-axis planes
were defined as master planes, while their opposing, parallel faces were classified as slave
planes. A set of three constraint equations was established on the element nodes in the
master and slave planes to impose periodic boundary conditions at the corresponding
locations. The displacement of the RVE is obtained by imposing a force in the Z-axis
direction, as detailed in Equation (1).

uz|z=RVEsize
− uz|z=0 = δz = RVEsize × ε0

z (1)

Here, uz represents the displacement, δz denotes the deformation in the Z-axis direc-
tion, and ε0

z stands for the normal strain in the Z-axis direction, respectively. RVEsize is the
length of lattice material.

The elastic modulus of the lattice RVE was calculated using Equation (2). During the
numerical analysis, the homogenized elastic modulus was incorporated into the ML model
as a predicted target.

Ez =
σz

εz
=

Fz/Axy

δz/lz
(2)

Here, Ez is the Young’s modulus in the z-direction, Fz is the load in the z-direction,
Axy is the area used by the load to calculate stress σz, δz is the displacement in the Z-axis
direction of the structure, and lz is the RVE height, used to calculate strain εz.

2.3. Bi-Directional Lattice Customization and Evaluation

The customization of high-performance lattice material involves the implementation
of a two-tiered machine learning (ML) model alongside a genetic algorithm (GA). The first
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tier of the ML model utilizes polynomial regression to predict the relative density (RD) of
the lattice based on its geometric features, where the RD is the ratio of the actual volume
of the lattice to the size of its cell space. Such predictions not only increase the number
of input features for the second-tier ML model, but they also reduce the need for lattice
volume calculations in traditional CAD software. The second tier, employing a Random
Forest algorithm, utilizes the RD and geometric parameters to predict the homogenized
elastic modulus. Simultaneously, the GA operates in a reverse design framework to identify
the optimal geometric parameters that achieve the desired mechanical properties. These
steps collectively enhance the forward and reverse engineering capabilities of lattice design,
facilitating a more precise and efficient exploration and customization of lattice materials.

2.3.1. Forward Mechanical Property Prediction Method

In forward design, we present a two-layer machine learning (ML) framework for
lattice materials to accurately predict their elastic modulus. The first layer of the ML model
of the framework enhances the prediction accuracy by extending the input features. In
addition to geometrical features, RD is also considered as it has a significant impact on the
mechanical properties of lattice materials. It is worth noting that there is a strict constraint
between the RD and geometrical parameters, which means that RD is not independently
selectable when geometrical parameters are given. Typically, in CAD software, the RD
is calculated based on the input geometric parameters, but this approach increases the
computational cost of the prediction.

To solve this problem, the first layer of the ML model predicts the RD directly using
the geometric features as inputs, thus reducing the dependency on CAD calculations and
significantly reducing the computational burden. In this step, a polynomial regression
approach is used to predict the RD due to the complex interactions between geometric fea-
tures that jointly affect the RD. This approach effectively captures the complex relationships
between geometric features and provides higher prediction accuracy.

Let the geometric features X = (G1, G2, G3,. . ., Gn) be the vector of geometric features.
The three-degree polynomial regression model for predicting RD can be expressed as
Equation (3):

RD = β0 +
n

∑
i=1

βiXi +
n

∑
i=1

n

∑
j=i

βijXiXj + · · ·+ ϵ (3)

where β0 is the intercept; βi and βij are the coefficients for the linear and quadratic terms,
respectively. Xi and Xj are the geometric features involved in X. ϵ is the error term.

By incorporating RD as a predicted feature, we enhance the dataset used for sub-
sequent ML models, ultimately improving the overall accuracy of mechanical property
predictions. This approach allows for efficient and accurate RD estimation, reducing the
reliance on computationally intensive CAD software.

The second-tier ML model is Random Forest. The RD is compensated through the
polynomial regression as an effective input feature. Hereafter, the Random Forest model
is applied to predict the homogenized elastic modulus. This approach ensures both the
precision of ML predictions and the efficiency of the design process. Random Forest was
chosen due to its robustness and ability to handle complex non-linear relationships between
geometric features and the elastic modulus.

Let E denote the homogenized elastic modulus. The input features for the Random
Forest model include Z = (G1, G2, G3,. . ., Gn, RD). The Random Forest model can be
described as Equation (4).

E = RF(Z) (4)

A single decision tree, T, in the Random Forest predicts the homogenized elastic
modulus E based on input features X in Equation (5).

T(Z) =
L

∑
i=1

wi I(X ∈ Ri) (5)
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where L is the number of leaves in the decision tree. wi is the predicted value (homogenized
elastic modulus) for leaf i. I(·) is the indicator function, which is 1 if Z falls into region Ri
and 0 otherwise.

A Random Forest consists of an ensemble of m decision trees. Each tree is built
on a different bootstrap sample from the training data and a random subset of features.
The prediction of the Random Forest is the average prediction of all decision trees in
Equation (6).

ERF(Z) =
1
m

m

∑
j=1

Tj(Z) (6)

where ERF(Z) is the predicted homogenized elastic modulus from the Random Forest.
Tj(Z) is the prediction of the j-th decision tree for input feature Z. Given the input features,
each decision tree Tj in the Random Forest provides a prediction Tj(Z). The final prediction,
ERF(Z), is the average of all individual tree predictions, as described in Equation (7).

ERF(X) =
1
m

m

∑
j=1

Tj(RD, G1, G2, G3, . . . , Gn) (7)

The mean absolute error (MAE), Root Mean Square Error (RMSE), and the coeffi-
cient of determination (R2) are employed to evaluate the predictive performance of the
models concerning lattice materials’ relative density and equivalent elastic modulus in
Equations (8)–(10).

MAE(y, ŷ) =
1
m

m

∑
i=1

|yi − ŷi| (8)

RMSE(y, ŷ) =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (9)

R2(y, ŷ) = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − y)2 (10)

where yi is the computational value of the equivalent elastic modulus and ŷi is the predicted
value. m is the number of samples and y is the predicted mean response where the equation

is y = 1
m

m
∑

i=1
yi. The MAE is used to evaluate the closeness between the predicted results

and the real dataset. The RMSE reflects the deviation between the actual value and the
predicted value.

2.3.2. Backward Lattice Customization Design

In the reverse lattice design phase, a genetic algorithm (GA) is employed to identify
optimal discrete parameters that meet the objectives of mechanical properties under the
constraints between RD and geometric parameters.

The geometric parameters of the lattice materials and RD need to be encoded as
individuals in the algorithm, as seen in Equation (11).

VIndividual = [G1, G2, G3, . . . , Gn] (11)

The optimization objective is to minimize the absolute deviation between the pre-
dicted elastic modulus and the target value, while also minimizing the RD. The objective
function is formulated to balance the accuracy of Ez and minimization of RD, as defined as
Equation (12). During the optimization process, some physical and design constraints need
to be satisfied to ensure the generated parameter combinations are reasonable, subject to
the polynomial constraint expressed in Equation (3).
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min f (VIndividual) = w1 ·
∣∣∣Epred

z − Etarget
z

∣∣∣+ w2 · RD

Epred
z = fRF(VIndividual , fPR(VIndividual))

Gmin
1 < G1 < Gmax

1
Gmin

2 < G2 < Gmax
2

Gmin
3 < G3 < Gmax

3
. . .

Gmin
n < Gn < Gmax

n

(12)

where w1 and w2 are weighting factors that adjust the trade-off between the elastic mod-
ulus and relative density during optimization. Epred

z is the ML prediction value for the
mechanical performance based on lattice geometric parameters, and Etarget

z is the desired
performance value. fRF denotes the Random Forest model in which VIndividual and RD are
regarded as inputs, and fPR denotes the polynomial regression model applied to predict
RD by VIndividual .

We used Tournament Selection to select individuals based on their fitness values. We
applied multi-point crossover methods to combine parts of the genes from two individuals
to generate new individuals. We randomly selected certain genes in individuals and
mutated them with a certain probability. Through the above genetic operations, a new
generation of the population was generated. The process of fitness evaluation, selection,
crossover, and mutation was repeated until the termination condition was met. The specific
hyperparameters of the genetic algorithm can be determined based on sensitive analysis in
the following cases.

3. Case Study: Property Customization

A lattice unit with a nested cube was selected as case study to demonstrate the
validation of the proposed method, as seen in Figure 6.
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Five geometric parameters were defined to describe the lattice shape as shown in
Figure 7a. Four parameters were used to define the lattice morphology: Minn defines the
size of the inner nodes; Mout defines the size of the outer nodes, Mstrut describes the radius
of the strut size, and Msmooth determines the smoothness of the lattice struts. In terms of
configurations, the lattice is formed by a cube nested with a small cube; eight vertexes
are connected to form a lattice skeleton. Tsize determines the size of the cubes of lattice
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materials. This parametric mesh lattice model underwent a transformation into a smoothed
lattice model through the Rhino 7-Grasshopper® SubD component, as shown in Figure 7b,c.
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Figure 7. Parametric lattice design based on subdivision modeling: (a) parametrizing four morphol-
ogy design variables, including inner node size, outer node size, strut size, and smooth level, and one
topology variable, the size of a nested box; (b) a parametric 3 × 3 × 3 lattice unit; (c) the influence of
each parameter to geometric features of a lattice unit.

To validate the efficacy and advantages of the proposed lattice design approach,
a comparison analysis was conducted using conventional parametric lattice designs as
benchmarks. The comparison focused on the mechanical properties, particularly the elastic
modulus, of the designed lattice materials. As illustrated in Figure 8, L defines the box
size inside a lattice unit, and D denotes the diameter of the lattice struts. Under the same
relative density, the elastic moduli of both SubD parametric lattice and regular parametric
lattice are presented.
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Figure 8. Mechanical performance difference between the proposed lattice and regular lattice material.

Figure 8 shows that the lattice materials designed using our methodology demon-
strated a significantly higher upper boundary of elastic modulus compared to conventional
lattices under equivalent mass conditions. This indicates superior material utilization and
performance.

The Latin Hypercube Sampling (LHS) method was used to sample the geometric
parameter combinations to ensure uniformity of sampling. The specific sampling ranges
for each parameter are detailed in Table 1. Considering the minimum resolution of Formlab
SLA devices, each parameter was rounded to two decimal places. This clearly determined
a global design space encompassing 21 × 21 × 11 × 101 × 6 design possibilities. A total of
280 sets of geometric parameters were extracted through LHS. The Rhino 7-Grasshopper®

Anemone plug-in facilitated the automatic generation of lattice models.

Table 1. Parametric design domain.

Parameter Minn Mout Mstrut Msmooth Tsize

Value range (mm) [0.30–0.50] [0.30–0.50] [0.5–1.5] [1.0–10.0] [1.0–1.5]

Step 0.01 0.01 0.1 0.1 0.1

Step number 21 21 11 101 6

A cubic RVE consisting of 3 × 3 × 3 parametric lattice cells (shown in Figure 7b) with a
side length of 18 mm was chosen. This choice not only ensures stable macroscale mechanical
behavior and minimizes size effects but also reduces the computational burden when calculat-
ing the elastic modulus of all samples. FormLab White resin was chosen to fabricate all lattice
materials. Its mechanical properties are: a density of ρ = 1.10 g/mm3; a Young’s modulus of
Es = 2.51 GPa; and a Poisson’s ratio of ν = 0.23 according to previous testing [29]. The RVE
was treated as orthogonally isotropic, and a displacement (0.09 mm) was applied to the Z-axis
direction to obtain the support reaction force and calculate the modulus of elasticity under
periodic boundary conditions, as detailed in Equations (1) and (2). The numerical evaluation
of all lattice samples was conducted through batch processing in ANSYS Mechanical APDL.

After collecting the dataset, it was essential to address the presence of outliers in the
dataset to enhance the model’s accuracy and robustness. We defined outliers based on the
statistical properties of the target variable (elastic modulus Ec). The 99th percentile was
the threshold for outlier detection. Any data point where Ec exceeded this threshold was
regarded as an outlier and removed from the dataset since software may generate a low-
quality RVE model, which can lead to an extremely high elastic modulus during numerical
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evaluation. The filtered data samps are presented in Figure 9b. Then, correlation analyses
were conducted, as seen in Figure 9a–d. The analysis of the first-tier data presented a strong
correlation between Minn and RD, while other variables also showed a high correlation with
RD, except for Msmooth, as shown in Figure 9a. Additionally, there were no obvious relations
among geometric variables. In the second-tier dataset, a similar trend was observed with
RD and Ec, where RD showed a strong correlation with Ec, as shown in Figure 9c. The
importance of all input features is shown in Figure 9d.
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In the ML training process, the dataset was split into a training set and a validation set
(80% of the data for training and the remaining 20% for validation) using a random split
technique. To prevent bias in the sequence of the data for model training, the data were
randomly shuffled before splitting.

By modulating the order of the polynomial regression, we found that the model fits
best when the order is 4. To optimize the performance of the Random Forest regression
model, we performed hyperparameter tuning using a grid search approach. This method
exhaustively searches through a specified parameter grid to find the combination of hy-
perparameters that yields the best performance based on five-fold cross-validation results.
The hyperparameters and their respective search ranges were specified as follows:

• Number of Estimators (nestimators): [100, 200, 300].
• Maximum Depth (Depthmax): [None, 10, 20, 30].
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• Minimum Samples Split (Samples_splitmin): [2, 5, 10].
• Minimum Samples Leaf (Samples_splitmin): [1, 2, 4].
• Maximum Features (Featuresmax): [‘auto’, ‘sqrt’, ‘log2’].

After conducting the grid search, the best combination of hyperparameters was found
to be nestimators = 300; Depthmax = 10; Samples_splitmin = 2; Samples_splitmin = 1; and
Featuresmax = ‘sqrt’.

Additionally, to determine the average performance index, five-fold cross-validation
(CV) was used to randomly split and train many times. This increased the robustness of the
model performance evaluation and lessened the random effects that could be caused by a
single data split. The result, illustrated in Table 2, reveals the robust predictive capabilities
of the ML model.

Table 2. MAE and R2 of the employed ML model.

CV MAE CV RMES CV R2 Mean CV R2 Std Deviation

Polynomial Regression 0.0073 0.011 0.829 0.065

Random Forest Regression 4.509 6.017 0.965 0.010

Additionally, to demonstrate the reliability of this ML model, a robustness analysis
was conducted under different noise levels. Gaussian noise ranging from 1%, 2%, 5% to 10%
was imported into each of the input features to simulate measurement errors. The results of
the study showed that the model maintained strong robustness and stability under varying
noise levels, as seen in Figure 10. The R2 scores fluctuated slightly in the noise interval from
1.0% to 10.0%, indicating that the model was able to retain a high level of goodness-of-fit
in the presence of noise disturbances. This was particularly significant, as the model still
effectively explained the main variability in the data at higher noise levels. The MSE and
MAE increased gradually with rising noise, but the increase was more moderate, further
validating the model’s adaptability under medium-to-high noise conditions. Despite the
rise in error due to noise, the model showed a degree of noise tolerance at noise levels of
5.0% and above, which is crucial for property prediction.
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In the reverse design phase, a genetic algorithm was used to identify lattice materials
that satisfied tailored properties while maintaining minimum relative density, as defined in
Equation (13). The range of geometric parameters is defined in Table 1.

min f (VIndividual) = w1 ·
∣∣∣Epred

c − Etarget
c

∣∣∣+ w2 · RD

Epred
c = fRF(VIndividual , fPR(VIndividual))

0.30 < Minn < 0.50
0.30 < Mout < 0.50
0.5 < Moff < 1.5
1.0 < Mss < 10.0
1.0 < Tbs < 1.5

(13)

where both w1 and w2 determine the weight of the elastic modulus and relative density,
respectively. Epred

c is the model’s prediction for the mechanical performance based on the
input parameters, and Etarget

c is the desired performance value. fRF denotes the Random
Forest model in which VIndividual and RD are regarded as inputs, and fPR denotes the
polynomial regression model applied to predict the RD by VIndividual . The population
size for each generation was set to 100, with 50 iterations. Further experiment validation
was achieved through the customization of four distinct lattice materials, targeting elastic
modulus values within the range of 80 to 120 MPa while ensuring the lowest possible
relative density. Before running the genetic algorithm, a sensitive analysis was conducted.
Two weights values, w1 and w2, were explored firstly. We first set the target value of the
modulus of elasticity retrieved by the genetic algorithm to 160 MPa, set a series of weighting
parameters, and observed that their effects on the best-fit values (as shown in Table 3) are
varied. The weights satisfy (w1 + w2 = 1), which ensures a constraint on the total weights.

Table 3. w1 and w2 weight parameter sampling.

Weight Factors Factor Combinations

w1 0.1 0.3 0.5 0.7 0.9

w2 0.9 0.7 0.5 0.3 0.1

Figure 11 illustrates the sensitivity analysis of the weighting parameters w1 and w2 to
the best fitness value. As w1 increases and w2 decreases, the optimal fitness value gradually
increases. The results show that higher weighted w2 values help to reduce the fitness value
and thus reduce the relative density more efficiently, whereas higher w1 values focus the
optimization on modal matching but tend to lead to higher fitness values. Hence, w1 and
w2 were set as 0.1 and 0.9, respectively. After determining the sensitivity of w1 and w2, we
further explored the sensitivity of the genetic algorithm parameters.
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• Population size (Popsize): [50, 100, 150].
• Iteration number (Ngen): [15, 20].
• Crossover probability (Cxpb): [0.4, 0.5].
• Mutation probability (Mutpb): [0.1, 0.2, 0.3].
• Tournament size (Tournsize):): [2, 3].

Figure 12 shows that the performance of the genetic algorithm is significantly affected
by the number of iteration generations and the probability of variation. Increasing the
number of iteration generations (Ngen = 20) can effectively improve the convergence of the
algorithm so that the algorithm reaches the optimal fitness value of 3.5416 many times and
avoids the sub-optimal solution problem caused by stopping too early. A higher variance
probability (Mutpb = 0.2 or 0.3) shows advantages in expanding the search space and
avoiding local optimums, significantly improving the quality of the solution. In addition,
tournament size (Tournsize = 3) helps balance exploration and exploitation with a moderate
increase in selection pressure, resulting in more stable results. Comparatively, crossover
probability (Cxpb = 0.4 or 0.5) and population size (Popsize = 50 to 150) have less impact on
the algorithm results and can be flexibly adjusted according to resources. But Popsize is set
100 to balance the computational cost with the performance of the algorithm. This combi-
nation is expected to improve the quality of the solution and ensure the stable convergence
of the algorithm at the same time. Overall, appropriately increasing the number of iteration
generations and choosing a higher variance probability are key measures to improve the
performance of the algorithm. Based on the results of the analysis, the recommended final
parameter settings are as follows:

w1 = 0.1,w2= 0.9, Ngen= 20, Mutpb= 0.3, Tournsize= 3, Cxpb= 0.4 Popsize = 100
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In the experimental section, we attempted to customize four optimal lattice materials
with target elastic moduli ranging from 80 to 120 MPa and the lowest relative density. We
selected 3 × 3 × 3 lattice units and conducted compression tests on a Sansi Zongheng
universal testing machine. Each lattice sample was produced five times using stereolithog-
raphy (SLA) on a FormLab3 printer. Post processing included cleaning the sample with a
Xiaomei ultrasonic cleaner in 99.8% isopropanol for 10 min to eliminate any residual resin
and ensure the cleanliness and integrity of the sample. The lattices were subsequently cured
in a FormLab UV curing machine and gradually heated to 60 ◦C over 60 min. During the
printing and cleaning process, damaged lattices were excluded. The final selection of three
lattice structures from each group for compression testing was primarily influenced by
two factors. Firstly, the Formlabs equipment exhibited printing delamination issues, which
affected the integrity of some lattice materials. Secondly, the removal of support structures
caused damage to certain lattices, rendering them unsuitable for testing. Thus, the three
chosen lattices were those that remained intact and retained their geometric features after
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these challenges. Table 4 analyze the actual results of physical experiment Eexp
c and record

stress-strain curves of each sample.

Table 4. Experiment validation.

Etarget
c (MPa) 80 100 120 140

Unit models
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To describe the relative error (RE) between the predicted relative volume (RDpred) and
the actual relative volume from CAD software (RDCAD), the following equation is used, as
shown in Equation (14):

RE =
RDpred − RDCAD

RDCAD
× 100% (14)

In assessing relative density, RDpred showed variability depending on the target elastic

modulus Etarget
c . As seen relative density error curves in Table 5, RDpred showed higher errors

at lower Etarget values, diminished errors at moderate Etarget values, and increased errors
once again at higher Etarget values. Conversely, the polynomial regression-predicted RDpred
displayed smaller positive errors at lower desired properties, with errors slightly increasing,
then shifting to negative at moderate Etarget values and decreasing again at higher values,
as seen elastic modulus error curves in Table 5. Notably, at Etarget = 100 MPa, the error in
RDpred reached −1.18%. This indicated a more stable prediction from polynomial regression
as confirmed by data in Table 5.

In assessing relative density, RDpred exhibited variability depending on the target
elastic modulus (Etarget). As depicted in Table 5, RDpred showed higher errors at lower
Etarget values, diminished errors at moderate Etarget values, and increased errors once again
at higher Etarget values. Conversely, the polynomial regression-predicted RDpred displayed
smaller positive errors at lower Etarget values, with errors slightly increasing, then shifting
to negative at moderate Etarget values and decreasing again at higher values. Notably,
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at Etarget = 100 MPa, the error in RDpred reached −1.18%. This indicates a more stable
prediction from polynomial regression. The larger variance in RDpred might be attributed
to a higher delta setting as shown in Equation (11).

Table 5. Predicted result and actual result in relative density elastic modulus.
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gradually with increasing 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 and stabilizing at lower 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 values. It is notewor-

thy that the deviation trend exhibits high agreement between the prediction error of the 

elastic modulus and RD. As the error of 𝑅𝐷𝑝𝑟𝑒𝑑 increases, the error of 𝐸𝑝𝑟𝑒𝑑 also ampli-

fies, consistent with the result of feature importance analysis. The RD error of polynomial 

regression can further expand the elastic modulus error of Random Forest regression. 

Each of the four designed lattice materials met or exceeded the targeted mechanical prop-

erties, thereby validating the predictive accuracy and practical applicability of our design 

methodology. 
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Etarget
(MPa) RDpred RDCAD Error (RD) Epred

(MPa)
Esim

(MPa) Error (E)

80 0.214 0.209 2.25% 80 80.6 0.75%

100 0.264 0.267 −1.18% 100 108.5 8.55%

120 0.265 0.262 1.24% 119.9 124.5 3.75%

140 0.301 0.299 0.49% 140 151.7 8.38%

In terms of customizing the elastic modulus, the relative errors between the predicted
elastic modulus (Epred) and Etarget were minimal. This precision proves the capability of GA
to effectively navigate the parameter space defined by the two-tiered ML model to optimize
lattice designs. For the errors between Esim and Epred, the results suggest that the prediction
capability of ML is not stable but can be referenced as the fluctuation range is from 0.75%
to 8.55%. Epred exhibits larger errors at higher Etarget values, decreasing gradually with
increasing Etarget and stabilizing at lower Etarget values. It is noteworthy that the deviation
trend exhibits high agreement between the prediction error of the elastic modulus and
RD. As the error of RDpred increases, the error of Epred also amplifies, consistent with the
result of feature importance analysis. The RD error of polynomial regression can further
expand the elastic modulus error of Random Forest regression. Each of the four designed
lattice materials met or exceeded the targeted mechanical properties, thereby validating the
predictive accuracy and practical applicability of our design methodology.

Despite these challenges, all four designed lattice materials successfully met or sur-
passed their targeted mechanical properties, affirming the robustness and practical applica-
bility of our design method. The GA was instrumental in determining the optimal discrete
parameters within the polynomial constraints of relative density and geometric parameters.
Its application highlights the algorithm’s efficiency in managing the intricate design space
of lattice materials, leading to highly precise material property achievements.

4. Case Study: Performance Optimization

The detailed parametric characterization of lattice materials significantly facilitates
the exploration of the morphological features of lattice material. This approach not only
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makes the exploration of lattice morphology more flexible but also broadens the spectrum
of achievable mechanical performance for lattice materials. Initially, a body-centered
cubic (BCC) lattice unit was modeled using quadrilateral meshes, with each strut having
hexagonal cross-sections. Four geometric parameters were defined to describe the lattice
morphology, as shown in Figure 13a. S1 is the distance parameter which constructed points
and from which the strut midpoint extended along both sides. S2 and S3 specify the strut
radius at both S1 points and the midpoint of the strut, respectively. N1 represents the
lattice node size. This parametric mesh lattice model was transformed into a smoothed
one using the Rhino 7-Grasshopper® SubD component, as shown in Figure 13b. The use
of subdivision modeling technology ensures an organic morphology while significantly
reducing stress concentrations.
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under the compressive load are illustrated in Figure 14. 

Figure 13. Parametric lattice design based on subdivision modeling: (a) design parameters and mesh
model; (b) SubD model of lattice model.

To efficiently explore the vast potential design space and collect geometric features,
Latin Hypercube Sampling (LHS) was used. This statistical approach helps to sample four
geometric parameters, ensuring uniform coverage across the range of each variable. The
specific sampling ranges for each parameter are detailed in Table 6.

Table 6. Parametric design domain.

Parameter S1 S2 S3 N1

Value range (mm) [0.35–0.45] [0.20–0.90] [0.20–0.90] [0.50–1.20]

Interval (mm) 0.1 0.2 0.2 0.2

Considering the minimum resolution of our additive manufacturing equipment, each
parameter should be rounded to two decimal places. This clearly determined a global
design space encompassing 11 × 36 × 36 × 36 design possibilities. A total of 238 sets of
geometric parameters were sampled, generated, and evaluated following the procedure
described in Section 3. The deformed 3 × 3 × 3 RVE and its von Mises stress distribution
under the compressive load are illustrated in Figure 14.
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The distribution of this lattice sampling is presented in Figure 15a, and then the
parameters’ sensitivity is demonstrated in Figure 15b. Relative density plays a vital role in
determining the elastic modulus, while S1, the distance parameter, has less influence on
the mechanical properties of the lattice structure. Node size and strut radii (N1, S2, and S3)
have a significant contribution to the lattice’s mechanical performance.
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The dataset was collected and pre-processed in the same way as in Section 3. This
dataset was split into 80% for training and 20% for validation, and five-fold cross-validation
was applied to assess the models’ effectiveness after grid searching hyperparameters of the
Random Forest model. The predictive outcomes, illustrated in Table 7, highlight the strong
predictive performance of the ML models.

Table 7. MAE and R2 of the employed ML model.

CV MAE CV R2

Polynomial Regression 0.0049 0.98187

Random Forest Regression 4.5046 0.91912

The outcome of the two-tiered ML model was the production of RD and Young’s modulus
forecasts for a global design space of parametric lattice materials. This dataset allowed
designers to efficiently search and filter lattice materials within the Rhino 7-Grasshopper®

environment, pinpointing options that meet specific mechanical performance criteria and
constraints across 11 × 36 × 36 × 36 possible lattice design configurations, as shown in
Figure 15a.

The performance of the machine learning models was validated using the metrics
provided in Table 7. Linear regression achieved a CV MAE of 0.0049 and a CV R2 of
0.98187, indicating high predictive accuracy for relative density. Random Forest regression,
used in the second tier, resulted in an MAE of 4.5046 and an R2 of 0.91912, showing good
predictive capability for Young’s modulus despite the increased complexity of the task.
These results highlight the robust performance of the ML models in capturing the non-
linear relationships between lattice parameters and mechanical properties, even when
handling complex design configurations.

In the experimental phase, we customized four optimal lattice materials with a relative
density in the range of 0.155 to 0.160 and maximum elastic modulus. The 6 × 6 × 6 lattice
units were selected for compressive tests on a SanSiZongHeng universal testing machine.
In the optimization process, we selected the first four parameter combinations with the best
fitness at the time of convergence of the genetic algorithm. These parameter combinations
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represent the design solutions with the best performance under the current optimization
conditions. Three lattice materials were produced for each parameter combination and
subjected to the same post-processing methods as in Section 3. They were subsequently
compressed, and their compression modulus was averaged. A conventional BCC lattice
served as the benchmark for comparing mechanical performance, as detailed in Table 8.

Table 8. Experiment validation.

ID BCC C1 C2 C3 C4

Lattice unit
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Table 8 presents a detailed comparison between the traditional BCC lattice material
and four customized lattice materials (C1, C2, C3, C4) and shows the stress-strain curves of
all samples during the compression testing. Images show that the FormLab3 SLA printer
accurately captured the geometric features of the digital model, with all samples maintaining
a RD strictly within the target range of 0.15–0.16. The compressive modulus (Es) metrics
revealed the mechanical performance enhancements achieved through the proposed filter
strategy. Specifically, C1 exhibited the highest compressive modulus at 11.27 MPa, an increase
of about 25.6% over the conventional BCC lattice’s 8.97 MPa. C4 also showed an elastic
modulus 21.5% higher than the conventional lattice. Notably, C1 and C4 exhibited closely
matched values across parameters, indicating similar geometric features that likely influence
their mechanical performance. This significant improvement highlights the benefits of lattice
customization in enhancing material stiffness under compressive loads.

5. Discussion

The data-driven bi-directional framework proposed in this study demonstrates significant
potential in lattice material design optimization, successfully integrating generative design,
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machine learning (ML), and genetic algorithms (GA) to achieve highly accurate performance
prediction and lattice material optimizations. However, we also recognize that there are some
limitations and assumptions in this study, which need to be discussed in depth to clarify the
scope of applicability of the methodology and the direction of improvement.

Firstly, we assume that the geometric parameters and relative density can accurately
predict the elastic modulus. This simplification may not fully capture the effect of print
orientation on the mechanical behavior of the lattice structure in additive manufacturing,
especially when the lattice structure is complex and has significant anisotropy. Although
relative density is an important factor influencing the elastic modulus, ignoring the effects
of microgeometry and local stress concentrations on the mechanical properties of the
material during the printing process may lead to deviations in the predicted results from
the actual properties. Secondly, we adopted the homogenization technique to simplify
the complex lattice structure and thus improve computational efficiency. Secondly, we
adopted the homogenization technique to simplify the complex lattice structure and thus
improve computational efficiency. However, the method may introduce inaccuracies
in approximating the mechanical properties of heterogeneous materials, especially for
lattices with complex topologies and significant size effects. Such simplifications may
not adequately reflect the subtle interactions within the lattice, leading to discrepancies
between numerical predictions and physical results. In addition, this study assumes that
the material exhibits linear elastic behavior during loading and does not consider non-linear
behaviors such as plastic deformation, viscoelastic effects, or damage evolution.

During customization and optimization, the two-tiered machine learning models
(polynomial regression and Random Forest) rely on the quality and diversity of the training
data. Since the training data are mainly from numerical simulations, poor meshing accuracy
during finite element analysis may increase the deviation in numerical analysis properties
from the actual mechanical properties of lattice materials. The prediction accuracy may
decrease. Meanwhile, the performance of genetic algorithms is highly sensitive to their
parameters (e.g., population size, crossover probability, variance probability, and selection
strategy). Although we performed parameter sensitivity analyses to identify appropriate
settings, the selected parameters may not guarantee a globally optimal solution. In addition,
this study does not consider constraints in the manufacturing process such as minimum
feature sizes, tolerances, and defects that may occur during processes such as additive
manufacturing. These factors may significantly affect the performance and feasibility of
the lattice structure in actual production, and ignoring them may lead to design solutions
that are difficult to implement in reality.

The above uncertainties are the main reason leading to deviations between the actual
performance and predicted results. The limited number of experimental tests we conducted
may not be sufficient to fully assess the accuracy of the model, and experimental errors and
randomness of the samples may affect the reliability of the results.

To address these limitations, future research should focus on improving model accu-
racy and generalization by expanding the dataset to include more diverse lattice geometries,
cell types, and material behaviors. Enhancing homogenization techniques and adopting
multi-scale modeling can provide more accurate predictions by capturing both overall
structural behavior and local effects. Further, integrating fabrication constraints into the
optimization framework will ensure designed lattice structures are not only performance-
optimized but also highly manufacturable. Comprehensive experimental validation is
crucial, involving increased sample sizes and a wider range of tests to validate predicted
performances. Establishing a feedback loop to iteratively improve ML models and optimiza-
tion algorithms using experimental results will enhance model accuracy and robustness.
Finally, developing adaptive optimization strategies, such as adaptive genetic algorithms
that dynamically adjust parameters during optimization, can enhance convergence to
global optimal solutions.
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6. Conclusions

This research proposes a bi-directional lattice design method that leverages generative
design and machine learning to facilitate both the forward optimization and reverse design
of lattice materials. The approach addresses the inefficiencies and trial-and-error limitations
of traditional methods by providing a robust framework for advanced lattice material
customization and optimization. The proposed method achieves notable improvements
in accuracy, efficiency, and design space exploration by integrating parametric design for
both the lattice skeleton and morphology, a genetic algorithm, and a two-tiered machine
learning framework. The principal outcomes of this research can be summarized as follows:

• The implementation of SubD modeling to describe both the skeleton and morphology
of lattice materials broadens the mechanical property space and significantly improves
mechanical performance compared to regular lattice structures.

• The two-tiered machine learning framework enables deeper insights into the complex
interrelations within lattice morphology, skeleton parameters, and relative density,
leading to substantial advancements in the ability to predict and control material
properties. This approach achieves target properties more accurately than traditional
optimization methods that rely solely on geometric parameters.

• The parametric lattice design and bi-directional customization capability support
a broader exploration of the design space, allowing for both the property-driven
generation of structures and the discovery of novel configurations. This flexibility
makes the approach especially suitable for applications that demand customized
lattice structures.

• The optimized lattice materials demonstrate over a 25% improvement in the elastic
modulus compared to regular geometric lattices, affirming the effectiveness of the
approach in enhancing lattice performance.

The proposed method demonstrates a balanced enhancement in accuracy, efficiency, and
flexibility in design exploration, making it well suited for advanced lattice structure optimiza-
tion compared to traditional state-of-the-art approaches. By simplifying the customization
and optimization processes, it opens new avenues for designing high-performance lattice
structures and broadens the potential for lattice materials in specialized applications.
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