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Abstract: This study reports the production of mid-infrared (MIR) porous anodic alumina (PAA)-
based microcavities with tunable optical quality. The spectral position of the cavity resonance
peak (λC), along with its intensity (IR) and Q-factor, varies depending on the geometric positioning
of the cavity layer within the multilayer stack of alternating low- and high-porosity layers, as
well as the type of cavity produced—either by high voltage (CvH-type) or low voltage (CvL-type)
pulses. In most cases, PAA microcavities with CvH-type cavity layers exhibited superior light
confinement properties compared to those with CvL-type cavities. Additionally, shifting the cavity
layer from the center toward the edges of the multilayer stack enhanced the intensity of the resonance
peak. For PAA microcavities with CvH-type cavity layers, the highest intensity (IR = 53%) and the
largest Q-factor (Q = 31) were recorded at λC of around 5.1 µm. The anodization approach used
in this study demonstrates significant potential for designing PAA-based microcavities with high
optical performance in the MIR spectral region, especially with further refinement of electrochemical
parameters. These findings pave the way for the development of new photonic materials specifically
tailored for the MIR spectral range, broadening their applications in various optoelectronic and
sensing technologies.

Keywords: anodization; porous anodic alumina (PAA); photonic crystals; optical microcavity;
mid-infrared (MIR)

1. Introduction

Photonic crystals (PCs) are materials engineered to manipulate the travelling of electro-
magnetic waves through light-matter interactions [1]. In these structures, the propagation
of light is governed by the interference of scattered electromagnetic Bragg waves [2], which
can be precisely controlled through the crystal’s structural design. Porous anodic alumina
(PAA), produced by anodizing high-purity aluminum foil, has emerged as a promising
platform for fabricating one-dimensional photonic crystals (1D PCs) [3,4]. Under carefully
optimized electrochemical conditions, the geometry of the pores can be controlled with
precision [5–7]. By periodically modulating the anodization parameters during pulse an-
odization, a periodic porous structure is formed, which can be finely tuned to shift photonic
stop bands (PSBs) across a wide spectral range [6,7]. PSBs arise from the constructive
interference of light reflected at the interfaces between alternating high- and low-porosity
(and thus refractive-index) layers. The spectral position and intensity of the PSBs are
influenced by factors such as the refractive indices and angles of incidence [8]. Additionally,
the bandwidth of reflected light can vary depending on the crystal’s geometry and the
refractive index contrast [9].

Materials 2024, 17, 5620. https://doi.org/10.3390/ma17225620 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17225620
https://doi.org/10.3390/ma17225620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-9379-5572
https://orcid.org/0000-0001-7494-2859
https://orcid.org/0000-0001-5102-641X
https://orcid.org/0000-0002-0460-486X
https://doi.org/10.3390/ma17225620
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17225620?type=check_update&version=1


Materials 2024, 17, 5620 2 of 12

Various photonic structures based on PAA have been engineered by applying different
periodic waveforms of voltage or current density, with variations in shape, amplitude, and
anodization mode [10–12]. This precise structural modulation significantly enhances PAA’s
optical properties [13], making it highly suitable for advanced photonic [3,14] and sensing
applications [15–17]. Since the optical quality of porous photonic structures strongly de-
pends on variations in morphology, such as layer thickness and porosity, several in situ
measuring methods, such as using a laser reflection [18] or photoacoustic techniques [19],
have been developed to monitor and adjust processing parameters for improved structural
control. Different types of photonic crystals have been fabricated using electrochemi-
cal methods, including Fabry–Pérot interferometers [20,21], distributed Bragg reflectors
(DBRs) [22,23], gradient-index filters [24,25], and optical microcavities [26,27]. Among
these structures, optical microcavities are particularly notable for their ability to trap light
within a confined space by inducing electromagnetic wave resonance, allowing light to
circulate within the cavity. This confinement enables microcavities to serve as efficient
optical amplifiers. One of the key characteristics of optical microcavities is the quality
factor (Q-factor), which is a measurement of the cavity’s ability to confine light and can be
expressed by the following equation:

Q =
λc

FWHM
(1)

where, λc refers to the wavelength position of the resonance peak, while FWHM (full
width at half maximum) represents the width of the cavity resonance peak at half of its
maximum intensity.

Despite ongoing efforts, the development of high-quality PAA microcavities capable of
efficiently confining light remains a significant challenge. To date, only a few studies have
explored the fabrication of PAA-based optical microcavities with cavity resonance peaks in
the visible to near-infrared (VIS-NIR) range [26,27]. These microcavities have been fabri-
cated using various current [26] and voltage [28] profiles, including time-dependent [29],
charge-density-dependent [30,31], and optical-path-length-dependent voltage modulation
profiles [27,32]. The latter approach achieved the highest reported Q-factor of 269 for the
first-order resonance transmission band in the visible spectrum [27]. However, there have
been no reports on the fabrication of PAA-based optical microcavities with a cavity res-
onance peak (λC) in the mid-infrared (MIR) spectral region, even though this range is
particularly important for applications such as gas sensing, environmental monitoring,
leak detection, and many others [33,34]. The MIR region is highly relevant because many
small hazardous gases and molecules, such as CO, CO2, NH4, and CH4, exhibit distinctive
absorption fingerprints in this spectral range [35,36]. Developing PAA-based microcavi-
ties using straightforward electrochemical processes, combined with their tunable optical
properties, could provide a highly efficient and economical solution to advance sensor
technologies for detecting these gases.

In this study, we present the first successful fabrication of mid-infrared (MIR) optical
microcavities through high-temperature pulse anodization (25 ◦C) of aluminum in a 0.3 M
oxalic acid electrolyte. To position photonic stop bands (PSBs) within the MIR spectrum, a
trapezoidal voltage waveform was used to modulate the porosity of alternating high- and
low-refractive-index layers in distributed Bragg reflector (DBR) structures. The trapezoidal
voltage waveform controls pore formation during anodization by alternating high and
low voltages, creating segments of high and low porosity. By shifting the cavity layer
from the center toward the edges of the DBR stacks, a spectral shift of the resonant cavity
peaks within the 4.5–5.2 µm range was observed. Cavity layers were produced using both
low-voltage (CvL) and high-voltage (CvH) pulses, with microcavities featuring CvH-type
cavity layers demonstrating superior optical performance. Although the Q-factor values in
this initial attempt were lower than those typically observed for PAA-based microcavities
in the visible range, our findings clearly indicate that further refinement of the refractive
index distribution on both sides of the cavity layers can significantly enhance the optical



Materials 2024, 17, 5620 3 of 12

quality of PAA microcavities in the MIR region. Therefore, these results offer a promising
pathway for developing new photonic materials for MIR applications using a simple and
cost-effective electrochemical fabrication method.

2. Materials and Methods

High-purity aluminum foil (99.9995% Al, Puratronic, Alfa-Aesar, Haverhill, MA, USA)
with the dimensions of 20 × 25 × 0.25 mm was used to prepare the PAA microcavities.
Before the anodization process, the annealed aluminum specimens were electropolished.
Electropolishing was performed in a mixture of 70% concentrated perchloric acid and
ethanol at a ratio of 1:4, at 0 ◦C, under a constant voltage of 25 V for 2.5 min. After the
process, the samples were rinsed in ethanol and in distilled water. Next, the electropolished
aluminum was anodized in a two-electrode cell. The exposed area of the aluminum sample
to the electrolyte solution was 0.96 cm2, and the current density was calculated by dividing
the input current by the anodized area. The distance between the electrodes aluminum
anode and platinum grid cathode was maintained at approximately 3 cm. During the
process, a 0.4 L electrochemical Teflon cell was used with a powerful low-temperature
constant bath and vigorous stirring at approximately 330 rpm. A programmable DC power
supply (Keithley 2614B SourceMeters, Tektronix, Cleveland, OH, USA) was employed to
control the electrochemical parameters, including the applied voltage and charge density.
The first stage of anodization was carried out under constant voltage of 40 V at 5 ◦C for 20 h
in 0.3 M oxalic acid. The resulting oxide layer was then chemically removed by immersing
the samples for 3 h in a mixture of 6 wt% phosphoric acid and 1.8 wt% chromic acid at
65 ◦C.

In the second stage, pulse anodization was performed in 0.3 M oxalic acid at 25 ◦C
using a trapezoidal pulse profile under charge density-controlled voltage mode. In this
mode, the charge density passed during the high (UH) and low (UL) voltage pulses (CH and
CL, respectively) remained constant, while the pulse duration varied. For each process, the
charge density (the area under the current density curve) was calculated by the program.
The UH/UL pulse was terminated once the specified target charge density was reached:
CH = 2000 mC/cm2 for the high-voltage pulse and CL = 2000 mC/cm2 for the low-voltage
pulse. The resonant cavity layer was created by doubling the charge density for either the
UH or UL pulse: CvH = 2 × CH for the high-voltage cavity layer and CvL = 2 × CL for the
low-voltage cavity layer. Each pulse sequence consisted of four main steps: (1) gradual
increase of the voltage from 20 V to 50 V at a ramp rate of 6 V/s, (2) holding the voltage at
50 V until the target charge density (CH or 2 × CH for CvH-type cavity layer) was reached,
(3) slow reduction of the voltage from 50 V to 20 V at a rate of 0.234 V/s, (4) continuing
anodization at 20 V until the required charge density (CL or 2 × CL for CvL-type cavity layer)
was reached. The samples were produced in the configuration “x DBR I − CvH/CvL − y
DBR II” where x and y represent the number of cycles applied before and after the CvH/CvL
pulses, respectively (with x and y varying from 14 to 26 cycles, and x + y = 40 cycles).

The PAA-based photonic structures were studied by a field-emission scanning electron
microscope FE-SEM (AMETEK, Inc., Mahwah, NJ, USA). The full thickness of each PAA
microcavity was measured using the secondary electron (SE) mode.

The transmission spectra were measured using the Fourier transform infrared spec-
trometer Alpha II from Bruker Corp., Billerica, MA, USA. Each sample was measured in
three spots through a 2 mm diameter diaphragm. The spectra (16 scans per spectrum) were
recorded in the range 1.66–25 µm with spectral resolution of 2 cm−1. The Gaussian curve
fitting for the cavity resonance peaks was performed using Origin software (OriginLab
software (OriginLab 2022, OriginLab Corp., Northampton, MA, USA).

3. Results and Discussion

To fabricate mid-infrared (MIR) microcavities, we have used a periodic trapezoidal
pulse anodizing voltage waveform. Figure 1a,b illustrate the fabrication processes of porous
anodic alumina (PAA) microcavities with cavity layers formed under high- (CvH) (a) and
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low-voltage anodization pulses (CvL) (b). The charge density passing under each successive
UH and UL pulse was carefully controlled to allow precise monitoring of the dH and dL layer
thickness, respectively. PAA microcavities are designed by placing the CvH or CvL—type
cavity layer (a defective layer) between the top and bottom Distributed Bragg Reflectors
(DBR I and DBR II, respectively, as shown in Figure 1). Due to prolonged exposure to the
acidic electrolyte, the layers formed during the initial anodization cycles (those constituting
DBR I) become more porous than those produced in the later cycles (those forming DBR
II). Consequently, even when the number of layers in DBR I is the same as in DBR II, the
refractive index distribution, and thus the optical path length, becomes asymmetric on both
sides of the cavity. This asymmetry significantly affects the phase of light traveling through
the photonic crystal, as well as the bandwidth of the resonance peak resulting from light
confinement between the two DBRs. To mitigate the effects of this asymmetry, the number
of layers on both sides of the cavity was varied. In other words, the CvH/CvL cavity layer
was positioned between two DBRs with unequal numbers of layers, while keeping the total
number of double layers constant at 40.
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Figure 1. Graphical representations of pulse anodization used to fabricate PAA microcavities, with
cavity layers formed under high voltage anodization pulse (CvH) (a) and low voltage anodization
pulse (CvL) (b). UH and UL represent the high and low voltage values, tH and tL denote the duration
of the UH and UL pulses respectively, dH and dL correspond to the segment thickness resulting from
the anodization under UH and UL pulses, respectively, and CH and CL indicate the charge density
passed under the respective UH and UL pulses. The cavity layer is sandwiched between two DBRs,
with DBR I being fabricated during the initial stage of the process, before application of the CvL/CvH

pulse, and DBR II formed subsequent to the CvL/CvH pulse.

In Figure 2a,b, the U(V) pulse sequence near the CvH and CvL pulses is presented,
along with the corresponding current density (ia) as a function of charge density (q). The
modulation of the anodizing voltage results in the formation of a double-layer structure
composed of low (dL) and high (dH) porosity segments, leading to periodic modulation of
the refractive index across the PAA. The CvH and CvL pulses introduce a defective layer
within this periodic structure. Due to the twofold increase in charge density passed during
the UH and UL pulses, the CvH-type cavity layer (Figure 2c) is approximately twice as thick
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as the dH layer, while the CvL-type cavity layer (Figure 2d) is roughly twice as thick as the
dL layer. It can be noticed that despite the CH being equal to CL, the thickness of the high
porosity layer (dH~1090 nm) is greater than that of the low porosity layer (dL~688 nm).
This discrepancy is due to the different efficiencies of oxide growth under high and low
anodization voltages, which have been discussed in more detail elsewhere [31,37]. The total
thickness (dtot) of PAA microcavities is approximately 70 µm. Upon the voltage decrease,
small pore branching can be observed, while during the voltage increase, some pores tend
to merge due to the increase in interpore distance [38,39]. Various configurations of PAA
microcavities were fabricated and studied, which can be categorized into four groups:

I. x DBR I − CvH − y DBR II configuration, with x < y
II. x DBR I − CvL − y DBR II configuration, with x < y
III. x DBR I − CvH − y DBR II configuration, with x > y
IV. x DBR I − CvL − y DBR II configuration, with x > y
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Figure 2. Correlation between anodizing profiles and the morphology of the PAA optical microcavity:
Potential pulse sequence U(V), along with the corresponding current density (ia) curves as a function
of charge density (q) for the CvH (a) and CvL (b) pulses; SEM cross-sectional images of selected PAA
microcavities with CvH-type cavity layer (sample 26 DBR I − CvH − 14 DBR II) (c) and CvL-type
cavity layer (sample 24 DBR I − CvL − 16 DBR II) (d).

In all four cases, x + y = 40. The UH/UL pulse used to form the CvH/CvL cavity layer
was shifted every two cycles earlier (groups 1 and 2) or every two cycles later (groups 3 and
4) with respect to the center of the “20 DBR I − CvH/CvL − 20 DBR II” pulse sequence.

Prior to recording the transmittance spectra of the prepared PAA films, the residual
Al substrate was selectively dissolved in a saturated aqueous solution of CuCl2. Figure 3a
shows the transmittance spectrum of the pure PAA-based DBR prepared using a 40-cycle
pulse sequence without the CvH or CvL voltage pulses. The photonic structure without
a defective layer exhibits a broad first-order photonic stopband (PSB) centered around
4900 nm. In Figure 3b,c, the transmission spectra of samples with configuration of 20 DBR
I − CvH − 20 DBR II and 20 DBR I − CvL − 20 DBR II (for x = y), respectively, are
demonstrated. As can be seen, the insertion of the cavity pulses in the middle of the 40-cycle
sequence results in porous structures that possess properties of optical microcavities. The
distinct peaks, indicated by black arrows, correspond to the cavity resonance inside the
broad first photonic stopbands (PSBs). This demonstrates an actual confinement of mid-
infrared light between the two DBR structures. Higher order photonic band gaps are not
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visible in the transmission spectra. In addition to the PSBs, however, two absorption bands
are observed in the transmittance spectra. The band centered around 2770 nm, highlighted
in purple, corresponds to the symmetric stretching vibrations of OH− groups coming
from adsorbed water molecules in the PAA structure [40]. The second, broader band
(5800–7500 nm), marked in green, is attributed to antisymmetric O–C–O bond vibrations,
C–C stretching, and O–H deformation vibrations from oxalate impurities derived from
oxalic acid [41].
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configuration 20 DBR I − CvH − 20 DBR II (b) and 20 DBR I − CvL − 20 DBR II (c). Black arrows
indicate the positions of the cavity resonance peaks (λc); Resonanse peak (black line) analysis using a
Gaussian function (red line) (d,e).

Figure 4a–c show the transmittance spectra of the group I PAA-based microcavities. In
Figure 3d,e and Figure 4d–f, the analysis of the cavity resonance peak (λc) is demonstrated
using Gaussian fitting. Table 1 presents the data extracted from this fitting, including the
spectral position of λc, the full width at half maximum (FWHM) of λc, the resonance peak
intensity (IR), and the calculated Q-factors. It can be observed that modifying the number
of DBR layers on either side of the CvH cavity significantly affects the resonance peak
position, with an increased number of layers in the bottom DBR (DBR II) causing a blue
shift in the central wavelength (λc). Specifically, λc shifts from 5197 nm in the “20 DBR I −
CvH − 20 DBR II” sample (Figure 3b,d) to 4605 nm in the “14 DBR I − CvH − 26 DBR II”
sample (Figure 4c,f). In addition to this wavelength shift, the resonance intensity (IR) varies
with the asymmetry in DBR configurations. The IR values increase as the number of DBR
II layers increases at the expense of the layers in DBR I. The “20 DBR I − CvH − 20 DBR
II” sample exhibits the lowest intensity at 20%, whereas the “14 DBR I − CvH − 26 DBR
II” sample reaches the highest resonance intensity at 46%. Similarly, a clear decrease in
FWHM of the λC band is observed as “x” increases while “y” decreases simultaneously
(Table 1). This trend indicates that asymmetric PAA microcavity configurations, where
one side DBR has more layers than the other, help to balance the optical characteristics of
the DBR I and DBR II, enhance optical confinement, and improve the efficiency of light
coupling into the cavity. For the group I PAA-based microcavities, the highest Q-factor
of 31 at λC = 5061 nm was achieved in the “18 DBR I − CvH − 22 DBR II” configuration.
It is worth mentioning that this Q-factor is higher than the value of 24 obtained in PAA
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microcavities fabricated using a similar pulse sequence in a 0.3 M oxalic acid electrolyte,
where λC was located at 953 nm [28]. For the other structures, Q-factors ranged between 20
and 24. This variability can likely be attributed to differences in the structural quality of the
porous layers, particularly those most exposed to the acidic electrolyte, i.e., those included
in DBR I.
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Table 1. Spectral position, full width at half maximum (FWHM), resonance intensity (IR) and Q-factor
of the cavity resonance peak (λc).

Sample λC (nm) FWHM Resonance Intensity IR (%) Q-Factor

1. 20 DBR I − CvH − 20 DBR II 5197 227 20 23

2. 18 DBR I − CvH − 22 DBR II 5061 162 34 31

3. 16 DBR I − CvH − 24 DBR II 4974 251 45 20

4. 14 DBR I − CvH − 26 DBR II 4605 190 46 24

5. 20 DBR I − CvL − 20 DBR II 4765 306 31 16

6. 18 DBR I − CvL − 22 DBR II 4958 230 34 21

7. 16 DBR I − CvL − 24 DBR II 4608 218 34 21

8. 14 DBR I − CvL − 26 DBR II 4858 369 50 13

9. 22 DBR I − CvH − 18 DBR II 5156 255 45 20

10. 24 DBR I − CvH − 16 DBR II 4903 328 52 15

11. 26 DBR I − CvH − 14 DBR II 5134 252 53 20

12. 22 DBR I − CvL − 18 DBR II 4669 235 26 20

13. 24 DBR I − CvL − 16 DBR II 4788 242 27 20

14. 26 DBR I − CvL − 14 DBR II 4860 277 39 18

The transmittance spectra of group II PAA microcavities are shown in Figure 5, along
with the Gaussian analysis of the resonance peak (λC). In Table 1, the spectral position, full



Materials 2024, 17, 5620 8 of 12

width at half maximum (FWHM), resonance intensity (IR), and Q-factor of the resonance
peak (λC) for these samples are listed. First, it can be noticed that the shape of the λC bands
is more irregular compared to those recorded in group I PAA microcavities. The central
position of λC fluctuates across the samples, ranging from 4608 nm in the “16 DBR I − CvL
− 24 DBR II” sample to 4958 nm in the “18 DBR I − CvL − 22 DBR II” sample. Additionally,
there is a noticeable increase in resonance intensity as the number of layers in DBR II
increases, indicating improved optical performance with a greater number of DBR II layers.
The highest resonance intensity, 50%, is observed in the “14 DBR I − CvL − 26 DBR II”
sample (Figure 5c,f), while the “20 DBR I − CvL − 20 DBR II” sample (Figure 3c,e) shows
the lowest resonance intensity (IR) at 31%. As in group I PAA microcavities, the FWHM
tends to decrease with the reduction of x, except for the sample with the lowest x (“14 DBR
I − CvL − 26 DBR II”), where the FWHM reaches its highest value. The Q-factor exhibits
moderate variation across the samples, with the highest values of 21 recorded for the
“18 DBR I − CvL − 22 DBR II” and “16 DBR I − CvL − 24 DBR II” (Table 1) samples. The
lowest Q-factor of 13, along with the largest FWHM value of 369, observed in the “14 DBR
I − CvL − 26 DBR II” sample (Figure 5c,f), may be attributed to the severe damage of the
porous segments and the loss of structural integrity in DBR I. This photonic structure was
designed to consist of only 14 double layers, many of which were likely dissolved during
the synthesis process due to prolonged interaction with the oxalic acid solution. As a result,
the reduced number of layers in DBR I likely weakened the optical confinement, resulting
in the weakest signal from the cavity and consequently the lowest Q-factor. This loss of
optical integrity suggests that maintaining a sufficient number of DBR I layers is crucial
for enhancing the performance of the microcavity. Moreover, it can be observed that the
optical quality of PAA microcavities with the CvL layer is lower than that of those with the
CvH layer. This indicates that light is better confined when the cavity layer, characterized
by lower porosity and a higher refractive index (CvH = 2 × dH layer), is positioned directly
adjacent to layers with higher porosity and, consequently, lower refractive index (dL layers).
This configuration enhances optical confinement within the cavity, contributing to better
optical performance.
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To maintain a sufficient number of layers in DBR I, the group III and IV PAA mi-
crocavity with the with x > y were prepared. In Figure 6, transmittance spectra of PAA
microcavities from the group III are shown, along with the Gaussian fitting of the cavity
resonance peak λc. Table 1 presents the spectral position, FWHM, IR, and Q-factor of the
λc for each sample, as extracted from the Gaussian fitting (Figure 6d–f). Unlike the PAA
microcavities where DBR I contains fewer double layers than DBR II, the spectral position
of the λc peak in these samples does not exhibit a significant shift compared to the “20 DBR
I − CvH − 20 DBR II” sample. However, the resonance intensity (IR) increases substantially,
from 20% in the “20 DBR I − CvH − 20 DBR II” (Figure 3d) to 53% in the “26 DBR I −
CvH − 14 DBR II” microcavity (Figure 6f). Despite this increase in IR, the Q-factor does not
exceed 20 in these photonic configurations, indicating that increasing the number of DBR
I layers did not enhance the optical quality of the PAA microcavities in the MIR spectral
region. This suggests that the additional DBR I layers primarily improve the resonance
intensity rather than the overall optical confinement or sharpness of the resonance peak.
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In Figure 7, the transmittance spectra of the group IV PAA microcavities, along with
the Gaussian analysis of the λC band, are presented. The optical parameters derived
from the Gaussian fit to the cavity resonance peak (λC) are gathered in Table 1. The data
demonstrate a modest improvement in the Q-factor values for the “22 DBR I − CvL −
18 DBR II” (Q = 20), “24 DBR I − CvL − 16 DBR II” (Q = 20), and “26 DBR I − CvL −
14 DBR I” (Q = 22) samples, compared to the “20 DBR I − CvL − 20 DBR II” sample, which
had a Q-factor of 16. The spectral position λC also exhibits a slight red shift, moving from
4765 nm in the “20 DBR I − CvL − 20 DBR II” microcavity to 4860 nm in the “26 DBR I −
CvL − 14 DBR II” microcavity. However, similar to the microcavities with the CvH-type
cavity layer, increasing the number of double layers in DBR I at the expense of those
in DBR II does not significantly enhance the overall optical performance of PAA-based
microcavities in the MIR region. When comparing optical parameters, such as FWHM
and Q-factors, between groups III and IV (Table 1), no definitive conclusion can be drawn
regarding which group demonstrates a better tendency to confine mid-infrared (MIR) light.
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Yet, it is important to remember that these parameters are affected by the Gaussian fitting
process itself, which is not always optimal, particularly in cases of very irregular λC peak
shapes. However, the transmission spectra from group III (Figure 6) and group IV (Figure 7)
suggest that PAA microcavities with the CvH-type cavity layer exhibit superior MIR light
confinement properties. These are characterized by enhanced intensity and more regular
resonance peaks compared to those recorded for the PAA microcavities with a CvL-type
cavity layer, regardless of its position within the multilayer stack.
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Summarizing the results, the optical quality of PAA-based microcavities is strongly in-
fluenced by the effective refractive index (neff) of the distributed Bragg reflectors (DBRs) on
both sides of the cavity layer. Symmetry in neff can be further enhanced by carefully design-
ing the pulse sequence to achieve a uniform distribution of optical thickness (dopt = di · ni,
where i is the number of a given layer) for the alternating low (dH) and high (dL) porosity
layers in both DBR I and DBR II. While the charge density-controlled voltage mode allows
precise control over the physical thickness (di) of alternating segments, special attention
must be given to adjusting this thickness to account for variations in porosity across the
PAA structure, ensuring a constant dopt value. Introducing variability in the thickness of
the low and high porosity layers can significantly improve the Q-factors in MIR PAA micro-
cavities, which is crucial for specific mid-infrared applications. This way, it will be possible
to obtain microcavities with better optical quality and customized resonance properties to
meet specific technological needs. Further work is ongoing to optimize this process.

4. Conclusions

In this work, we present a first report on the production of mid-infrared (MIR) porous
anodic alumina (PAA)-based microcavities with tunable optical quality. The spectral
position of the cavity resonance peak, along with its intensity and Q-factor, is shown to vary
depending on the geometric position of the cavity layer within the multilayer stack as well
as the type of cavity produced—either by high voltage (CvH-type cavity) or low voltage
(CvL-type cavity) pulses. In most of the cases studied, PAA microcavities with CvH-type
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cavity layers demonstrated superior light confinement properties compared to those with
CvL-type cavity layers. Additionally, shifting the cavity layer from the center towards
the edges of the multilayer stack was found to enhance the intensity of the resonance
wavelength (λC). The highest intensity (IR) of approximately 53% was achieved in the
26-DBR I − CvH − 14-DBR II microcavity configuration. The optimal microcavity design
(18-DBR I − CvH − 22-DBR II) exhibited a Q-factor of 31. While these Q-factor values
are lower than those typically obtained in PAA-based microcavities with λC in the visible
spectral range, our study demonstrates the feasibility of designing PAA-based microcavities
with good optical performance in the MIR spectral region. Additionally, by leveraging
the tunable light-confining properties of PAA microcavities, along with their chemical and
mechanical robustness, PAA-based photonic structures could broaden their applicability in
fields that require high optical sensitivity in the mid-infrared range, low-cost production,
and environmental durability.
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