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Abstract: High phosphorus Ni-P coatings, both unreinforced and modified by the addition of alumina
(Al2O3) and zirconia (ZrO2) nanoparticles, were manufactured by electroless deposition technique
and heat-treated with different temperature and duration schedules. The effect of dehydrogenation
(200 ◦C for 2 h) and its combination with crystallization heat treatment was studied in terms of
microstructural changes and wear resistance. The amorphous structure of the coatings was not
altered by the introduction of both Al2O3 and ZrO2 nanoparticles, and the addition of 1.5 g/L of ZrO2

yielded the highest microhardness due to better particles dispersion. Dehydrogenation improved
hardness because of the early stages of grain growth; however, the greatest improvement in hardness
(+120% compared to unreinforced Ni-P) was obtained after annealing at 400 ◦C for 1 h, because of
the microprecipitation of the Ni3P crystalline phase induced by thermal treatment. No detectable
differences in hardness and microstructure were detected when annealing at 400 ◦C for 1 h with or
without prior dehydrogenation; however, the dehydrogenated coatings exhibited a lower Young’s
modulus. ZrO2-reinforced coatings demonstrated improved wear resistance, and wear tests revealed
that dehydrogenation is fundamental for lowering the coefficient of friction (−14%) and wear rate
(−97%) when performed before annealing at 400 ◦C for 1 h. The analysis of the wear tracks showed
that the non-dehydrogenated samples failed by complete coating delamination from the substrate,
with abrasion identified as the predominant wear mechanism. Conversely, the dehydrogenated
samples demonstrated better resistance due to the formation of a protective oxide layer, leading to an
overall increase in the coating wear resistance.

Keywords: electroless Ni-P coatings; nanocomposite coatings; ZrO2 and Al2O3 nanoparticles;
dehydrogenation; thermal treatments; instrumented indentation; wear resistance

1. Introduction

Electroless Ni-P coatings have been widely used in recent years for the wear and
corrosion protection of industrial steel components [1–4]. The microstructure of the Ni-P
alloy strongly depends on the P content: low P coatings (1–5 wt.%) are considered crys-
talline, medium P coatings (6–9 wt.%) have a nanocrystalline/mixed amorphous-crystalline
structure and high P coatings (10–13 wt.%) are considered essentially amorphous [5–9]. In
particular, electroless coatings containing high P amounts (HP) find extensive application
in the energy production industry, where carbon steel components (such as compressor
impellers, diaphragms, and nozzles) are characterized by a complex shaped geometry and
cannot be easily coated by conventional methods like electrodeposition, physical vapor
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deposition (PVD), or thermal spray. Conversely, the electroless coating method, which is
unaffected by the geometry of the component, ensures the deposition of uniform and con-
formal high phosphorous Ni-P coatings, providing good corrosion resistance in aggressive
environments [4].

When amorphous HP coatings are placed in contact with corrosive media, preferential
dissolution of Ni occurs, resulting in the formation of a P-rich outer layer that prevents
further corrosion by chemical passivity [10,11]. In addition to this, the absence of grain
boundaries limits the number of percolation paths for the penetration of corrosive agents,
further increasing corrosion resistance [12,13]. On the other hand, the amorphous mi-
crostructure of HP confers inferior mechanical properties compared with medium P and
low P alloys. This can be a considerable limitation considering that the operative environ-
ment typical of midstream and downstream Oil and Gas applications can lead to major
degradation of components by unavoidable erosion and wear phenomena.

The most adopted strategies to improve the mechanical properties and confer good
wear resistance to HP coatings, thus enhancing their applicability and durability, are
the addition of functional second-phase hard particles and/or the adoption of post-
fabrication heat treatments [5,14–16]. In recent years, several investigations have been
performed on the manufacturing of particle-reinforced composite and nanocomposite Ni-P
coatings [17–22]. Among all the proposed nanoparticles, the focus was often placed on the
use of Al2O3 [23–25] and ZrO2 [26–31] since they are characterized by good mechanical
resistance, high chemical stability, commercial availability, and high ζ-potential (ranging
between 30 and 50 mV at pH 4.2), which is particularly important to guarantee their
dispersion in the plating solution.

To the authors’ knowledge, the tribological properties of Ni-P coatings are not com-
pletely understood yet, especially when it comes to heat-treated nanocomposite coatings:
only a few works have deeply investigated their wear behavior, specifically the wear
mechanisms and the effect of different manufacturing procedures. Aslanyan et al. [32,33]
investigated the effect of the addition of SiC particles on the wear behavior of Ni-P coatings
both in unidirectional and bidirectional sliding. In the case of unidirectional sliding, they
found that adding hard particles caused a lower coefficient of friction (COF) with respect
to non-reinforced Ni-P, and abrasive wear was found to be the dominant wear mechanism.
When bidirectional motion was considered, Ni-P and reinforced Ni-P showed similar wear
behavior in terms of COF and wear rate, with oxidational wear found as the main wear
mechanism. He et al. [34] focused on the effect of yttrium-stabilized zirconia with different
yttrium contents on the corrosion and wear resistance of electroless Ni-P coatings. Balls
made of Si3N4 were considered to focus all the worn material on the coatings in multi-
directional motion. The reinforced coating showed the best tribological properties with
negligible wear scars in comparison with traditional Ni-P. Abrasion and adhesive wear
mechanisms were found to be the main causes of wear, with hardness acting as the main
affecting factor.

Nonetheless, the evaluation of mechanical properties and wear resistance of Ni-P
nanocomposites should be performed, taking into consideration that Ni-P deposition
occurs along with H2 generation. Hydrogen is inevitably produced from a reaction parallel
to the oxidation of the hypophosphite ion, according to Equations (1) and (2) [35]:

H2PO2
− + H2O → H2PO3

− + 2H+ + 2e−, (1)

2H+ + 2e−→ 2H2
−, (2)

H2 bubbles form on the surface of the substrate and spontaneously take off when
they reach a sufficient size. However, some hydrogen (0.08 ppm to 0.19 ppm for coating
of about 25 µm thickness, according to [36]) remains trapped within the coating during
its growth, causing considerable embrittlement that invariably degrades mechanical prop-
erties [37]. Moreover, the formation of small hydrogen cracks can also jeopardize the
corrosion resistance [38,39]. It was demonstrated that trapped hydrogen can be effectively
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removed by performing dehydrogenation post-deposition heat treatment at 180–200 ◦C for
at least 1 h [36,38–41]. Nonetheless, to the authors’ knowledge, an investigation into how
dehydrogenation affects the wear resistance and wear mechanisms of Ni-P coatings (both
standard and nanocomposite) is not available in the literature. Moreover, the requirement
for post-deposition dehydrogenation in the case of successive heat treatments at higher
temperatures has not been studied yet.

This work aims to fill this gap of knowledge by investigating the manufacturing and
mechanical properties of Al2O3 and ZrO2 reinforced Ni-P nanocomposites subjected to
different time/temperature schedules of heat treatment, focusing on how dehydrogenation
affects the coating microstructure and wear mechanisms. For this purpose, different
concentrations of Al2O3 and ZrO2 nanoparticles, with average particle sizes of 30–50 nm
and 20–30 nm, respectively, were investigated, and the best nanocomposites were selected in
terms of dispersion and distribution of particles and microhardness increase. Standard Ni-P
and nanocomposite specimens were then heat-treated with three temperature-duration
schedules: (i) 200 ◦C for 2 h, performed as dehydrogenation treatment; (ii) 400 ◦C for 1 h, to
study the effect of annealing above the crystallization temperature; (iii) dehydrogenation
and subsequent annealing at 400 ◦C for 1 h, to investigate how the combination of the
two influences the coating properties. The aim was to uncover the changes in wear
resistance along with nanoparticle introduction and microstructural changes by comparing
the as-deposited Ni-P, both standard and nanocomposite, with those that underwent
dehydrogenation and/or crystallization heat treatment. Particular attention was given
to heat-treated nanocomposites, investigating the effect of annealing at 400 ◦C for 1 h
with and without prior dehydrogenation, and aiming at understanding the involved wear
mechanisms and defining manufacturing strategies that maximize tribological performance.

2. Materials and Methods
2.1. Coating Preparation

Disk-shaped specimens of F22 carbon steel (ASTM 182 standard [42]), with a 35 mm
diameter and a 3 mm thickness, were used as substrates. Analytic grade chemicals pur-
chased from Alfa Aesar (Thermo-Fisher Scientific, Waltham, MA, USA) were employed
to prepare the plating solutions. Before deposition, all samples were sandblasted with
corundum mesh 80 to achieve the same surface roughness (Ra = 3.877 ± 0.312 µm) and
guarantee good adhesion, immersed for 1 min in an acidic solution containing HCl 37%
diluted with 50 vol. % of water, to remove any superficial oxide, and eventually rinsed in
deionized water. The solution for the deposition of Ni-P coatings with a high P content was
prepared according to the procedure described in detail elsewhere [43]. The formulation of
the plating solution and the deposition parameters are reported in Table 1. The amount of
P in the coating was measured by Energy Dispersive X-Ray Spectroscopy (EDS): analysis
was conducted on cross-sectioned specimens using a scanning window that comprised
80% of the coating thickness starting from the external interface (as similarly performed
by [44,45]). Results indicated a P content equal to 11.44 ± 0.36 wt.%.

Table 1. Formulation of electroless Ni-P plating solution and deposition parameters [43].

Compound Concentration (g/L)

NaH2PO2 · H2O 110
C2H3NaO2 20

C6H8O7 9
NiSO4 · 6H2O 25

Thiourea 8.5 ppm a

pH 4.2
Temperature 90 ◦C

a Added from 1M water solution.
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For the manufacturing of Ni-P nanocomposites, commercial ZrO2 and Al2O3 nanopar-
ticles with average particle sizes of 20–30 nm and 30–50 nm, respectively, were purchased
from Io-Li-Tec (Ionic Liquid Technologies GmbH, Heilbronn, Germany). SEM micrographs
of the as-purchased ZrO2 and Al2O3 nanoparticles are shown in Figure 1a and c, respec-
tively. The purity of the nanoparticles was confirmed by the EDS analysis reported in
Figure 1b,d, in which only peaks attributed to Zr, O (in the case of zirconia), and Al and O
(in the case of alumina) were identified. Particle size distributions (PSD) of the two sets of
nanoparticles were estimated from over 200 measurements acquired by SEM micrographs
and are shown in Figure 2a,b. The calculated mean size of nanoparticles was estimated at
24.2 nm for ZrO2 and 39.3 nm for Al2O3.
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ZrO2 and Al2O3 nanoparticles were selected because of their relatively high ζ-potential,
which prevents their agglomeration into large clusters when dispersed in water solutions.
For the manufacturing of nanocomposites, nanoparticles were added to aqueous solutions
and sonicated with a Fisher Scientific 505 tip ultrasonic sonicator at 20% intensity for
10 min to promote dispersion before introducing them in the plating bath. Figure 3
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summarizes the deposition procedure of the Ni-P electroless nanocomposite coatings.
The final concentration of nanoparticles in the plating solution was varied between 0.5 g/L
and 3 g/L for ZrO2 and between 1.5 g/L and 6 g/L for Al2O3. These quantities were
defined to guarantee the same surface-to-volume ratio when adding particles of different
sizes. Depositions were carried out at 90 ◦C for 120 min under continuous magnetic stirring
and constant control over temperature.
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2.2. Thermal Treatments

The manufactured coatings were heat-treated at 200 ◦C for 2 h and 400 ◦C for 1 h.
The first time-duration schedule was selected since the growth process of Ni-P coatings
invariably produces H2 along with Ni2+ reduction and H2PO2

− oxidation. To some extent,
H2 may remain trapped within the coating, leading to considerable embrittlement of the
material, thus reducing its wear resistance [38]. To remove embedded hydrogen, a thermal
treatment at 200 ◦C for 2 h was necessary, and the properties of the dehydrogenated samples
were compared with those of the as-deposited ones. Eventually, heat treatment at 400 ◦C
for 1 h was performed to investigate the effect of crystallization on both dehydrogenated
and non-dehydrogenated samples.

2.3. Coating Characterization

The coating thickness and nanocomposite microstructure were investigated by cross-
sectional analysis using a Tescan Mira 3 (Tescan, Brno, Cechia) Field Emission-Scanning
Electron Microscopy (FE-SEM) equipped with an Edax Octane Elect detector (Ametek
Inc., Berwyn, PA, USA) for Energy Dispersive X-Ray Spectroscopy. Specimens for met-
allographic inspections were obtained by cutting the samples with a slow-speed linear
precision saw: the cross-sections were mounted in epoxy resin (EpoThin 2, Buehler Ltd.,
Lake Bluff, IL, USA), ground with SiC papers (P400 to P1200 grit), and polished with
water-based diamond suspensions (Buehler Ltd., Lake Bluff, IL, USA) up to 1 µm finishing.

Microstructure and crystalline phases were investigated by X-ray diffraction (XRD)
analysis; XRD spectra were acquired using a Philips X’Pert diffractometer (PANalytical BV,
Almelo, The Netherlands) operating at 40 kV and 40 mA with a CuKα1 radiation source.
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Acquisition parameters were: scan range of 20–80◦, feed step of 0.02◦ and acquisition time
of 2 s. Scherrer’s equation (Equation (3)) was used to calculate the crystallite size:

D =
0.94λ

β cos(θ)
, (3)

where λ is the wavelength of the radiation used, β is the peak broadening at half maximum
intensity, and θ is the main peak position.

The crystallinity index was calculated from the XRD spectra as the ratio between the
area under the crystalline peaks and the total area below the spectrum.

2.4. Microhardness and Instrumented Indentation Tests

Coatings microhardness was evaluated according to ASTM E384-11 [46] using a Leica
VMHT (Leica GmbH, Wetzlar, Germany) testing machine equipped with a Vickers diamond
indenter at 50 gf loading force with 15 s holding time. Measurements were acquired in cross-
section to avoid any influence on surface morphology features. The results are reported
in terms of the average value and standard deviation of at least twenty measurements for
each coating type, with the distance between two indentations ≥25 µm.

Additional mechanical characterization was performed by instrumented indentation
testing (ISO 14577-4:2016 [47]) using a Nanotest indenter (MicroMaterials Ltd., Wrexham,
UK) equipped with a Berkovich tip. Depth vs. load hysteresis curves were recorded
using a load-controlled method with a fixed time ramp and applying a maximum load of
250 mN. Tests were conducted with the following parameters: 0.5 mN initial load, 20 s
loading/unloading time, and 10 s dwell time at maximum load. Given the lower test
load and punctual contact guaranteed by the use of a Berkovich tip, the hardness (H)
and Young’s modulus (E) are calculated, minimizing the influence of coating defects and
operator bias (which can be more prominent in Vickers testing, especially at low loads).
Tests were conducted on mirror-polished surfaces to avoid the influence of roughness.
Polishing was performed using P1200 SiC paper and water-based diamond suspensions
at a very low load to minimize the hardening effect. At least 20 indentation cycles were
performed for each sample. Hardness was calculated according to Equation (4) [48]:

H =
Pmax

A
, (4)

where Pmax is the maximum load and A is the contact area under that load. Young Yung’s
modulus of the coatings was derived from the reduced Young’s modulus (Er), according to
Equation (5) [48]:

1
Er

=

(
1 − ν2)

E
+

(
1 − ν2

i
)

Ei
, (5)

where ν is the Poisson ratio of the sample, considered equal to 0.31 [49–51], and νi and Ei
are the Poisson ratio and the Young’s modulus of the indenter, respectively. In the case of
the Berkovic three-sided pyramidal indenter, the Poisson ratio is considered 0.07, and the
elastic modulus is equal to 1141 GPa [52].

The analysis of both the surface morphology and roughness (Ra) of the unreinforced
Ni-P and nanocomposite coatings before and after heat treatments was conducted using a
Taylor-Hobson optical non-contact profilometer (Tayor-Hobson, Leicester, UK). The average
values of Ra and standard deviations were calculated using MountainsMap software (v10.1,
Digital Surf, Besançon, France) according to ISO 21920-2:2021 [53].

2.5. Wear Tests

Ball-on-disk tribological tests were conducted in unidirectional motion at a constant
sliding speed equal to 0.05 m/s and a 30 N normal load. Tests were performed on disks
coated with standard Ni-P coatings and on the best nanocomposites selected in terms of
particle distribution and microhardness. All samples were tested in the as-coated state and
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after dehydrogenation (annealing at 200 ◦C for 2 h). Moreover, to unveil the necessity of
dehydrogenation to improve the wear resistance of crystallized Ni-P, nanocomposites were
also tested after heat treatment at 400 ◦C for 1 h with and without previous dehydrogena-
tion. All the samples selected for the instrumented indentation tests and wear tests are
summarized in Table 2.

Table 2. Summary of samples subjected to wear tests.

Specimen Thermal Treatments

Standard Ni-P None
Standard Ni-P Dehydrogenated

Ni-P nanocomposite None
Ni-P nanocomposite Dehydrogenated
Ni-P nanocomposite 400 ◦C 1 h
Ni-P nanocomposite Dehydrogenated + 400 ◦C 1 h

Spheres made of Al2O3 with a 6 mm diameter were selected as counterparts for
their high hardness (≥1600 HV) to study the tribological behavior of the coatings. Three
replicates were performed on the same surface of each sample at three different diameters
until the same number of cycles, equal to 1200, was reached. The number of cycles was
defined according to the literature. Okonkwo et al., obtained consistent friction and wear
results using the same methodology [54].

The wear scars of the disks were measured using a Taylor-Hobson 3-D optical non-
contact profilometer (Tayor-Hobson, Leicester, UK) to determine the transversal area of each
wear track; subsequently, the volume loss was calculated using MountainsMap software
(v10.1, Digital Surf, Besançon, France). The specific wear rate (WR) was calculated and
considered as a parameter for comparison.

3. Results and Discussion
3.1. Microhardness and Microstructural Characterization of Coatings

The thickness of the coatings was measured from cross-section SEM micrographs. Ni-P
samples exhibited an average thickness of 50.7 ± 2.8 µm, while the evaluated thicknesses of
the Ni-P + 3 g/L Al2O3 and the Ni-P + 1.5 g/L ZrO2 were 52.3 ± 2.8 µm and 58.0 ± 2.1 µm,
respectively.

The coating microhardness as a function of the nanoparticle concentration in the
plating solution is shown in Figure 4a for Al2O3 nanoparticles and Figure 4b for ZrO2
nanoparticles, considering the standard Ni-P coatings as references (indicated as 0 g/L). It
can be noted that in both cases, the nanocomposite coatings exhibit higher microhardness
compared with the particle-free coatings, highlighting an effective dispersion-hardening
effect. Indeed, nanoparticles act as obstacles to dislocation motion, increasing the energy
required for their propagation in a ductile matrix, according to the Orowan strengthening
mechanism [55,56]. The microhardness increases with increasing concentration of nanopar-
ticles in the plating solution. However, this increase reaches a maximum value at a certain
threshold concentration, after which a slight decrease is observed. This behavior can be
ascribed to the agglomeration phenomenon: the higher the concentration of nanoparticles
in the solution, the lower the mean distance between the particles, and the higher their
probability to agglomerate. The embedding of agglomerates within the coating decreases
the Orowan strengthening efficacy, which strongly depends on the nanoparticle size and
their dispersion and distribution. Moreover, the incorporation of large agglomerates may
occur along with the formation of micro-voids within and around the nanoparticle clus-
ters [57], invariably degrading the structural integrity and mechanical properties. The
maximum hardness is obtained with the introduction of 3 g/L of Al2O3 nanoparticles and
1.5 g/L of ZrO2 nanoparticles; the highest increase in hardness is reached with the addition
of ZrO2 nanoparticles.
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Top view SEM micrographs of standard Ni-P, nanocomposite reinforced with 3 g/L of
Al2O3, and nanocomposite reinforced with 1.5 g/L of ZrO2 are reported in Figure 5a, b, and c,
respectively. All coatings exhibit a cauliflower-like morphology typical of electroless Ni-P
coatings, which is attributed to the deposition mechanism by nucleation, growth, and
coalescence phenomena. Nanocomposite coatings are characterized by a less regular distri-
bution of nodules, which appear refined and are more variable in size compared to standard
Ni-P. This can be explained by the presence of nanoparticles, which are incorporated into
the coating during deposition and might limit the lateral growth of single nodules [26,58,59].
In addition, a small amount of partially embedded nanoparticles can be observed on the
surface of these coatings, as shown in the higher magnification micrographs in Figure 5d,e.
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The effect of nanoparticle introduction on the microstructure of high P electroless Ni-P
coatings was investigated by XRD analysis. Spectra of unreinforced Ni-P, nanocomposite
reinforced with 1.5 g/L of ZrO2, and nanocomposite reinforced with 3.0 g/L of Al2O3 in
the as-coated condition are reported in Figure 6. All coatings exhibit the typical amorphous
profile of Ni-P coatings with high P content (11.44 ± 0.36 wt.%) [9,60,61], with a single
broad peak of Ni, attributed to Ni(111) (JCPDS 70-0989), located at 35–55◦ angular position.
P atoms located at interstitial positions distort the nickel lattice to the extent that long-range
order is lost, and the matrix can be considered amorphous. The only difference between
the three spectra is the presence of peaks belonging to ZrO2 (JCPDS 78-0047) and Al2O3
(JCPDS 46-1212) particles in the case of the nanocomposites, demonstrating the effective
incorporation of nanoparticles without altering the microstructure of the matrix.
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Figure 6. XRD spectra of unreinforced Ni-P coatings (green line), nanocomposite reinforced with
1.5 g/L of ZrO2 (black line), and nanocomposite reinforced with 3.0 g/L of Al2O3 (red line) in the
as-coated condition.

To better understand the reason for the higher hardness measured in ZrO2-modified
coatings, SEM analyses were performed on the cross-sectioned specimens in the backscat-
tered electron (BSE) imaging mode. Figure 7 shows representative micrographs of standard
Ni-P (Figure 7a,d), Ni-P reinforced with 3 g/L of Al2O3 (Figure 7b,e) and 1.5 g/L of ZrO2
(Figure 7c,f). It is worth noting that all the coatings are dense and crack-free. As widely
reported in the literature [16,31], the overall increase in microhardness depends on both
the amount of inserted hard reinforcement and the dispersion of ceramic nanoparticles.
The Al2O3 nanocomposite exhibits a non-uniform dispersion of particles along the coat-
ing thickness, and large agglomerates are present in the external half of the coating (as
indicated by red arrows). Conversely, ZrO2 nanoparticles, despite being less visible in the
BSE-SEM micrographs due to the lower compositional contrast, appear well-dispersed
and well-distributed, with only some more visible agglomerates that can be identified in
Figure 7f. The presence of these agglomerates is usually a consequence of agglomeration
processes in the plating solution [31] and appears more likely to occur in the case of Al2O3
dispersions, despite the comparable ζ-potential of the two investigated nanoparticles at
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the pH value of deposition (equal to 4.2) [62]. Moreover, the nominal smaller size of ZrO2
nanoparticles, coupled with their lower agglomeration degree, might lead to more effective
Orowan strengthening mechanisms and, therefore, better hardening.
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Figure 7. Cross-section backscattered electron SEM micrographs of standard Ni-P coatings (a,d),
nanocomposites reinforced with 3 g/L of Al2O3 (b,e), nanocomposites reinforced with 1.5 g/L of ZrO2

(c,f) and related EDS analysis (g,h). The arrows (b,e,f) highlight the agglomerates of the nanoparticles.

The results of the microhardness tests performed on the coatings after thermal treat-
ment at 200 ◦C for 2 h and 400 ◦C for 1 h are shown in Figure 8a, and the corresponding
XRD microstructural changes are presented in Figure 8b. As previously demonstrated, no
microstructural changes of the Ni-P matrix are observed after the addition of ZrO2 and
Al2O3 nanoparticles: the only difference lies in the appearance of characteristic peaks that
can be attributed to the nanoparticles; therefore, only ZrO2 nanocomposite spectra are
reported for simplicity. A slight hardness increase is observed after the dehydrogenation
treatment, mainly as a consequence of initial grain nucleation and growth. Compared to
the XRD spectra in the as-deposited condition, the spectrum acquired after treatment at
200 ◦C for 2 h exhibits a better-defined and less broad Ni(111) peak, and the initial ap-
pearance of Ni(200) and Ni(220) peaks at 52.03◦ and 76.99◦. These considerations indicate
that some limited grain growth occurs after dehydrogenation, which also causes an in-
crease in microhardness according to the inverse Hall-Patch mechanism [63]. The hardness
increase is considerably higher (+20%) for the particle-free coatings compared with the
nanocomposites (+8.0% for the ZrO2 nanocomposite and +8.5% for the Al2O nanocompos-
ite), suggesting that nanoparticle incorporation might retard grain growth and hamper its
hardening effect. Similar results were reported by Dhakal et al. [64], who suggested that
the presence of nanoparticles induces strain within the lattice, which, in turn, constrains
grain growth. Consistent findings have often been reported in the literature [22,58,65,66].
Further hardening occurs after heat treatment at 400 ◦C for 1 h as a consequence of Ni
crystallization and precipitation of nanometric Ni3P hard phases (JCPDS–34-0501), which
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provides an effective precipitation strengthening mechanism [66–68]. The crystal sizes
evaluated by Scherrer’s equation and the lattice parameters of the phases detected by XRD
analysis are listed in Table 3.
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Table 3. Summary of grain size and lattice parameters evaluated from the XRD results.

Sample Phase Space
Group

Lattice
Constant (Å)

Ni Grain
Size (nm)

Crystallinity
Index (%)

Ni-P Ni Fm-3m 3.5238 1.96 40

Ni-P/Al2O3

Ni Fm-3m 3.5238 1.83

49
Al2O3 R-3c a, b = 4.7587

c = 12.9929 n.a.

Ni-P/ZrO2

Ni Fm-3m 3.5238 1.85

42
ZrO2 P21/c

a = 5.1507
b = 5.2028
c = 5.3156

n.a.

Ni-P/ZrO2/200 ◦C 2 h

Ni Fm-3m 3.5238 2.58

58
ZrO2 P21/c

a = 5.1507
b = 5.2028
c = 5.3156

n.a.

Ni-P/ZrO2/400 ◦C 1 h

Ni Fm-3m 3.5238 50.7

77
Ni3P I-4 a, b = 8.9520

c = 4.3880 56.5

ZrO2 P21/c
a = 5.1507
b = 5.2028
c = 5.3156

n.a.

No obvious differences in microstructure and microhardness are observed when heat
treatment at 400 ◦C for 1 h is performed with and without prior dehydrogenation; the grain
size of Ni remains 50.7 nm in both cases, and that of Ni3P precipitates decreases slightly
from 56.5 nm to 50.2 nm. Indeed, the microstructural changes that occur when annealing
above the crystallization are so massive that the small modifications observed after dehy-
drogenation become negligible. Nonetheless, the hydrogen embrittlement phenomenon
can play a role when considering coating resistance. To uncover this aspect, standard Ni-P,
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nanocomposites, and heat-treated coatings were subjected to instrumented indentation
tests and tribological tests.

3.2. Instrumented Indentation Tests

Instrumented indentation tests were conducted on standard coatings and on nanocom-
posites reinforced with 1.5 g/L of ZrO2 due to their higher microhardness and better
dispersion of the reinforcing phase. From now on, samples will be referred to as Ni-P
for the unreinforced Ni-P, Ni-P/ZrO2 for the nanocomposites, and Ni-P/ZrO2/TT400 ◦C
1 h for the ZrO2 reinforced Ni-P nanocomposite annealed at 400 ◦C for 1 h. Performing
dehydrogenation at 200 ◦C for 2 h will be specified in each specific case.

The load-displacement curves of standard Ni-P and ZrO2 nanocomposites recorded
by instrumented indentation tests are reported in Figures 9 and 10. Dotted lines represent
all curves calculated for each test condition, while solid lines represent the average. The
hardness, Young’s Modulus, and H/E ratio for each set of samples, calculated at 250 mN
maximum load, are listed in Table 4. The results clearly demonstrate that both thermal
treatment and the addition of hard ZrO2 nanoparticles lead to an improvement in the
coating hardness (consistent with the Vickers microhardness test results) and to an increase
in the elastic modulus. The higher hardness of nanocomposites, compared with particle-
free coatings, is ascribed to an effective dispersion-hardening according to the Orowan
mechanism [55,56]. In addition, the stiffening effect may result from the synergistic effect of
two components: (i) the microstrain introduced by the dispersion of nanoparticles, which
can alter the lattice parameters of Ni and Ni3P grains; and (ii) microstructural modifications,
including Ni3P precipitation, induced by heat treatments [15,22,64]. It is worth noting that
a slight reduction in the elastic modulus is registered when the heat treatment at 400 ◦C
for 1 h is preceded by dehydrogenation, despite the comparable hardness value, and the
results are characterized by a lower dispersion of data. This suggests that dehydrogenation
plays a role in the relaxation of deposition stresses; this effect, which is negligible before
crystallization, becomes significant when additional strain components are introduced by
heat treatment at 400 ◦C.
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Figure 10. Load-displacement curves from the instrumented indentation of ZrO2 nanocomposites
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stands for average).

Table 4. Hardness (H), Young’s modulus (E), and H/E ratio of standard Ni-P coatings and ZrO2-
reinforced nanocomposites in the as-deposited state and after different heat treatment conditions,
measured by instrumented indentation tests.

Specimen Hardness (GPa) Young’s Modulus (GPa) H/E Ratio

Ni-P 6.26 ± 0.24 138.9 ± 5.4 0.0451 ± 0.0025
Ni-P dehydrogenated 6.93 ± 0.26 144.7 ± 6.9 0.0479 ± 0.0029

Ni-P/400 ◦C 1 h 9.37 ± 0.47 181.6 ± 13.3 0.0516 ± 0.0046
Ni-P/400 ◦C 1 h dehydrogenated 9.39 ± 0.31 174.4 ± 9.6 0.0538 ± 0.0035

Ni-P/ZrO2 6.56 ± 0.30 142.6 ± 5.3 0.0460 ± 0.0027
Ni-P/ZrO2 dehydrogenated 7.10 ± 0.21 149.4 ± 13.3 0.0482 ± 0.0045

Ni-P/ZrO2/400 ◦C 1 h 10.86 ± 0.87 198.0 ± 10.3 0.0548 ± 0.0052
Ni-P/ZrO2/400 ◦C 1 h dehydrogenated 10.78 ± 0.52 189.5 ± 7.1 0.0569 ± 0.0035

A quantitative representation of how the combination of hardness and stiffness can
represent the mechanical resistance of coatings is provided by the H/E ratio. According
to the work by Leyland and Matthews [69], the H/E parameter can be effective for the
preliminary assessment of the wear resistance of coatings (a higher H/E ratio indicates
higher wear resistance). The results in Table 4 show that H/E increases with nanoparticle
incorporation in all cases. Moreover, it also increases after dehydrogenation in both the
case of standard Ni-P and nanocomposite coatings, confirming the importance of this
post-deposition treatment to guarantee better protective properties of the coatings.

3.3. Wear Tests

Wear tests were performed to further investigate the effect of nanoparticle addition
and heat treatments on the tribological behavior of the coatings. Before conducting the
wear tests, the arithmetic average surface roughness (Ra) of the samples was evaluated,
and the results are reported in Table 5. Nanocomposite coatings exhibit lower Ra values
than standard Ni-P; this phenomenon is related to the nodular refinement observed as
a consequence of nanoparticle introduction (Figure 5), and similar results have often
been reported in the literature [21,26,34]. A further reduction in Ra is obtained after heat
treatment at 400 ◦C for 1 h, consistent with the additional nodular refinement that is known
to occur after the crystallization of the Ni-P matrix [68]. No significant differences are
observed when t dehydrogenation heat treatment is performed.
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Table 5. Ra values of the substrate before the coating process and of the samples subjected to
wear tests.

Substrate
(SandBlasted) Ni-P Ni-P/ZrO2

Ni-P/ZrO2 De-
hydrogenated

Ni-P/ZrO2/400 ◦C
1 h

Ni-P/ZrO2/400 ◦C
1 h Dehydrogenated

Ra (µm) 3.877 ± 0.312 3.128 ± 0.4288 2.486 ± 0.2376 2.429 ± 0.2350 2.133 ± 0.1229 2.114 ± 0.1137

The COF evolution against 1200 cycles for each considered sample, calculated as the
average of the three replicas, is shown in Figure 11. In the case of the non-dehydrogenated
samples (see Figure 11a), Ni-P/ZrO2 showed the lowest COF, which was slowly reached in
the final stage of the test; the same trend was also observed in the case of Ni-P/ZrO2/400 ◦C
1 h. The as-coated Ni-P coating showed the highest value of COF and the highest data
fluctuation. The same dispersion of COF data was observed for Ni-P/ZrO2, and this
behavior can be attributed to the onset of stick-slip mechanisms [70].
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Figure 11. COF evolution against 1200 cycles of sliding for (a) untreated samples and (b) dehydro-
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Conversely, the dehydrogenated samples exhibited an overall smoother COF evolution
(Figure 11b); no noteworthy differences were detected between Ni-P and Ni-P/ZrO2,
indicating that the reinforcement does not play a main role in the COF evolution. The COF
of Ni-P/ZrO2 increased after dehydrogenation, while the heat-treated Ni-P/ZrO2/400 ◦C
1 h showed a lower steady-state COF after a noisier initial transient.

The average values of the COF and standard deviation for each sample are listed in
Table 6. No substantial differences were detected for the Ni-P samples despite the lower
average COF value after dehydrogenation. Their COF values also confirmed the difference
between the untreated and dehydrogenated Ni-P/ZrO2 samples, which could be related to
the absence of the transition that occurred between 100 and 200 cycles for the untreated
Ni-P/ZrO2 samples. The Ni-P/ZrO2/400 ◦C 1 h samples seemed to be the ones most
influenced by the dehydrogenation treatment, with a significant drop in the COF average
values. Both the as-coated and dehydrogenated coatings presented a COF average value
sensibly lower than the results reported by Gay et al. [71] while studying the wear resistance
of ZrO2 reinforced Ni-P coatings in unidirectional friction tests with a 2 N applied load and
100Cr6 steel balls as counterparts.

Table 6. Average COF values and their standard deviations for the different test conditions.

Sample Not Dehydrogenated Dehydrogenated

Ni-P 0.50 ± 0.02 0.47 ± 0.02
Ni-P/ZrO2 0.39 ± 0.03 0.45 ± 0.01

Ni-P/ZrO2/400 ◦C 1 h 0.42 ± 0.03 0.36 ± 0.03
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To better understand the changes in the COF behavior, the overall wear of the tribo-
system, measured as the vertical displacement of the ball during the test, was considered.
It is calculated by an integrated LVDT (Linear Variable Displacement Transducer) sensor,
which jointly considers the wear of the specimen and that of the counterpart. The overall
wear evolution against the number of cycles is shown in Figure 12 for both the untreated
and dehydrogenated samples. In the case of the untreated samples (Figure 12a), the results
confirmed that for both Ni-P and Ni-P/ZrO2, a transition occurred before the end of the test.
The overall wear signal started to increase with a high slope after 700 cycles for HP and with
a lower slope for Ni-P/ZrO2 just before 200 cycles: this behavior can be associated with
failure by spallation and adhesion-related issues [66] since internal stresses can make non-
dehydrogenated coatings more susceptible to collapse under external pressure. Considering
the Ni-P/ZrO2/400 ◦C 1 h condition, no significant slope variations were detected during
sliding. In the case of the dehydrogenated samples (Figure 12b), no transition occurred for
any of the samples; the Ni-P and Ni-P/ZrO2 coatings exhibited a very similar overall wear
evolution, while the dehydrogenated Ni-P/ZrO2/400 ◦C 1 h seemed to be worn in the very
beginning of the sliding until it reached a steady-state regime with quasi-zero wear.
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dehydrogenated and (b) dehydrogenated samples.

To better compare the wear behaviors of the different coatings, the WR was calculated.
All the WRs are graphically reported in Figure 13 for both the untreated and dehydro-
genated samples. Based on the obtained results, dehydrogenation improved wear behavior
lowering all the WR values. In the case of both untreated Ni-P and Ni-P/ZrO2 samples, the
calculation could not be performed because of the failure of the coatings: this also explains
the transitions that were noticed for both the COF values and overall wear evolutions
in Figures 11a and 12a, respectively. After dehydrogenation, all the samples overcame
the sliding test, and the WR was calculated for each sample. It can be observed that the
nanoparticle reinforcement improved the wear resistance of standard Ni-P, and that the
best performance was obtained in the heat-treated condition. Biswas et al. [72] obtained
a similar trend testing high phosphorus Ni-P coatings in as-coated conditions and after
different heat treatments. The authors observed that annealing performed at 400 ◦C for
1 h led to the lowest WR, testing the coatings in unidirectional motion at a sliding speed
of 0.157 m/s and applying a load of 20 N. Gadhari and Sahoo [73] also demonstrated that
annealing at 400 ◦C led to the lowest WR testing Ni-P-Al2O3 nanocomposites coatings
annealed following different time and temperature combinations in unidirectional sliding
tests under the effect of a 50 N normal load and using Al2O3 spheres as counterpart. The
results are also in agreement with the H/E ratio computed for each considered layer, as the
WR decreased with increasing H/E ratio [69].
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conditions.

To comprehensively understand the wear behaviors of the different Ni-P coatings, the
worn surfaces of each sample were investigated through SEM imaging. Representative
micrograph images of the wear tracks are shown in Figure 14. Two different wear mecha-
nisms were detected for the as-deposited coatings (Figure 14a,c,e). Large wear tracks were
observed on Ni-P and Ni-P/ZrO2, and in both cases, deep and wide grooves were visible
along the wear track in the sliding direction, suggesting abrasion as the predominant wear
mechanism. Wide cracks can be observed on the surface of the Ni-P/ZrO2 coating (red
arrows in Figure 14c) on both sides of the wear track, suggesting failure of the coatings.
These findings are consistent with the WR values reported in Figure 12. Ni-P/ZrO2/400 ◦C
1 h sample showed improved wear resistance compared with Ni-P/ZrO2, as the width
of the wear track decreased and a dark layer of well-compacted debris appeared widely
distributed over the entire wear track. Conversely, a completely different behavior was
observed for the dehydrogenated samples (Figure 14b,d,f), as indicated by the morphology
of the wear track and confirmed by the improved wear resistance: both dehydrogenated
Ni-P and Ni-P/ZrO2 coatings did not exhibit grooves on the wear scars, indicating that
abrasion did not occur as the predominant wear mechanism; discontinuous dark and
plastically deformed debris were detected across the wear track, and spread over it. The
same wear mechanisms were also observed for dehydrogenated Ni-P/ZrO2/400 ◦C for 1 h,
and the same dark layer of well-compacted debris was observed over the entire wear track
(see the green arrows in Figure 14e,f). The different observed wear mechanisms suggest
that dehydrogenation heat treatment improves wear behavior by reducing the hydrogen
embrittlement phenomenon, which can be the cause of lower resistance and failure by
delamination and by increasing the coating hardness.

Semiquantitative EDS analyses were performed to confirm the main wear mechanisms,
and the results are shown in Figure 15. The diffused presence of iron (Fe) was detected
across the wear tracks of non-dehydrogenated Ni-P and Ni-P/ZrO2 (Figure 15a,b), confirm-
ing that in both cases, complete failure occurred through delamination of the coating from
the steel substrate. Conversely, when dehydrogenation was performed, thinner scratches
appeared longitudinally to the sliding direction, as reported in the higher magnification
micrograph in Figure 15c, and a protective oxide layer was observed across the wear track
of all Ni-P coatings. The same oxidative phenomenon was also observed by Aslayan
et al. [33], who investigated SiC-reinforced Ni-P composites in unidirectional sliding and
attributed the temporary protective effect to the formation of an oxide layer. These findings
are consistent with the WR results presented in Figure 13.
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(f) with prior dehydrogenation. Red arrows indicate surface cracks (c), while green arrows indicate a
dark layer of compacted wear debris (e,f).

As observed by León-Patiño et al. [14], oxidation phenomena were also found to
have a protective effect on the wear resistance of Ni-P coatings reinforced with Al2O3
nanoparticles. The authors tested non-reinforced high-P Ni-P coatings and found that
debris from the matrix reacts with the environment and oxidizes; then, they are partially
compacted by the counterpart and form a thin layer that protects the coating from severe
wear. However, compared to the present study, higher WR values were obtained despite
the lower load applied, confirming the better properties achieved with the addition of ZrO2
nanoparticles. Similar results regarding the formation of the thin protective oxide layer
shown in Figure 15c were reported by He et al. [34].
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4. Conclusions

In the present work, the synergistic reinforcement effect of nanoparticle addition and
heat treatment on the mechanical and tribological behavior of electroless Ni-P coatings
with a high P content was investigated. It was demonstrated that the introduction of ZrO2
nanoparticles led to a more effective microhardness increase compared with introduction
of Al2O3. The overall hardness increase by ZrO2 addition is higher than 35% compared
with unreinforced Ni-P. Nanoparticles do not alter the microstructure of as-coated Ni-P
samples and thermal treatments are required to induce microstructural changes: (i) de-
hydrogenation heat treatment at 200 ◦C for 2 h leads to initial Ni grain growth (without
Ni3P precipitation) and +50% microhardness increase for the nanocomposites compared
to standard as-deposited Ni-P; (ii) annealing at 400 ◦C for 1 h leads to crystallization and
Ni3P precipitation, with hardness increase up to 130%.

The study also highlighted the critical role of dehydrogenation heat treatment in
enhancing the coatings’ performance. Dehydrogenation at 200 ◦C for 2 h mitigated the
negative effects of hydrogen embrittlement and provided relaxation of deposition stresses,
significantly improving hardness, Young’s modulus, and wear resistance, especially when
performed prior to crystallization heat treatment at 400 ◦C for 1h.

Wear tests revealed that dehydrogenation is crucial for reducing the coefficient of
friction (COF) and wear rate (WR). Without dehydrogenation, both the standard and
nanocomposite Ni-P coatings failed due to the complete delamination of the coating from
the steel substrate, and abrasion was the predominant wear mechanism. Conversely,
the dehydrogenated samples demonstrated better resistance due to the formation of a
protective oxide layer. When dehydrogenation was followed by annealing at 400 ◦C for 1 h,
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further improvements were observed due to the crystallization of Ni and the precipitation
of hard Ni3P phases, which added additional strengthening to the coatings.

In conclusion, this study demonstrates that Ni-P coatings reinforced with ZrO2
nanoparticles subjected to appropriate dehydrogenation and crystallization heat treatments
offer superior hardness and wear resistance. These findings provide valuable insights into
the optimization of Ni-P nanocomposite coatings for industrial applications.
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