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Abstract: Laser Powder Bed Fusion (LPBF) enables the efficient production of near-net-shape ox-
ide dispersion-strengthened (ODS) alloys, which possess superior mechanical properties due to
oxide nanoparticles (e.g., yttrium oxide, Y-O, and yttrium-titanium oxide, Y-Ti-O) embedded in the
alloy matrix. To better understand the precipitation mechanisms of the oxide nanoparticles and
predict their size distribution under LPBF conditions, we developed an innovative physics-based
multiscale modeling strategy that incorporates multiple computational approaches. These include a
finite volume method model (Flow3D) to analyze the temperature field and cooling rate of the melt
pool during the LPBF process, a density functional theory model to calculate the binding energy
of Y-O particles and the temperature-dependent diffusivities of Y and O in molten 316L stainless
steel (SS), and a cluster dynamics model to evaluate the kinetic evolution and size distribution of
Y-O nanoparticles in as-fabricated 316L SS ODS alloys. The model-predicted particle sizes exhibit
good agreement with experimental measurements across various LPBF process parameters, i.e., laser
power (110-220 W) and scanning speed (150-900 mm/s), demonstrating the reliability and predictive
power of the modeling approach. The multiscale approach can be used to guide the future design of
experimental process parameters to control oxide nanoparticle characteristics in LPBF-manufactured
ODS alloys. Additionally, our approach introduces a novel strategy for understanding and mod-
eling the thermodynamics and kinetics of precipitation in high-temperature systems, particularly
molten alloys.

Keywords: laser powder bed fusion; additive manufacturing; oxide dispersion-strengthened alloys;
particle size distribution; thermodynamics; kinetics

1. Introduction

The rapidly growing need for energy around the globe is calling for new advanced
structural materials in order to build the next generation energy systems (e.g., nuclear
fission and fusion reactors), which are expected to operate within harsh environments (e.g.,
high temperature and radiation). Among other materials, oxide dispersion-strengthened
(ODS) alloys are emerging as promising candidates due to their well-known mechanical
properties (e.g., tensile strength, corrosion resistance, creep resistance) in harsh environ-
ments derived from extensively dispersed second phase oxide nanoparticles [1-14]. Most
ODS alloys contain a high-density nanometer-scale oxide particles, such as Y,0O3 and
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Y, Ti,Oy, which are typically introduced by solid state powder metallurgy involving mul-
tiple steps such as ball milling, hot isostatic pressing, hot rolling, and extended heat
treatments [15-17]. This conventional manufacturing route for ODS alloys is rather time-
and energy-consuming due to the limited atomic diffusivity in the solid state. Once formed,
the oxide nanoparticles dispersed inside ODS alloys impede dislocation motion, giving
rise to excellent high-temperature strength and creep resistance [1-4]. Additionally, nano-
scale defects formed in the aforementioned processes act as sinks for helium and provide
resistance to radiation damage [18-21].

The conventional techniques of fabricating ODS alloys offer limited geometrical complex-
ity and require post-process heat treatment to manufacture serviceable parts [6-10,22-24]. In
contrast, some recent studies show that laser-melting-based additive manufacturing (AM)
technologies, such as laser powder bed fusion (LPBF) and laser direct energy deposition
(LDED), can directly print net-shape ODS components with lightly mixed matrix powder
(or wire) and oxide particles [1-5,24]. These AM technologies reduce labor, energy, and
cost significantly because mixed powder is prepared in a light ball milling process, and
oxide particles are dissolved into the melt pool and precipitated out as nano-sized oxide
particles during almost instantaneous melting and cooling processes [1-5,25-27].

The mechanical properties of ODS alloys are critically determined by the character-
istics (e.g., number density, size, and size distribution) of the oxide dispersoids. The AM
methods, especially LPBEF, offer a cooling rate several orders of magnitude higher than the
conventional methods, which can potentially prevent the coarsening of oxide nanoparti-
cles [22-24,28-31] and result in small particles at a high number density, as preferred for
enhancing the mechanical properties. The characteristics of oxide particles are in practice
controlled by the alloy composition and printing parameters, such as laser power (P) and
scanning speed (V) [3,22,23,32-35]. Previous studies tested the effects of these parameters
on the PSD (particle size distribution) in experiments, which required significant amounts
of work using scanning electron microscopy (SEM) and transmission electron microscopy
(TEM) to measure the PSD of the oxide nanoparticles [2,3,7,9-15]. The time-consuming
printing and characterization limited the scope of exploration of the correlations between
the PSD and the processing parameters. In light of this finding, a comprehensive thermoki-
netic model based on the fundamental physics (diffusion and clustering) of precipitation
would help accelerate the optimization of the processing parameters and development of
the additively manufactured ODS alloys. Moreover, a physics-based modeling framework
would also reveal the detailed kinetics and mechanisms of oxide nanoparticle precipitation
and evolution during an AM process.

Several models have been established to investigate the kinetic evolution of oxide
nanoparticles in ODS alloys [4,8,21-23,36-39]. Barnard et al. developed a model framework
for the thermodynamics and kinetics of yttrium-titanium oxide nucleation, growth, and
coarsening in nanostructured ferritic alloys during annealing [36]. Their model is based
on some available thermodynamics and kinetic data as well as density functional theory
(DFT) calculations [4,21,36-38]. Their model showed that the composition of nano oxide
particles is controlled by both the Ti/(Y + Ti) ratio and oxygen partial pressure [36]. Hin
et al. and Nellis et al. built a kinetic Monte Carlo (kMC) model based on DFT calculations
and experimental data as well to study the precipitation of Y-O and Y-Ti-O in « iron
during isothermal and anisothermal heat treatment [8,40]. However, these models are
all focused on the precipitation of oxide particles in a solid matrix (« iron). They cannot
describe the evolution of the oxide in the melt pool during the cooling phase of AM.
Furthermore, Wassermann et al. measured the melt pool surface temperature in the
experiment and integrated it with a thermodynamics and kinetics model to examine the
limits of the PSD of Y,O3 nanoparticles in LPBF [22]. Nevertheless, they assumed that
all oxide particles experienced the same temperature profile that was taken along the
centerline of the melt pool surface. This assumption was made because of limitations
imposed by the experimental measurement and computational cost, which restricted the
power of the model in capturing the breadth of the PSD of oxide particles as determined by
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the variations in the cooling history in the different parts of the melt pool. In addition, the
temperature profiles were still measured from the experiments, which required dedicated
experimental efforts. Eo et al. coupled the Kampmann and Wagner numerical model with
the temperature profile calculated by finite volume method (FVM) and thermodynamic
databases to elucidate the oxide particle evolution in LPBF and LDED [23]. However, their
FVM model only included the substrate and laser source, without the deposited material
(wire or powder bed). Also, they only selected one representative cooling curve under each
condition for precipitation modeling, similar to the work of Wassermann et al. [22]. All
the model frameworks referenced above either assumed Y,03 as the only existing oxide
phase (strict stoichiometry) or divided oxide particles into a discrete number of size classes.
Moreover, they mostly used the thermodynamic data from the solid state.

In this study, we developed a multiscale computational framework to model the
precipitation of Y-O particles in molten 316L stainless steel (316L SS) during the LPBF
process and predict the PSD of oxide nanoparticles in as-fabricated 316 SS ODS alloys. This
work is focused on the thermodynamics and kinetics of Y-O nanoparticle precipitation
at an elevated temperature, specifically in the liquid state. This model could be used to
predict the PSD of Y-O nanoparticles under different process conditions and thus propose
experimental strategies toward achieving a desired PSD. The model was validated by
comparison with bulk samples of the 316L S5-Y,0O3 ODS alloy that were fabricated by
LPBF with different laser power and scanning speed. Section 2 of this paper presents the
details of the experimental preparation and the modeling framework. Section 3 reports the
thermodynamic data calculated specifically for molten 316L SS, and the model-predicted
PSD of Y-O nanoparticles in comparison with the experimental measurements. Finally,
the factors that may affect the PSD of Y-O nanoparticles in the ODS alloy are discussed in
Section 4. The strategies that could optimize the PSD in the experiment are also proposed.

The novelty of this work lies in the development of a purely modeling framework
to predict the particle size distribution (PSD) of oxide nanoparticles, which offers the
potential for significant reductions in experimental costs. Unlike other experimental and
computational approaches that provide only a single temperature profile for the melt
pool [20,21], this model offers more comprehensive temperature profiles, leading to more
accurate PSD predictions. The framework captures the precipitation of oxide nanoparticles
at elevated temperatures (in the liquid state) through thermodynamic and kinetic data
calculations. Additionally, it can serve as a computational guide for designing experiments
to achieve the desired particle size.

2. Methods
2.1. Experimental
2.1.1. Feedstock Powder

The powder feedstock in this study was gas-atomized 316L austenitic SS powder
(<45 um) from Carpenter Technology (Philadelphia, PA, USA) with the chemical compo-
sition given in Table 1 and yttria powder (<1 um) from H.C. Stack Solutions Americas
(Lewiston, ME, USA). In order to prepare the precursor of 316L ODS alloys, the 316L pow-
der was mixed with 0.8 wt.% of Yttria (Y,O3) in a planetary ball mill for 4 h using the ball
to powder ratio of 3:1. Then, the mixed powder was loaded to the LPBF machine for fabri-
cating the 316L ODS material. ODS alloys typically contain a small amount (0.2-1 wt.%) of
oxide particles. The 0.8 wt.% of yttria concentration was used here because of its poten-
tial to provide good particle detectability while preventing the significant coarsening of
oxide nanoparticles [1-3].

Table 1. Chemical composition of 316L stainless steel powder (wt.%).

Element

Cr

Ni Mo Si Mn o C S Fe

wt.%

17.05

12.50 240 0.69 0.86 0.02 0.016 0.03 Bal.
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The morphologies of the pre-mixing 316L and yttria powder particles, along with the
mixture of 316L and 0.8 wt.% yttria after light ball milling, are presented in Figures 1a and
1b, respectively. As depicted in Figure 1a, the gas-atomized 316L powder primarily consists
of spherical particles, occasionally accompanied by satellite particles, with a mean diameter
of 28.9 um. The yttria particles, shown in the inset of Figure 1a, have a prismatic shape with
a mean size of 1.7 um. After light ball milling (Figure 1b), the majority of 316L particles
maintain their original spherical morphology, with only a few exhibiting deformation. The
yttria particles are observed to coat the surface of the 316L particles. The inset of Figure 1b
provides a higher-magnification view, revealing more detailed surface features of the lightly
milled powder. The energy-dispersive X-ray (EDX) spectrum collected from the mixed
powder after the light ball milling is presented in Figure 1c, which shows clear peaks for Y
and O, together with the 316L SS elements.

40
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o

Energy [keV]

Figure 1. Scanning electron microscopy (SEM) images of (a) pre-mixing 316L and yttria nanoparticles
(the inset) and (b) the light ball milled mixture of 316L + 0.8 wt.% of yttria powder, and the EDX
spectrum (c) from the mixed powder after the light ball milling.

2.1.2. LPBF Process Parameter Development

The 2oneLab (2Create, Darmstadt, Germany) with a 250 W Yb: YAG fiber laser and
a wavelength of 1067 nm was adopted to print eight bulk samples with the dimension of
10 x 10 x 5 mm? on a 316L SS build plate. These samples were printed using the mixed
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316L + 0.8 wt.% of yttria powder and the different process parameters (laser power and
scanning speed) shown in Table 2. Furthermore, the volumetric energy density (VED)
corresponding to the process parameters is also listed in Table 2, which is defined by
Equation (1).
p

E= VHT (1)
where P is the laser power, V is the scanning speed, H is the hatch spacing, and T is the layer
thickness. The wide range of E is beneficial for examining the effect of the solidification time
on the oxide precipitation. Other machine parameters include a spot size of 40 um, hatch
spacing of 40 pm, powder layer thickness of 25 um, and a rotation angle of 90 degrees. The
oxygen level in the LPBF chamber was consistently kept below 100 ppm by continuously
purging the chamber with pure nitrogen.

Table 2. Experimental laser power and scanning speed combinations used in the LPBF process and
the corresponding VED values.

Sample (S) No. 1 2 3 4 5 6 7 8
Laser Power (W) 110 110 110 110 220 220 220 220
Scanning speed (mm/s) 150 300 600 900 150 300 600 900
VED (J/mm?) 733.3 366.7 183.3 122.2 1467 733.3 366.7 2444

2.1.3. Second Phase Oxide Nanoparticle Characterization

After the LPBF process, the sample preparation for microstructural characterization
was performed according to the standard metallographic procedures. The cube samples
were removed from the build plate and cut in half by the wire electrical discharge machining
(W-EDM)) to reveal the x-z cross section of each sample (where +x is parallel to the surface
of the build plate and +z is parallel to the build direction). Then, the samples were mounted
in phenolic powder using the TP-7001B mounting press (Pace Technologies, Tucson, AZ,
USA), and ground and polished by the NANO-2000T grinder-polisher (Pace Technologies).
Furthermore, the polished samples were electroetched for 15 s by applying 15 V DC
voltage, using an electrolyte solution of 10 wt.% oxalic acid. After that, a microstructural
characterization of all samples was performed in an FEI Quanta 3D scanning electron
microscope (SEM), manufactured by FEI Company in Hillsboro, OR, USA, coupled with
energy dispersive X-ray spectroscopy (EDS). Finally, the PSD of oxide nanoparticles in the
SEM images was analyzed with Image]J (version 1.53t) [41].

2.2. Multiscale Modeling Framework

To understand and predict the time- and temperature-dependent oxide nanoparticle
precipitation during the LPBF process, our multiscale modeling framework, illustrated in
Figure 2, integrated a diffusion-reaction rate theory-based cluster dynamic (CD) model
with temperature and cooling profiles. These temperature and cooling profiles, predicted
for the entire melt pool, were computed using a finite volume method (FVM) model for
the LPBF process. Additionally, thermodynamic and kinetic data, calculated separately
through a DFT model considering molten 316L stainless steel, were incorporated. Before
presenting the modeling details, it is important to note that our framework incorporated
essential multiscale information and computational methods critical to understanding
oxide precipitation. However, as with most modeling efforts, certain assumptions and
simplifications were necessary to make the computations feasible. The goal of integrating
these models is to predict the PSD of oxide nanoparticles in 316L. ODS SS fabricated
via LPBE.
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| Temperature Profile (FLOW-3D) | —— | Finite Volume Method (FVM) Model |

/

Diffusivity (VASP) |

N\

N\

| Binding Energy (VASP) | —) | Density Functional Theory (DFT) Model |

/

Cluster Dynamics (MATLAB) —) | Diffusion—Reaction Rate Theory Model |

Particle Size Distribution |

Figure 2. Schematic of the multiscale thermodynamic and kinetic model framework.

Specifically, our modeling framework uses the following assumptions/simplifications:

Assumption (1): Only the 316L SS powder was adopted in the FVM model. Even
though the 316L SS powder was coated by 0.8 wt.% of yttria powder in the experiment, the
small size and weight percent of the yttria powder make it unlikely for yttria to significantly
impact the temperature/cooling profile of the melt pool.

Assumption (2): The Y,O3 powder was fully melted and dissociated into monomers
upon the onset of cooling. The melting point of bulk Y03 is 2700 K in equilibrium, and
the nanoparticles usually have a lower melting point than the bulk materials. Thus, it is
appropriate to assume that the Y,O3 powder is melted in most parts of the melt pool [2,3,35].
Furthermore, the Y-O nanoparticles were assumed to remain spherical during precipitation
due to the strong surface-tension (interfacial energy) effect on the nanometer scale, which
is indeed supported by the SEM images to be shown later.

Assumption (3): A point in the melt pool had an approximately constant cooling rate
before solidification (i.e., till the melting point of 316L SS, ~1750 K), due to the short time
interval between melting and solidification in the LPBF process. The cooling rate can be
calculated by taking the slope between the peak temperature at that point and the melting
point on the temperature versus the time profile.

Assumption (4): All Y-O nanoparticles in the liquid experienced the same Y and O
concentration but a different temperature at a given instant in time. It would be adequate
to assume that monomers could reach the uniform concentration in the liquid system due
to the high diffusivity. Several representative temperature profiles were selected for the
Y-O nanoparticle precipitation in the different regions of the melt pool, providing a more
accurate prediction of the PSD than using a single temperature profile to represent the
entire cooling history of the melt pool.

Assumption (5): The Y-O particles with compositions around the stoichiometric com-
position Y,03 were evaluated in the CD model with a novel phase-cut method presented
in Ref. [40]. Informed by experimental observation and computational work, Y,03 had the
highest thermal stability, comparing with other compositions in 316L SS [1-8,21-23,35-40].
Temporary and slight deviation from the Y,Oj3 stoichiometry was most likely occurring
during the growth of the Y-O precipitates, and, hence, those close-by compositions were
allowed in our cluster dynamic model.

Assumption (6): The Y-O nanoparticle precipitation was mainly controlled by the
diffusion of Y and O in the molten 316L SS but not the diffusion or motion of the other
elements. In contrast, during the conventional manufacturing of ODS alloys (solid-state
processing), oxygen and vacancies formed bonds, with yttrium occupying the vacancies.
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The coarsening of nanoparticles in this process is primarily driven by yttrium diffusion
along dislocations [36-38].

Assumption (7): There was an ample reservoir of O for the precipitation of Y-O
nanoparticles during printing. Although the oxygen level was consistently kept below
100 ppm in the LPBF chamber, the residual oxygen in the chamber and the oxygen dissolved
into the powder during ball milling were still affluent for forming Y-O nanoprecipitates [36].

The flowchart of the cluster dynamics (CD) model, the part of the current multiscale
modeling framework that directly predicts the concentrations of Y-O clusters of different
compositions and sizes (i.e., Y-O precipitate characteristics), is given in Figure 3. Firstly,
a matrix with initial concentrations of Y and O monomers and zero concentrations of
non-monomer Y-O cluster compositions was created. Then, the temperature was calculated
at each time step on the basis of the temperature/cooling profiles obtained from the
FVM model. Later, the binding energy between the clusters and the monomers and
the temperature-dependent diffusivities of the monomers were calculated based on the
formulae pre-derived from the DFT and used to compute the clustering and dissociation
rates of each Y-O composition. Finally, the concentrations (C) of all Y-O monomer and
cluster compositions were updated by the CD model.

t=t+ At e

v

Calculate T(t) from the
temperature profile

v

Calculate E;, and D(T) for (T, C)
‘ Yes

Nucleation and diffusion growth

v

Update C

v

t < cooling time? S
No

Figure 3. Flow chart of the cluster dynamics model to predict the oxide nanoparticle precipitation

during LPBE. C is concentration, D (T) is temperature dependent diffusivity for Y and O monomers,
and Ej is the binding energy of Y-O clusters.
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2.2.1. Temperature Profile

The temperature/cooling profile is an important piece of information for modeling
the oxide nanoparticle precipitation in additive manufacturing. Thus, researchers invested
a lot of effort to measure the temperature profile in the AM process experimentally [22]
and computationally [23,28-31,42-44]. However, it is time-consuming and technically
challenging to measure the temperature profile in the experiment due to the limited size
of the melt pool [22]. It is even more formidable to determine the spatially dependent
temperature/cooling profiles at different points within the melt pool through the LPBF
process. On the other side, in the modeling, researchers used the finite element method
(FEM) and finite difference method (FDM) to calculate the temperature profiles in the AM
process, simplifying the discrete powder bed as a homogenous and continuous plate on
the substrate [28-31]. Some FVM models have been developed to estimate the temperature
profile more accurately and comprehensively in the AM process [23,42—-44]. Therefore,
an FVM model was built in the computational fluid dynamics (CFD) software FLOW-
3D (version 12.0.2.01) to simulate the single-track printing of LPBF [45]. The governing
equations for mass continuity, momentum conservation, and energy conservation are given
in Equations (2)—(4) [23,42-44].

v (pz) =0 )
%@Z) —|—V.(p5)®5>) = V-(;N?) —Vp+og (©)
%(ph) +V-(0Th) =g+ V-(kVT) 4@

- - . . . . .
where v and g are the velocity vector and gravitational acceleration vector, respectively, p is
the density, ¢ is the time, y is the viscosity, p is the pressure, k is the thermal conductivity, T
is the temperature, and / is the specific enthalpy. The & can be further expressed as follows:

h=cT+(1-f)L )
0 T>T

fo={ T=f {, when T, <T < T, (6)
1 T <T;s

where ¢, L, and f; denote the specific heat, latent heat of melting, and fraction of the solid,
respectively. Additionally, Ts and T; are the solidus and liquidus temperatures, respectively.

Furthermore, the volume of fluid (VOF) is adopted to re-build the free surface at each
time step, as given in Equation (7).

oF —
§+v-(m) -0 @)
where F is the fluid fraction.

The laser source used in the experiment has a circular focal point with a ~40 um diam-
eter on the powder bed. Therefore, a circular laser beam with a Gaussian flux distribution

was built in the current model.
=qgrexp| — r i (8)
q = qrexp P

where ¢y is the heat flux at the center of the laser beam, and r and r;, denote the radial
position and the inflection point, respectively.

A powder bed layer of 316L representing the powders used in the experiments was
constructed by the discrete element method (DEM) in the FLOW-3D DEM module and was
then assembled with the 316L SS substrate as shown in Figure 4. A single track with the
length of 800 um is printed in +x direction for each simulation. The computational domain
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consists of 1,200,000 cells with the mesh size of 5 pm. The material properties of 316L SS
(from the built-in database) used in the simulation are listed in Table 3.

155 um

1000 ym

600 um

V4
)4 o«

Figure 4. Geometry configuration of the LPBF model with a mesh size of 5 um.

Table 3. Material, thermal, and physical properties of 316L SS [from FLOW-3D database].

Property Unit Value
Density kg/m3 8119.6 — 0511 T, T < 1697.15 K
8212.6 — 0.773 T, T > 1697.15 K
Heat capacity ]/ (kg-K) 430.67 +0.1785 T, T < 1697.15 K
830, T > 1697.15 K
Thermal conductivity W/ (m-K) 11.44 +0.0136 T, T < 1697.15 K
30.5, T>1697.15 K
Viscosity Pa-S 8 x 1073
Solidus temperature K 1674.15
Liquidus temperature K 1697.15
Latent heat of melting J/kg 2.6 x 10°
Surface tension N/m 1.87
Thermocapillary coefficient N/(m-K) —45x107*
Laser absorption rate 0.35, T <1523 K

0.4, T>1608 K

2.2.2. Thermodynamic and Kinetic Parameters

The precipitation and dissociation of the oxide nanoparticles were determined by
the thermodynamics and kinetics in the liquid. Therefore, the binding energy of Y and
O monomers to an oxide nanoparticle and the diffusivity of Y and O monomers need to
be evaluated in the molten 316L SS. In this work, such calculations in the molten 316L
SS were performed using the latest Vienna Ab initio Simulation Package (VASP, version
6.3.2) [46—49]. Since this study dealt with a high temperature liquid matrix, the ab initio
molecular dynamics (AIMD) approach was adopted to calculate these fundamental material
parameters over a wide range of disordered atomic configurations in the liquid state [4,48].



Materials 2024, 17, 5661

10 of 26

The new feature of the on-the-fly machine learning force field (MLFF) inside the VASP was
employed to enhance the efficiency of AIMD in the diffusivity calculations [50].

All AIMD simulations were conducted on the high-performance computing (HPC)
cluster at the College of Engineering, Oregon State University. The simulations used the
NPT ensemble (constant number of atoms, pressure, and temperature), with pseudopoten-
tials generated via the projector-augmented wave (PAW) method and the generalized gradi-
ent approximation (GGA) based on the Perdew—Burke-Ernzerhof (PBE) functional [51,52].
A plane-wave cutoff energy of 400 eV and a uniform Monkhorst-Pack k-mesh were applied.
The Open Visualization Tool (OVITO, version 3.8.4) and MATLAB (version R2023b) were
utilized for post-simulation 3D visualization and data analysis [53].

Given the chemical complexity of the matrix alloy (316L) and the high temperatures, it
is very challenging to determine the atomic diffusivities of Y and O atoms either experimen-
tally or computationally. Although the atomic diffusivities of Y and O in body-centered
cubic (BCC) pure iron or molten pure iron have been reported in some studies [54-59],
the atomic diffusivities of Y and O in the molten 316L SS have not been reported until
our recent computational work [50]. The details of the DFT calculations for the atomic
diffusivities of Y and O (along with Ti) in molten 316L SS can be found in Ref. [50]. A brief
description of the DFT model with the MLEFF for diffusivity calculations is presented here.

A 4 x 4 x 4 BCC Fe supercell with 128 atoms was first created, and 42 of the Fe atoms
were randomly replaced with the other constituent elements (e.g., Cr, Ni) according to the
chemical composition of 316L SS as listed in Table 4 [50]. Then, one Y, one Ti, and one O
atoms were introduced into this sample by randomly replacing three remaining Fe atoms
(note that Ti is not directly relevant to this study but included for future work). This sample
was then heated until fully melted into a disordered liquid structure (shown in Figure 5a)
to train the MLFF. After that step, the MLFF was applied to the diffusion simulations in a
6 x 6 x 6 supercell (432 atoms) of 316L SS (containing one Y, one Ti or one O atom). During
each diffusion simulation, the sample was held at a fixed temperature, allowing the atoms
to freely migrate. Figure 5b shows an example of the disordered liquid sample containing
one O atom after 20 picoseconds of diffusion. Finally, the atomic diffusivities of Y, Ti, and O
in the molten 316L SS at four different temperatures were computed using the mean square
displacement (MSD) method and fitted to temperature-dependent Arrhenius equations,
one for each element [50].

The binding energies of Y and O to the Y-O clusters in molten 316L SS were calculated
by using pure AIMD simulations only. For this calculation, we first created a 4 x 4 x 4 BCC
Fe supercell with 128 atoms. Then, 15 Fe atoms at the center of the supercell were re-
moved to make space for a bixbyite YOg lattice in accordance with the structure-matched
method [4]. Next, 42 atoms of the 316L constituent elements (in Table 4) were incorporated
into the system by randomly replacing the remaining Fe atoms. A series of samples from
Y00y to YsOp were prepared by adding different numbers of the Y and/or O atom into the
bixbyite lattice. Finally, all samples were relaxed at 2200 K for 2 picoseconds with a step
size of 2 femtoseconds to obtain the total energy of the equilibrium system of the molten
316L SS with a Y-O cluster embedded. Figure 6a,b exhibit the 316L SS matrix with a Y203
as assembled and after relaxation, respectively.

Table 4. Chemical composition of 316L SS and the number of atoms for the constituent elements in
the 4 x 4 x 4 supercell.

Elements

Fe Cr Ni Mn Si Mo C Total

Nominal composition
(at.%)
No. of atoms

Bal 17.90 9.33 1.99 1.46 1.15 0.36 100
86 23 12 3 2 1 1 128
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Q-re Q= O-ni O=Mn O=Si ‘=Mo @< @- ‘=Y °=Ti

Figure 5. Molten state exemplary atomic configurations in the AIMD model for diffusivity calcula-
tions: (a) a 128 atom supercell of molten 316L SS (containing one Y, one O, and one Ti atoms) after
training the MLFF, and (b) a 432-atom supercell of molten 316L SS (containing one O atom) after a
20 ps diffusion simulation at 2200 K.

(a) (b)

—Fe —Cr =Ni =Mn =Si -Mo  =C '=o -y

Figure 6. AIMD model for the total energy calculation, the 316L SS matrix with a Y03 embedded:
(a) at the assembled solid state, and (b) after relaxation at the 2200 K liquid state.

Since AIMD simulations are computationally expensive, it is challenging, and probably
not necessary, to directly calculate the total energies of 316L SS samples containing every
size of Y-O clusters beyond YsOg, as this would require more than one unit cell of the
bixbyite structure. Instead, the total energies we obtained for the samples with small Y-O
clusters were fitted into Equation (9) for extrapolating the total energy towards bigger
Y-O clusters.

2
3

Etotar = aY +bO + ¢ * [Y*2.473 +o} +d * (%YZ — %Y-O + §OZ> +e )
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dCy-1, 0-1
dt

{

dCy—io=;
dt

where Y and O are the numbers of Y and O atoms, respectively, in the Y-O cluster. 4, b, ¢, d,
and e are fitting constants. The choice of the terms in this equation was based on consid-
erations of volumetric and interfacial contributions of the Y and O atoms into the system
energy as well as the preferred 2:3 ratio between the Y and O in forming Y-O clusters. We
will show in Section 3 that this choice captured the total energy data calculated by AIMD
for the small clusters very closely. After total energy extrapolation, the bind energy of one
Y or O atom to a Y-O cluster was calculated by Equations (10) and (11), respectively.

Eyy = Ery_1)0 + Ey=1 — (Eyo + Ess) (10)

Eyo = Ey(0-1) + Eo=1 — (Eyo + Ess) (11)

where Ej, is the binding energy, Eggs is the total energy of the molten 316L SS sample with
zero Y and zero O atoms. For example, the binding energy of an Y atom to a ¥,03 cluster can
be calculated by Ey, o, + Ey, — (Ey203 +E 55), where the first three quantities are the total
energies of the systems with a Y103 cluster, one Y atom, and a Y,Oj3 cluster, respectively.

2.2.3. Cluster Dynamics

Precipitation phenomena are generally governed by the diffusion and interactions of
the relevant species (starting from monomers) [60-63]. Here, the Y and O monomers can
diffuse in the liquid 316L SS and interact with other monomers or clusters. Specifically,
one monomer can combine with another monomer or a cluster to form a bigger cluster
(thermodynamically stable). In the inverse way, a larger cluster can emit one monomer
due to thermal dissociation. The clustering process causes the precipitation and growth
of Y-O nanoparticles, and the dissociation leads to the re-dissolution of Y-O nanoparticles.
Therefore, we used the following partial differential equations to describe this kinetic
evolution of Y-O clusters in the liquid 316L SS [60-63].

dCo=1

_ 10— O— . . _ 10+ _ O+ . .

i~ Fo—2Co=2+ LKZi0-j Cr=io=j —kol1Co-1Co-1 = L_kyZi0_iCo1Cr—io- (12

i,j 2
dCy:1 o ky_ C + ky_ Cyv_: L kY+ C C o kY+ C Cy_: . 13
ar Sy=2tv=2 Z Y=i,0=j =Y=i,0=j = By=1-Y=1-Y=1 2 Y=i,0=j - Y=1RY=10=) (13)

i, 2
=0.5k4"Cy—1Co1 + 0.5k Co1Cyoq + K5 01 Cy—n0-1 + k) 5_,Cr—1,0-2 — k¥4 o1 Cy=1Cy—1,0-1 (14)

—k$%) 0-1Co=1Cy=1,0=1 = 0.5 ky_; o_;1 Cy=1,0-1 — 05 k—; 5_1Cy=1,0-1
Yt O+ r- v

= kyZi1,0-jCr=1Cy=i-1,0=j + kv L 0-j1Co=1Cy=i0=j-1 + kyZi41,0-;Cr=i+1,0= + KyZj 011 Cr=io=js1— (15)

Y+ O+ R S .. O- S
kyZi0=jCr=1Cy=i0=j = ky; 0—;Co=1Cy=i0=j = ky_; 0—jCr=i0=; ky:i,o:jcy:z,ozj}

where C stands for the concentration in nm 3, Y and O are the numbers of Y and O
atoms, respectively, and k(Y o O)+ and k(¥ o O)= are the clustering and dissociation rate
constants for a Y-O cluster’s capturing and emitting one monomer, respectively. Note
that Equation (15) is not a single equation, but rather a large system of equations for the
two-dimensional composition (binary Y and O system) space defined by the (i, j) pair.
The rate constants are further determined by the following equations [39,40,60,61]:

YorO)+
kgzzo:o)zj =4 (T(YorO) + VY:i,o:j) (D(YorO) + DY:i,O:]’) (16)
kY- =4n(ry +ry— ) (Dy + Dy—; ) C _Ew 17)
Y=i0=j = v +1v=i-1,0=j) (Dy + Dy=i-1,0) Coexp | — -7 (

_ E
kg:i,o:j =47t (ro + ry=i,0=j-1) (Do + Dy=i0=j-1) Coexp (_IQ:]?) (18)
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where D and E are the diffusivity and binding energy, respectively, obtained from the
VASP calculations, and r is the radius of the Y-O cluster. Since we consider the Y-O clusters
to remain approximately spherical during precipitation, » can be calculated by Equation (19)
with the radii of Y and O atoms, ry = 0.205 nm, and o = 0.073 nm here, respectively.

1
r:(Y*r§/+O*r%)3 (19)

The Y-O precipitates in LPBF typically have the size of several tens of nanome-
ters [1-7,22-24]. To include the experimental nanoparticle size, an incredibly large compo-
sition space (from 0 to >10” for both Y and O numbers) is required in the CD model, which
is computationally impossible given the computing hardware available today. Therefore,
all CD calculations in this study were performed up to 10° Y and 1.5x10° for O. After that,
the peak-growth dynamics learned during each CD calculation was fitted to a mathematical
function for extrapolating towards even bigger sizes of precipitates, which will be discussed
in Section 3.

Even within the limits of 10° Y and 1.5 x 10° O, the composition space (1.5 x 10> x 10°
points) is still too large to be solved if all the (i, j) pairs were included in the system of
differential equations.

As stated in our Assumption 5 (which is supported by our energy calculations), most
species in the composition space that are away from the known preferred Y:O = 2:3 ratio
(corresponding to a line in the composition space) are not really going to be formed during
the precipitation process. Therefore, a phase-cut method was employed to further cut
out unnecessary compositions and accelerate the CD simulations significantly [60]. A
full composition matrix of 12 x 18, from Y10y (Y monomer) and YyO; (O monomer) to
Y1,043, was first computed and followed by a phase-cut region. In the phase-cut region,
only the concentrations of 11 compositions near the preferred stoichiometry YO 55 (2:3
ratio), from Y, O1 5¢_5 to YxO1 5,5, were calculated, and 1.5x was rounded for odd x values.
For example, the compositions of ¥13015 to Y13025 were incorporated in the phase-cut
region for x = 13. By applying the phase-cut method in the CD model, the number of
compositions (that is, no. of differential equations) being solved was significantly reduced
from 1.5 x 10° x 10° to 11 x 10°.

Since we assumed that all yttria powder was melted into the melt pool during heating
and the oxygen was ample, the initial concentrations of Y10g and YyO; were set to be
0.333 atoms/nm? and 0.666 atoms/nm?, respectively, according to the 0.8 wt.% of yttria
powder in the experiment and the volume of the molten 316L SS sample in the VASP.

3. Results
3.1. Experimental Measurement of Particle Size Distribution

To measure the PSD of Y-O precipitates in the as-printed samples, SEM micrographs
were taken for all samples, as shown in Figure 7. Samples S1-S8 correspond to the LPBF
processing parameters listed in Table 2. In the SEM micrographs, the Y-O precipitates
are identified as numerous white spheres with approximated diameters of several tens of
nanometers (10-80 nm) and uniformly distributed in the 316L SS matrix. Later, the PSD
histograms were plotted by performing the statistic of the diameters of several hundred
Y-O nanoparticles in the SEM micrographs, which are shown in Figure 7 as well. Due to
the limitation of the SEM resolution, only the nanoparticles that are larger than 10 nm
were counted. Therefore, the particle size is mostly located in the range of 10~80 nm in the
PSD histogram for all samples, which is similar to other references [3,64]. Furthermore,
the average diameter with the standard deviation and the total number of counted Y-O
nanoparticles in each sample are given in Table 5. The data show a clear trend that the
mean particle size decreases as the scanning speed increases for the same laser power.
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Figure 7. SEM micrographs and corresponding PSD histograms of Y-O nanoparticles (white spheres)
in all LPBF fabricated 316L SS ODS alloys. LPBF processing parameters for S1-S8 are listed in Table 2.

Table 5. Average diameter (with standard deviation) and number of counted Y-O nanoparticles
shown in Figure 7.

Sample Average Diameter (nm) No. of Nanoparticles
S1 46 + 14 218
52 37 £ 11 309
S3 37+£12 206
S4 33+9 214
S5 44 + 17 207
S6 35+12 212
S7 33+£12 306
S8 30+13 245

3.2. Multiscale Modeling

To illustrate the predictive power of our multiscale modeling framework, one example
with the laser power of 110 W and scanning speed of 300 mm/s (S2) is first discussed in

detail here. The predictions for other samples are presented and validated at the end of
this section.

3.2.1. Temperature Profile

A length of 800 um track is printed with 110 W laser power and 300 mm/s in FLOW-
3D, as shown in Figure 8a. The width of this track is ~120 um, which is close to the
experimental width (~140 pm), averaged from 13 tracks, as shown in Figure 8e. It is typical
that there is an extremely hot area (>4000 K) under the laser beam in the modeling due to
the heat concentration at the center of Gaussian heat flux. This area is excluded from the
temperature profiles later. To capture the temperature profiles in the melt pool, we isolate
the melt pool during the middle stage of the LPBF process and export the temperature
profiles that are experienced by all unit cells in the melt pool, as illustrated in Figure 8b.
After that, the cooling rate in the temperature profile is calculated by taking the slope
between the peak temperature and the melting point (~1750 K) of 316L SS for all unit cells.
For instance, the temperature profile in Figure 8c is plotted for a unit cell experiencing a
peak temperature of ~2600 K. The slope of the red dash line provides a good estimate for
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the cooling rate at this point (represented by this unit cell). The blue squares in Figure 8d
show a nearly linear relationship between the peak temperatures and cooling rates at
different points within the melt pool, that is, a point would have a higher cooling rate if it
experienced a higher peak temperature in the melt pool. Therefore, the peak temperatures
and cooling rates are fitted into a function (Equation (20)) by linear regression, as marked
by the red dash line in Figure 8d.

CR =1.98 x 10* x T, — 3.40 x 107 (20)

where CR and T), are the cooling rate and peak temperature, respectively, experienced by
any point in the melt pool. As will be discussed later, some representative peak tempera-
tures, representing different positions in the melt pool, and their corresponding cooling
rates will be used in the CD model.
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Figure 8. (a) Top view of the single track printed in FLOW-3D, (b) 3D view of the sample during
steady printing and the isolated melt pool in the insert figure, (c) the temperature profile for a unit
cell with a peak temperature of ~2600 K, (d) peak temperatures vs. cooling rates for all unit cells in
the melt pool, and (e) an SEM micrograph of the cross section of the S2 sample with multiple tracks.

3.2.2. Diffusivity and Binding Energy

As mentioned in Section 2.2.2, the diffusivities of Y and O monomers in the molten
316L SS were calculated by AIMD with the latest feature MLFF in the VASP and published
in our previous work [50]. The temperature-dependent diffusivities of Y and O in the liquid
316L SS are given in Equations (21) and (22), respectively.

4
Dy(T) = 4.40 x 10~ 4exp ( — 262> 107 (21)
RT
5
Do (T) = 2.78 x 10 2exp <—%) (22)

where R is the universal gas constant, and T is the absolute temperature. Thus, the diffusiv-
ities of Y and O monomers can be calculated on the fly for any time instant (temperature
known from Flow-3D predictions) during a CD modeling process.
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For a binding energy calculation, the total energies of the systems containing Y-O
clusters from YpOp to YsOg were computed by conducting pure AIMD simulations, as
explained in Section 2.2.2. More specifically, the total energies of the systems with Y-O
clusters were computed by taking the average total energy from the last 500 fs of the
relaxation process to ensure a stabilized melt pool. The values are listed in Table 6. YpOp
represents the 316L SS matrix without any Y-O clusters.

Table 6. Total energies (eV) of the systems with Y-O clusters.

o 0 1 2 3 4 5 6
0 —817.048 —823.657 —833.402 —841.910 —846.223 —856.936 —857.579
1 —826.397 —834.067 —839.231 —847.445 —853.352 —863.636 —867.696
2 —828.557 —842.885 —846.728 —859.006 —865.914 —870.038 —878.215
3 —839.811 —850.337 —855.929 —863.466 —870.766 —880.074 —885.019
4 —841.357 —855.324 —866.300 —871.434 —879.707 —882.049 —896.388
5 —852.025 —860.451 —868.924 —876.428 —893.683 —892.432 —899.229
6 —859.469 —864.055 —878.310 —884.000 —896.340 —898.704 —906.546

2
Epopal = —9.424Y — 7.2180 + 0.4 * [Y «2.473 + o} ¥ 104552 % <1Y2 -

Due to the high computational cost of pure AIMD simulations, it is challenging (and
most likely unnecessary) to calculate the total energy of the system with a cluster that is
larger than YsOg in the 316L SS matrix. Therefore, the total energies in Table 6 are fitted
into the mathematical expression in Equation (9), for extrapolating the total energy to
systems containing larger Y-O clusters. The fitted expression is given by Equation (23).
The total energies in Table 6 directly calculated by AIMD and those re-calculated by the
fitted Equation (23) are plotted together in Figure 9 as the red and multi-colored surfaces,
respectively. With the total energy determined, the binding energy of one Y or O atom with
an Y-O cluster is then calculated by Equations (10) and (11) in the CD model.

2 2 ,
SY = 3Y-0+50 ) —819.2 (23)

3.2.3. Cluster Dynamics Predictions

The temperature profiles computed in FLOW-3D and the diffusivity and binding
energy expressions derived from ab initio simulations are finally incorporated into the CD
model to predict the precipitation of the Y-O nanoparticles during the cooling process.

As stated in Section 2.2.3, to increase the computational efficiency, the phase-cut
method is employed to skip most of the unnecessary compositions that are away from the
Y:O = 2:3 ratio (hence unfavored by thermodynamics) while keeping those that are close
enough to the 2:3 ratio (11 allowed O numbers for each Y number). The phase-cut method
is demonstrated in Figure 10a using a superficially small system size (1000 Y x 1500 O),
which shows the very narrow composition ‘line” (black in the color bar) in the phase space
(six white standing planes) within the first 1 K temperature-drop (2600 K to 2599 K, a
step size of 0.2 K). The growth of the line indicates the Y-O cluster evolution controlled by
the clustering and competing dissociation during the cooling process. The width of the
growth line remains very narrow, in close proximity to the preferred Y2:03 stoichiometry,
justifying the omission of most compositions in the white background of the phase space
via the phase-cut method. The cluster evolution is also revealed by the corresponding PSD
histograms in Figure 10b (where a small concentration scale is intentionally chosen to show
the formation of a nucleation peak by the last timestep included). At time zero, those two
bins represent the initial concentrations of Y and O monomers. As Y-O clusters are formed
by the diffusion and interactions of the monomers, each size bin contains a range of Y-O
clusters with different compositions (Y and O numbers).
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Figure 9. Total energies of the systems containing Y—O clusters with various numbers of
Y and O atoms, calculated by pure AIMD in the VASP (red surface) and the fitted equation
(multi-colored surface).

In our actual CD calculations, instead of 1000 Y x 1500 O, the maximum number of Y
in the composition space considered is 10°, and, correspondingly, the maximum number of
Ois 1.5 x 10°. This calculation corresponds to a maximum cluster size of ~19 nm, which is
still on the lower side of the 10-80 nm particle size range observed in experiments. We will
discuss how to extend the CD predictions to the full experimental size range later.

Since different points (unit cells in Flow-3D) within the melt pool experience different
peak temperatures and cooling rates, we choose multiple points, namely, those experiencing
a peak temperature of 2400 K, 2600 K, 2800 K, 3000 K, 3200 K, and 3500 K, to perform
separate CD modeling. And the CD predictions for these individual points will be finally
combined by applying volume fractions of points (unit cells) with similar thermal histories
to these representative points as the weighting factors, which will be discussed later.

Figures 11a and 11b present the PSD curves directly predicted by the CD modeling
in the early stage of cooling for the unit cells that have experienced peak temperatures of
2400 K and 2600 K, respectively, according to Flow-3D. In the CD modeling, the diffusivities
of the Y and O monomers and the capturing and emission rates of Y-O clusters are updated
every 5 K drops in temperature using their temperature dependences established earlier. In
Figure 11a, small Y-O clusters rapidly form and reach a relatively high concentration after
the first 10 K cooling due to the high thermodynamic driving force at 2400 K. This high
concentration of early formed clusters reduces the monomer concentrations significantly
and slows down the growth upon further cooling (e.g., 2390 K to 2200 K in the figure). In
contrast, the Y-O clusters in Figure 11b grow quickly at much lower concentrations, due to
the faster kinetics (higher monomer diffusivities) and lower thermodynamic driving force
at 2600 K. One detail to note here is that, in Figure 11b, the CD predicted cluster evolution
has reached the boundary of the allowed composition space at 2555 K, as evidenced by
the increased number density near the maximum size (which is an artifact due to the
prescribed composition space). In this case, CD modeling is stopped at 2555 K, and only the
predictions prior to the boundary accumulation occurred are used for further processing.
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Figure 10. (a) Cluster evolution in a 1000 x 1500 Y —O composition matrix during the first 1 K drop,
and (b) corresponding PSD histograms of Y-O clusters.
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Figure 11. Y—O cluster evolution during solidification (a) from 2400 K to 2200 K (plotted for marked
temperatures), and (b) from 2600 K to 2555 K (plotted every 5 K drops in temperature). The blue
arrows indicate the nanoparticle evolution during the cooling process, and the yellow arrow indicates
that the nanoparticle evolution has reached the composition boundary.

To extend the CD predictions beyond the early cooling stage and the 19 nm maximum
size set by the employed composition space, the PSD curves at different timesteps (i.e.,
temperatures) from the CD calculations for one point in the melt pool are each fitted into a
skewed Gaussian distribution (Equation (24)).

(=

2

¢

)

C(x) =

X — %

* exp 5

2
dx\/2%71T @)

where C(x) is the concentration of the nanoparticle with a diameter of x. d, {, w, and « are
fitting parameters. The clusters that are smaller than 2 nm (including Y and O monomers)
are excluded from this calculation as they are too small to relate to experiments. The series of
values for each parameter at different times are further fitted into time-dependent functions
d(t), ¢(t), w(t), and a(t) to form a time-dependent Equation (25). The PSD re-calculated
by Equation (25) for the two representative points (with a peak temperature of 2400 K and
2600 K) discussed above at the beginning of the cooling process is included in Figure 11
as the black dashed line. These fittings show good ability to capture the PSD shape and
position for all the timesteps.

x=¢(t))?
o2 EED)) x—a
C(x, t) = OPIE: exp 5 5 1+erf<zx(t) w(t)*ﬁ)] (25)

With Equation (23), the final PSD of Y-O nanoparticles for each representative point in
the melt pool after solidification is then calculated using the time required for that point
to reach the melting point of 316L SS, which is known from the thermal history predicted
by Flow-3D. The obtained final PSDs for the above mentioned six representative points
in the melt pool of Sample S2 are shown in Figure 12a. As mentioned before, the PSD for
the point with the peak temperature of 2400 K is smaller than the others due to the lower
growth rate. The very high peak temperature points (e.g., 3200 K, 3500 K) experience higher
cooling rates, thus a shorter precipitation time (note that the precipitation of Y-O clusters
cannot start above the melting point of Y,03, 2700 K). Therefore, those points exhibit lower
number densities and sizes of the nanoparticles compared with the points experiencing the
intermediate peak temperatures.
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Figure 12. (a) Predicted PSD curves for different representative points (peak temperatures) in the
melt pool of sample S2 after solidification, (b) statistics of peak temperatures in the melt pool, (c) the
combined PSD, and (d) the comparison of the predicted and experimentally measured PSD for
sample S2.

To combine the PSDs for the individual representative points into one for the entire
melt pool, the volume fractions corresponding to the representative points are determined
by counting the number of unit cells in Flow-3D with similar peak temperatures and
calculating their frequency, as shown in Figure 12b. After that, the final PSD in as-fabricated
52 is computed by combining the PSD curves in Figure 12a with the volume fractions as
the weighting factors. It is important to note that nanoparticles smaller than 10 nm are
excluded from the predicted PSD curve since those nanoparticles are not detectable in SEM.
As shown in Figure 12d, the agreement between the predicted and the experimentally
measured PSD is fairly good, especially in the most-probable size intervals, 20-30, 3040,
and 40-50 nm. Based on the predicted PSD, the mean particle size is predicted to be 32 nm,
which is fairly close to the experimentally determined mean size of 37 nm.

The PSDs for S1-S8 were all calculated by the current model following the above
described steps, and the predicted and experimentally determined mean particle diameters
are listed in Table 7. The predictions overall show the same trend of decreasing particle size
with increasing scanning speed (under a fixed laser power) as observed in experiments.
With the laser power fixed, the higher scanning speed leads to a bigger volume fraction of
unit cells in the melt pool that experience lower peak temperatures (e.g., 2400 K), which
further result in smaller Y-O nanoparticles due to a stronger thermodynamic driving
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force (as well as slower kinetics), as discussed earlier. However, smaller nanoparticles
are observed while increasing the laser power and keeping the VED constant, like S1 and
56, because the higher laser power increases the melt pool size [64]. The larger melt pool
possesses better cooling efficiency and higher cooling rates, and, thus, shorter precipitation
times and smaller nanoparticles. As shown in Table 7, the predicted mean diameters
are basically within +20% of the experimental values for all the eight different samples
(i.e., printing conditions), which is considered good agreement given the complexity of
the physics involved and the statistical uncertainty in identifying the nanoparticles and
measuring their individual sizes from SEM images. This finding demonstrates a good
predictive power of the present multiscale modeling framework.

Table 7. Predicted and experimental mean diameters of Y-O nanoparticles in as-printed LPBF ODS
316L SS.

Predicted Mean Diameter (nm) Experimental Mean Diameter (nm) Error (%)
S1 41 46 —10.87
S2 32 37 —13.51
S3 32 37 —13.51
S4 26 33 —21.21
S5 37 44 —-15.91
S6 37 35 5.71
S7 37 33 12.12
S8 36 30 20.00

4. Discussion

It was assumed that all the yttria (0.8 wt.%) initially mixed with the 316L SS powder
was captured in the melt pool, and that was used to set the initial concentration of Y
monomers in the CD model. However, some amount of yttria powder may get lost
during the experimental processes, such as (light) ball milling and sputtering during
printing [2,22,27]. The driving force of the Y-O clustering is lowered by the smaller initial
concentration in the CD model. To illustrate the effect of this factor on the PSD, a CD
simulation with 0.4 wt.% of yttria powder was conducted on the basis of the temperature
profile of a unit cell in the melt pool experiencing a peak temperature of 2600 K. As shown
in Figure 13a, with 0.4 wt.% of yttria, only small Y-O clusters (<1 nm) form by the time
the temperature drops to 2570 K. In contrast, with 0.8 wt.% of yttria, much larger clusters
are already formed during the first 30 K cooling, as shown in Figure 13b. This finding
implies that it is important, for the purpose of accurately predicting nano-oxide evolution
for an arbitrary printing condition, to investigate exactly how much yttria powder is lost in
experiments, even though it may be challenging.

Another assumption made in this study is that the thermal history of points (unit cells)
inside the melt pool is not affected by the addition of the 0.8 wt.% of yttria powder [65].
Indeed, our Flow-3D calculations of the thermal history were based on 316L SS only. While
the assumption is reasonable considering the small fraction of the yttria powder, it may
warrant future effort to investigate the effect of the yttria powder on the thermal history
of the melt pool by explicitly including both the 316L SS and the yttria powders in the
Flow-3D modeling.

In general, the mechanical and creep properties of ODS alloys are enhanced, especially
at elevated temperature, by a smaller size and higher number density of oxide nanoparticles.
The number density of the oxide particles was not determined in experiments here due to
technical limitations. However, the number density of ~1078-10~7/nm3 predicted by our
multiscale modeling framework is on the same order as the experimental measurements in
other reports [22,66,67].
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Figure 13. PSD (histograms) after CD simulations from 2600 K to 2570 K with initial concentrations
of (a) 0.4 wt.% and (b) 0.8 wt.% of yttria powder.

5. Conclusions

To summarize, a physics-based multiscale modeling framework was developed to
investigate the precipitation of Y-O nano-oxides in molten 316L stainless steel (SS) and
predict the particle size distribution (PSD) of the oxide nanoparticles in as-fabricated
316L SS ODS alloys. Specifically, a cluster dynamics (CD) model is used to simulate the
simultaneous clustering and re-dissolution of Y-O particles and their net evolution during
the cooling of the melt pool. This model incorporates thermal history data from a finite
volume method (FVM) model and thermodynamic and kinetic parameters from density
functional theory (DFT) models. The key points from this work are summarized below:

The FVM model in FLOW-3D was used to compute the temperature field and cooling
history of the entire melt pool, providing crucial input to the CD model. This approach
reduces the experimental workload typically required to measure temperature fields.

Measuring temperature-dependent thermodynamic and kinetic parameters, such as
solute atomic diffusivities and cluster binding energies in multicomponent alloy systems at
high temperatures, is challenging. These parameters for Y and O in molten 316L SS were
computed through DFT calculations. For larger Y-O clusters, the high computational cost
of the DFT was mitigated by extrapolating data from smaller clusters.

The CD model offers valuable insight into the continuous evolution of Y-O clusters,
accounting for both clustering and re-dissolution processes. To manage the computational
complexity of this detailed model, a phase-cut method was applied, reducing unnecessary
compositions from the composition space. Despite this action, direct CD modeling remains
limited to particle sizes of ~19 nm and the early stages of the cooling process (~50 K drop
in temperature). A novel extension method, utilizing a time-dependent skewed Gaussian
equation, was developed to predict the evolution of larger particle sizes throughout the
entire cooling process.

The predicted mean particle sizes for eight different LPBF conditions are within £20%
of the experimental results, which is fairly good considering the statistical uncertainty in
resolving and analyzing the dispersed particles in experiments. The predicted histograms
(PSDs) also align well with experimental data, particularly within the most probable parti-
cle size range of 20-50 nm. Furthermore, the number density of ~1078-107 /nm3 predicted
by our multiscale modeling framework aligns well with the order of magnitude observed
in experimental measurements reported in other studies. The overall agreement with exper-
iments highlights the reliability of our multiscale modeling framework and its predictive
power suitable for guiding future experiments to achieve targeted particle characteristics.
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This multiscale modeling framework could be extended to the Laser Directed Energy
Deposition (LDED) process by incorporating an LDED model within FLOW-3D. Addi-
tionally, the current cluster dynamics (CD) model, developed for the Y-O binary system,
can also be extended to a ternary oxide system, such as Y-Ti-O, by either expanding the
compositional space from two dimensions to three dimensions or simplifying the ternary
system to a pseudo-binary system (Y-Ti) based on the significantly higher diffusivity of O
in molten 316L SS [34,50] and, correspondingly, the lesser role in controlling the overall
precipitation kinetics than Y and Ti.
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