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Abstract: Cryopreservation is the process of freezing and storing biological cells and tissues with
the purpose of preserving their essential physiological properties after re-warming. The process is
applied primarily in medicine in the cryopreservation of cells and tissues, for example stem cells,
or articular cartilage. The cryopreservation of articular cartilage has a crucial clinical application
because that tissue can be used for reconstruction and repair of damaged joints. This article concerns
the identification of the thermophysical parameters of cryopreserved articular cartilage. Initially,
the direct problem was formulated in which heat and mass transfer were analyzed by applying
the finite difference method. After that, at the stage of inverse problem investigations, an evolu-
tionary algorithm coupled with the finite difference method was used. The identification of the
thermophysical parameters was carried out on the basis of experimental data on the concentration
of the cryoprotectant. In the last part, this article presents the results of numerical analysis for
both the direct and inverse problems. Comparing the results for the direct problem, in which the
thermophysical parameters are taken from the literature, with the experimental data, we obtained a
relative error between 0.06% and 15.83%. After solving the inverse problem, modified values for the
thermophysical parameters were proposed.

Keywords: bioheat and mass transfer; cryopreservation; evolutionary algorithm; inverse problem;
liquidus tracking method; numerical methods

1. Introduction

Cryopreservation is a significant field of cryobiology that is constantly evolving. Cry-
opreservation refers to the freezing of animal and human cells and tissues, such as oocytes,
embryos, spermatozoa, hepatocytes and others. The research about cryopreservation also
explores the storage of organs for transplantation and stem cells or articular cartilage at
low temperatures. It is important in the development of tissue engineering, which is an
opportunity for soft tissue regeneration and the treatment of many diseases. It is also
noteworthy that the cryopreservation of articular cartilage has a crucial clinical application
because that tissue can be used for reconstruction and repair of damaged joints.

The aim of cryopreservation is to maintain cells or tissues with no significant impact
on their essential functions, for example, viability and mechanical properties. Cryopreser-
vation involves initially slowing down biological activity by cooling a sample to sub-zero
temperatures (such as approximately −80 ◦C or −196 ◦C) and then reviving it by reheating
to physiological temperature [1–3].

It is essential to avoid cell damage during this process. This is caused by biophysical
changes, such as cell dehydration and the formation of intracellular and extracellular ice
crystals [4]. To protect the cryopreserved biological material, a proper method can be used
to optimize the cooling/warming rate, thereby controlling the transport of water across
cell membranes as well as the intracellular water freezing processes. Another approach
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to prevent cell damage is the use of cryoprotectants (CPAs), such as glycerol (GLY) or
dimethyl sulfoxide (DMSO) [3,5,6].

When using CPAs, care should be taken to select the right concentration, as too high of
a concentration can lead to a slowing down of the heat transfer process due to reduced ther-
mal conductivity and can also cause osmotic stress in cells or cytotoxicity. The concentration
of the cryoprotectant also has a significant effect on the phase transformations occurring
during the cryopreservation process. A high concentration of CPA reduces the freezing
temperature of the cellular solution. In contrast, a low concentration of cryoprotectant
does not provide sufficient protection of cells or tissues against low-temperature damage
but protects against, for example, cell cytotoxicity. Successful cryopreservation therefore
requires finding an optimal concentration that provides sufficient tissue and cell protection.

Cryopreservation can be carried out using the most common methods, slow freezing
or vitrification, depending on the rate of cooling and concentration of cryoprotectant
(CPA). Slow freezing is performed at a low cooling rate and a low concentration of CPA.
Vitrification, where the liquid phase is transformed into the vitreous phase, involves a high
rate of cooling and a high CPA concentration [1,2]. Other cryopreservation techniques
include the “liquidus tracking” (LT) method. In this method, the biological specimen is
immersed in a CPA solution with adjustable temperature and concentration. CPA molecules
enter the cellular space of the samples concerned. This process is induced by molecular
diffusion and osmotic transport because, when the cryoprotectant is in the extracellular
matrix, the cells seek to equalize the pressure difference. This results in the exchange of
components across the cell membrane and the entry of CPA into the cellular solution. This
leads to a change in the freezing or melting point, while the solution’s thermodynamic
conditions “track” the line of liquidus for the entire system under consideration. If the
procedure is performed well, no ice crystallization will occur, and the biological sample
will not be exposed to CPA-induced cytotoxicity [7].

Cryopreservation is a complex process, and preparing its multi-scale model requires
knowledge not only of mechanics but also of biology and chemistry. During the cryopreser-
vation process, transport phenomena mainly occur. First, heat transfer is a combination
of convection and conduction. Thermal processes are most commonly described by the
Fourier, Pennes, Cattaneo–Vernotte or dual-phase lag equations [2,8–11]. The phase changes
associated with ice crystallization should also be taken into account when constructing a
heat transport model [2].

During the cryopreservation process, mass transfer takes place in addition to heat
transfer. It is induced by the molecular motion that takes place during the diffusion of a
condensed cryoprotectant solution into the extracellular space. The convection–diffusion
equation is used to characterize the phenomenon thus defined [12,13]. If advection is
ignored, Fick’s law is applied to the mathematical description of particle diffusion [11,14].

In micro-scale, mass transfer is analyzed as a process of osmotic transport associated
with changes in cell volume due to CPA and water molecules’ exchange between an
extracellular and an intracellular solution. To determine these values, one can apply the
Kedem–Katchalsky equations or the two-parameter formalism concept [15].

Similar analyses of heat and mass transfer have previously been presented in the
literature [11,16,17]. Unfortunately, the numerical simulation results obtained were at
variance with the experimental results, which may have been due to incorrectly chosen
thermophysical parameters obtained experimentally. Therefore, it was decided to solve an
inverse problem to estimate these parameters and compare them with the values found in
the literature.

In this paper, the direct problem is defined as the axisymmetric heat and mass transfer
in an articular cartilage sample during the cryopreservation process. The heat transfer
occurring in the biological tissue was characterized using the Fourier equation, while the
mass transport was described by an equation using Fick’s law. Osmotic transport was
excluded from the analysis. The model presented here uses the LT protocol proposed by
Pegg et al. [18]. In accordance with the LT protocol, the sample under study was placed in
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a chamber which was filled with bath solution. The computer-controlled temperature of
the bath solution depends on the exposure time of the sample to the solution. Analogous
to Pegg et al. [18], an aqueous solution of DMSO (CPA) was applied as a bath of solution in
the simulation. The boundary and initial conditions that complement the mathematical
model are in accordance with the LT protocol. The direct problem was solved using the
finite difference method.

The inverse problem discussed in this article involves the simultaneous identification
of three thermophysical parameters of biological tissue, i.e., thermal conductivity, density
and specific heat capacity. An evolutionary algorithm (EA) is used to solve the identification
problem formulated in this way [19–21].

2. Materials and Methods

The numerical analysis was carried out for a two-dimensional model (axially sym-
metrical). Figure 1 shows the geometry of the analyzed problem and the visualization of
the articular cartilage microstructure, including a scheme of the joint structure. In addi-
tion, two reference points (A and B with coordinates r = 0.00005 m, z = 0.000475 m and
r = 0.00145 m, z = 0.000025 m, respectively) are marked on the diagram of the computational
domain (Ω), where the simulation results are calculated.
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2.1. Direct Problem
2.1.1. Heat Transfer Model

To analyze the temperature distribution in biological tissue during cryopreservation,
one can use the energy equation proposed by Jean Baptiste Joseph Fourier [11,22]:

cρ
∂T(X, t)

∂t
(X, t) = ∇(λ∇T(X, t)) + Q(X, t) (1)

where T is the temperature, Q is the heat source, X refers to the coordinate system, t is
the time and c, ρ and λ represent the thermophysical parameters such as the specific heat
capacity, the density and the thermal conductivity, respectively. Please note that articular
cartilages do not have blood or lymphatic vessels; therefore, the heat source Q is neglected
in further considerations. In addition, phase transformations are omitted because the LT
protocol is applied [16,23].

Having studied the geometry of the sample (cf. Figure 1), the heat transfer equation
can be formulated as follows [16,23]:

cρ
∂T(r, z, t)

∂t
=

1
r

∂

∂r

(
λr

∂T(r, z, t)
∂r

)
+

∂

∂z

(
λ

∂T(r, z, t)
∂z

)
(2)

where r and z are the cylindrical coordinates.
The heat transfer equation (Equation (2)) was completed with an initial condition [16,23]:

t = 0 : T(r, z, 0) = T0 (3)

and Neuman’s and Robin’s boundary conditions [16,23]:{
Γ1 and Γ4 : −nλ · ∇T = α[T(r, z, t)− Tbath]

Γ2 and Γ3 : −nλ · ∇T = 0
(4)

where T0 is the initial temperature, n is the normal vector to the boundary and α is the
natural convection heat transfer coefficient. Tbath is the temperature of the surrounding
medium (a bath solution).

2.1.2. Mass Transfer Model

The mass transfer, which is weakly coupled to the thermal processes, can be described
by the convection–diffusion equation [12,23]:

∂cd(X, t)
∂t

= ∇[D(T)∇cd(X, t)]−∇ · (ucd(X, t)) + Rs (5)

where cd is the molar concentration, D is the molecular diffusion coefficient, u is the flow
velocity field, Rs is the source component associated with the occurrence of chemical
reactions (in our case, the chemical equilibration is maintained, therefore Rs = 0). The
subscript d denotes the DMSO, which is a cryoprotectant in the mixture. As the biological
sample is immersed in the solution during the process, it is assumed that the convection
phenomenon is neglected (u = 0). While analyzing only the diffusion phenomenon, it can
be said that the basis of the mass transfer equation is Fick’s second law [16].

In a cylindrical system, Equation (5) is expressed as follows [16]:

∂cd(r, z, t)
∂t

=
1
r

∂

∂r

(
D(T)r

∂cd(r, z, t)
∂r

)
+

∂

∂z

(
D(T)

∂cd(r, z, t)
∂z

)
(6)

The diffusion coefficient can be determined using the Einstein–Stokes equation [16]:

D(T) =
kBT

6πrsµ
(7)
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where kB is the Boltzmann constant (kB = 1.38 × 10−23 J·K−1), rs is the spherical particle
radius and µ is the dynamic viscosity.

In the model describing the mass transfer, the following initial and boundary condi-
tions were included [16]: 

t = 0 : cd(r, z, 0) = c0

Γ1 and Γ4 : cd(r, z, t) = 0.9cbath

Γ2 and Γ3 : −n · D(T)∇cd = 0

(8)

where c0 is the initial concentration, and cbath is the concentration of the surrounding media
(bath solution). Adding a factor of 0.9 simulates the mass transfer between the sample and
the bath solution.

2.2. Numerical Model

In this paper, an explicit scheme of the finite difference method (FDM) was used to
create the numerical model [24,25].

The constant time step is introduced ∆t = t f−1−t f:

t0 < t1 < . . . < t f−2 < t f−1 < t f < . . . < tF < ∞ (9)

The computational domain was discretized with the aid of a regular mesh using
the five-point star concept as shown in Figure 2. To better approximate the boundary
conditions, the boundary nodes were moved from the boundary by a distance of 0.5h1 and
0.5h2 [24].
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Applying the FDM in the differential equation, one introduces differential quotients.
The time derivative in the heat transfer equation is given by the following formula [17,25]:

(
∂T
∂t

) f

i,j
=

T f
i,j − T f−1

i,j

∆t
(10)
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and the derivatives on the right-hand side of Equation (2) in the internal nodes can be
estimated as follows [17,25]:

[
λ∇2T

] f−1
i,j = 1

ri,j
1
h1

[(
ri,j+0.5λ

∂T
∂r

) f−1

i,j+0.5
−
(

ri,j−0.5λ
∂T
∂r

) f−1

i,j−0.5

]
+ 1

h2

[
λ
(

∂T
∂z

) f−1

i+0.5,j
− λ
(

∂T
∂z

) f−1

i−0.5,j

] (11)

where i = 2, 3, . . ., n − 1 and j = 2, 3, . . ., m − 1; n and m are the number of nodes; ri,j
is the radial coordinate of the node (i, j); and h1 and h2 are the mesh steps in the r- and
z-direction, respectively.

The respective differential quotients are formulated as follows [17,25]:

(
rλ ∂T

∂r

) f−1

i,j+0.5
= ri,j+0.5 λ

T f−1
i,j+1−T f−1

i,j
h1

=
(

ri,j +
h1
2

) T f−1
i,j+1−T f−1

i,j
Ri,j+1(

rλ ∂T
∂r

) f−1

i,j−0.5
= ri,j−0.5 λ

T f−1
i,j −T f−1

i,j−1
h1

=
(

ri,j − h1
2

) T f−1
i,j −T f−1

i,j−1
Ri,j−1(

λ ∂T
∂z

) f−1

i+0.5,j
= λ

T f−1
i+1,j−T f−1

i,j
h2

=
T f−1

i+1,j−T f−1
i,j

Ri+1,j(
λ ∂T

∂z

) f−1

i−0.5,j
= λ

T f−1
i,j −T f−1

i−1,j
h2

=
T f−1

i,j −T f−1
i−1,j

Ri−1,j

(12)

where R is the thermal resistance.
Finally, the following formula is obtained [17]:

T f
i,j = T f−1

i,j +
∆t
cρ

[(
4

∑
a=1

Φe

Re

(
T f−1

e − T f−1
i,j

))]
(13)

where the individual a corresponds to e = {(i, j + 1); (i, j − 1); (i + 1, j); (i − 1, j)} and Φe is
the shape function:

Φi,j−1 =
ri,j−0.5h1

ri,jh1
, Φi,j+1 =

ri,j+0.5h1
ri,jh1

, Φi−1,j = Φi+1,j =
1
h2

(14)

Considerations for temperatures at boundary nodes are made in a similar procedure
and will not be discussed here—a detailed description can be found in the literature [17,24].

Analogously, a numerical model is formulated for the mass transfer phenomenon. The
time derivative on the left-hand side of Equation (6) is of the following form [17]:

(
∂cd
∂t

) f

i,j
=

(cd)
f
i,j − (cd)

f−1
i,j

∆t
(15)

while the derivative on the right-hand side in the internal nodes is as follows [17]:

[D(T)∇cd]
f−1
i,j = 1

ri,j
1
h1

[
D
(

T f−1
i,j+0.5

)
ri,j+0.5

(
∂cd
∂r

) f−1

i,j+0.5
−D

(
T f−1

i,j−0.5

)
ri,j−0.5

(
∂cd
∂r

) f−1

i,j−0.5

]
+ 1

h2

[
D
(

T f−1
i+0.5,j

)(
∂cd
∂z

) f−1

i+0.5,j
−D

(
T f−1

i−0.5,j

)(
∂cd
∂z

) f−1

i−0.5,j

] (16)

In this case, the differential quotients are expressed as follows [17]:
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(
rD
(

T f−1
i,j+0.5

)
∂cd
∂r

) f−1

i,j+0.5
= ri,j+0.5 D f−1

i,j+0.5
(cd)

f−1
i,j+1−(cd)

f−1
i,j

h1
=
(

ri,j +
h1
2

) (cd)
f−1
i,j+1−(cd)

f−1
i,j

W f−1
i,j+1(

rD
(

T f−1
i,j−0.5

)
∂cd
∂r

) f−1

i,j−0.5
= ri,j−0.5 D f−1

i,j−0.5
(cd)

f−1
i,j −(cd)

f−1
i,j−1

h1
=
(

ri,j − h1
2

) (cd)
f−1
i,j −(cd)

f−1
i,j−1

W f−1
i,j−1(

D
(

T f−1
i+0.5,j

)
∂T
∂z

) f−1

i+0.5,j
= D f−1

i+0.5
T f−1

i+1,j−T f−1
i,j

h2
=

(Cd)
f−1
i+1,j−(Cd)

f−1
i,j

W f−1
i+1,j(

D
(

T f−1
i−0.5

)
∂T
∂z

) f−1

i−0.5,j
= D f−1

i−0.5,j
T f−1

i,j −T f−1
i−1,j

h2
=

(cd)
f−1
i−1,j−(cd)

f−1
i,j

W f−1
i−1,j

(17)

where W is the mass diffusion resistance.
Hence, the final formula for Equation (6) is the following [17]:

(cd)
f
i,j = (cd)

f−1
i,j + ∆t

4

∑
a=1

Φe

W f−1
e

[
(cd)

f−1
e − (cd)

f−1
i,j

]
(18)

where the individual a corresponds to e = {(i, j + 1); (i, j − 1); (i + 1, j); (i − 1, j)}.
The concentration at boundary nodes is deduced in a similar approach and will not be

explained here—please see detailed description in literature [17].
For the explicit scheme of the finite difference method, it is necessary to specify the

stability condition [17]:

∆t ≤
4

∑
a=1

Re

Φe
and ∆t ≤

4

∑
a=1

W f−1
e
Φe

(19)

2.3. Inverse Problem and Evolutionary Algorithm

The main goal of this study was to identify the thermophysical properties of the tissue:
thermal conductivity λ [W·m−1·K−1)], density ρ [kg·m−3] and specific heat capacity c
[J·kg−1·K−1] (cf. Equations (1) and (2)). Fitness function S was defined as follows:

S(λ, ρ, c) =
F

∑
f=1

K

∑
k=1

(
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algorithm, utilizing floating-point coding and own software. The evolutionary algorithm 
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is a concentration based on experimental data at the control points,
K represents the number of internal control nodes and F is a number of time steps. The
minimum of the objective function (20) was obtained through an evolutionary algorithm,
utilizing floating-point coding and own software. The evolutionary algorithm is part of the
artificial intelligence and bio-inspired algorithm categories. It does not require analyzing
the influence of design variables on the identification criterion but enables finding an
optimal solution within an acceptable error margin [21,26].

The evolutionary algorithm (EA) operates on the principle of modifying populations
of chromosomes, which represent potential solutions. Each chromosome is made of genes,
the number of which corresponds to the number of identified parameters [27–29]. Genes,
chromosomes and population structure, for the general case, are presented in Figure 3.

The chromosome p contains information about the identified parameters in the
following form:

p =
[
λ ρ c

]T (21)
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where λ, ρ and c are the genes. Gene values, representing potential solutions, are gener-
ated through operations specific to the evolutionary algorithm, taking into account the
relevant constraints:

λL ≤ λ ≤ λH , ρL ≤ ρ ≤ ρH , cL ≤ c ≤ cH (22)

where L and H represent the minimum and maximum values of the constraints applied to
the identified parameters. The limitations are collected in Equation (23).
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Table 1 presents the basic parameters of the evolutionary algorithm regarding the
population size, the maximum number of generations and the probability values of the
evolutionary operators. The probability of occurrence of evolutionary operators was
determined at the classical level for the evolutionary algorithm (cf. Table 1).

Table 1. Evolutionary algorithm parameters.

Parameter Value

Number of generations 300
Number of chromosomes 200

Probability of uniform mutation 5%
Probability of non-uniform mutation 5%

Probability of arithmetic crossover 40%
Probability of cloning 100%

The evolutionary algorithm starts by generating an initial population, guided by the
constraints imposed on the genes (see Equation (22)). The new population consists of N
chromosomes pn, n = 1, 2, . . ., N, randomly generated using a pseudorandom number
generator with a randomly selected seed—Figure 3. Each gene value, generated during the
creation of the initial population, was defined by a continuous uniform distribution. Each
randomly generated gene value falls within the allowable domain. For the given pn values,
the direct problem was solved using the numerical method presented in Sections 2.1 and 2.2.
Next, the fitness (objective) function (20) is evaluated for each chromosome pn, the stopping
criterion is checked, and if it is not satisfied, the selection operator is applied. Selection is
performed through either ranking selection or tournament selection (with equal probabil-
ity). Based on the selection process, some chromosomes undergo crossover and mutation
operators’ application according to the probabilities specified in Table 1. The next step of the
EA involves calculating the fitness function (20) for the modified individuals, followed by
the application of the cloning operator and, finally, the creation of a new generation of chro-
mosomes. The flow chart of evolutionary algorithm is presented in Figure 4. The stopping
criteria for the evolutionary algorithm are implemented on the following criteria [21,27,29]:
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• The fitness function value is zero.
• Once the predefined number of generations is reached.
• Insufficient improvement in the fitness function value across successive iterations.
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During the operation of the evolutionary algorithm, the following evolutionary opera-
tors were used:

• A uniform mutation operator that modifies the gene values in a chromosome by
randomly selecting new ones.

• A non-uniform mutation operator that uses a Gaussian distribution to change the gene
values in a chromosome. The amplitude of such mutation in each generation is equal
to σGauss = 1/pop, where pop is the number of generations.

• An arithmetic crossover operator that creates a new chromosome by forming a linear
combination of genes from two randomly selected chromosomes, a cloning that enables
the best chromosome to be carried over to the next population.

Unlike genetic algorithms, evolutionary algorithms allow the probability of the muta-
tion operator to vary with each generation. In this case, the mutation probability remains
constant, but the mutation strength decreases through a non-uniform mutation based on a
Gaussian distribution.

The evolutionary algorithm used to solve the inverse problem was created in the
Delphi environment by the authors of this article.

3. Results and Discussion

The cryopreservation process, consisting in storing biological material at low tem-
peratures, involves several complex physical phenomena. Numerical modelling makes
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it possible to understand and analyze processes such as heat and mass transport, phase
transformations and others. Numerical modelling can be used to optimize the conditions
under which cryopreservation is carried out to increase cell survival by minimizing the
damage caused by ice crystallization. Numerical modelling is an extremely important part
of modern cryopreservation research.

Solving the direct problem, the distributions of temperature and DMSO concentra-
tion in the extracellular matrix during the cooling process were obtained. Bath solution
parameters were regulated according to the LT protocol developed by Pegg et al. [18],
which included eight steps in the cooling phase, to which this work was limited. Then,
the calculations for the inverse problem were performed to identify the thermophysical
parameters based on the experimental results.

3.1. Direct Problem

The direct problem presents a study of a homogeneous sample of articular cartilage
with the dimensions R = 3 mm and H = 1 mm [11]. To perform the thermal analysis, the
following parameters were introduced: α = 525 W·m−2·K−1 and T0 = 22 ◦C [11]. For the
mass transfer model, it is necessary to know the chemical properties of the CPA (DMSO
solution in water), such as rs = 2.541·10−10 m [30], µ = 1.996·10−3 Pa·s [31] and initial value
c0 = 0% (w/w) [11].

The bath solution parameters were specified in accordance with the LT protocol
developed by Pegg et al. [18]. This protocol included eight steps in the cooling phase and
seven steps in the warming phase, but the article is limited to the cooling phase only. The
values of Tbath and cbath, which change at each step of the process, are detailed in Table 2.

Table 2. LT protocol for cooling phase.

Step Time
Duration

Temperature of
Bath Solution

Concentration of
Bath Solution

t [min] Tbath [◦C] cbath [%(w/w)]

1 10 22 10
2 10 22 20
3 30 −5 29
4 30 −8.5 38
5 30 −16 47
6 30 −23 56
7 30 −35 63
8 30 −48.5 72

Numerical simulations were performed in an author’s program using FDM as de-
scribed in Section 2.2. The time and mesh steps were assumed to be as follows: ∆t = 0.005 s,
h1 = 0.0001 m and h2 = 0.00005 m.

Firstly, a direct problem was calculated, for which we introduced the thermophysical
parameters of the articular cartilage taken from the literature, where c = 3567.5 J·kg−1·K−1,
ρ = 1100 kg·m−3 and λ = 0.518 W·m−1·K−1 [32,33]. Then, the results obtained were com-
pared with those obtained by solving the inverse problem.

Figure 5 shows the temperature change during the first 20 s of step 4 (a) and step 6 (b)
for points A (r = 0.00005 m, z = 0.000475 m, solid line) and B (r = 0.00145 m, z = 0.000025 m,
dashed line). From this graph, it can be seen that the temperature in the domain stabilizes
relatively quickly with respect to the duration of the entire particular step (it is about 40 s
for step 4 and 6).

On the other hand, Figure 6 depicts the change in DMSO concentration (CPA) in the
extracellular matrix at points A (solid line) and B (dashed line) during the entire freezing
phase of the cryopreservation process (cf. Figure 6a) and for the first 20 s of step 4 (cf.
Figure 6b). Figure 6a additionally provides points corresponding to experimental data
from the literature [18].
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Figure 7 illustrates the distribution of temperature (a) and DMSO concentration (b) in
the computational domain of the sample after 10 s of step 3 (in 1210 s of the whole process).
These distributions also indicate that the analyzed problem is axisymmetric.

In addition, Table 3 contains the exact values of temperature and DMSO concentration
in the extracellular matrix at the end of each step of the freezing phase in point A compared
with the experimental results [18]. Table 3 also includes the calculated relative error values
of the obtained simulation results with respect to the experimental measurements from
the literature.

Table 3. Comparison of DMSO concentration with experimental data.

Step DMSO Concentration Experimental Data Relative Error

cd [%(w/w)] cd [%(w/w)] δ [%]

1 7.8411 - -
2 16.7257 16.3 ± 1.3 2.6118
3 26.0791 24.5 ± 1.1 6.4453
4 34.1795 34.2 ± 0.9 0.0600
5 42.2754 41.7 ± 3.3 1.3799
6 50.3709 47.8 ± 2.8 5.3784
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Table 3. Cont.

Step DMSO Concentration Experimental Data Relative Error

cd [%(w/w)] cd [%(w/w)] δ [%]

7 56.6698 52.2 ± 1.3 8.5628
8 64.7463 55.9 ± 2.9 15.8253

Materials 2024, 17, x FOR PEER REVIEW 14 of 24 
 

 

are determined experimentally and are dependent on many factors, e.g., the quality of the 
collected samples to research or the condition of the tested organism. Therefore, an iden-
tification of the thermophysical parameters of the articular cartilage was carried out to 
verify that the variables selected from the literature do not introduce computational er-
rors. The results of the inverse problem are presented in the next section. 

  
(a) (b) 

Figure 7. Distribution of temperature (a) and concentration of DMSO (b) in computational domain 
after 10 s of step 3. 

Table 3. Comparison of DMSO concentration with experimental data. 

Step DMSO Concentration Experimental Data Relative Error 
 cd [%(w/w)] cd [%(w/w)] δ [%] 

1 7.8411 - - 
2 16.7257 16.3 ± 1.3 2.6118 
3 26.0791 24.5 ± 1.1  6.4453 
4 34.1795 34.2 ± 0.9  0.0600 
5 42.2754 41.7 ± 3.3  1.3799 
6 50.3709 47.8 ± 2.8  5.3784 
7 56.6698 52.2 ± 1.3  8.5628 
8 64.7463 55.9 ± 2.9 15.8253 

3.2. Inverse Problem 
Using the databases of the Foundation for Research on Information Technologies in 

Society [33], it was found that the ranges of values of the identified parameters for articu-
lar cartilage are within the following intervals: 
• Thermal conductivity λ = 0.47 ÷ 0.52 W·m−1·K−1. 
• Specific heat capacity c = 3500 ÷ 3664 J·kg−1·K−1. 
• Density ρ = 1099 ÷ 1100 kg·m−3. 

In view of the above, for the purpose of the calculations, it was assumed that the 
constraints for the identified parameters fall within the following ranges: 

0.47 λ 0.52
3500 3700
1050 ρ 1150

c
≤ ≤
≤ ≤
≤ ≤

 (23) 

As can be seen in Figure 6a and Table 3, the results obtained by numerical simulation 
using the finite difference method (own code) and the experimental data taken from the 
literature [18] are very similar to each other and involve only one computational step (step 

16.8

17

17.2

17.4

17
.6

17
.8

17.8 18

0.0005 0.001 0.0015 0.002 0.0025 0.003 

r [m]

0.00001

0.00002

0.00003

0.00004

0.00005

z 
[m

]

Figure 7. Distribution of temperature (a) and concentration of DMSO (b) in computational domain
after 10 s of step 3.

By comparing the graph in Figure 6a and the values in Table 3, it can be noted that there
are discrepancies between the experimental and simulation results. One can observe that
the lowest relative error is 0.06% at the end of step 4, from which it increases continuously
until it reaches the highest value—15.83% (end of step 8, end of simulation). Similar
conclusions were discussed in previous papers [16,17]. The literature [16,17] indicates
that these discrepancies may be caused by the relation used to determine the diffusion
coefficient. This paper applies the Einstein–Stokes equation (Equation (7)) to calculate the
diffusion coefficient, while it can be found in the literature that this variable is estimated
from other relationships, considering the tissue as a porous material (for example, in [11]).

On the other hand, these incompatibilities may be caused by the introduced thermo-
physical parameters. It can be said that these variables are uncertain, because their values
are determined experimentally and are dependent on many factors, e.g., the quality of
the collected samples to research or the condition of the tested organism. Therefore, an
identification of the thermophysical parameters of the articular cartilage was carried out to
verify that the variables selected from the literature do not introduce computational errors.
The results of the inverse problem are presented in the next section.

3.2. Inverse Problem

Using the databases of the Foundation for Research on Information Technologies in
Society [33], it was found that the ranges of values of the identified parameters for articular
cartilage are within the following intervals:

• Thermal conductivity λ = 0.47 ÷ 0.52 W·m−1·K−1.
• Specific heat capacity c = 3500 ÷ 3664 J·kg−1·K−1.
• Density ρ = 1099 ÷ 1100 kg·m−3.
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In view of the above, for the purpose of the calculations, it was assumed that the
constraints for the identified parameters fall within the following ranges:

0.47 ≤ λ ≤ 0.52

3500 ≤ c ≤ 3700

1050 ≤ ρ ≤ 1150

(23)

As can be seen in Figure 6a and Table 3, the results obtained by numerical simulation
using the finite difference method (own code) and the experimental data taken from the
literature [18] are very similar to each other and involve only one computational step (step
8) error greater than 10%. Based on this information, three thermophysical parameters
of articular cartilage were identified using an evolutionary algorithm. Two cases were
analyzed; in the first one (“case 1”), information on DMSO concentration from all eight
steps was used to calculate the fitness function (22) of each chromosome (cf. Table 3), and
in the second one (“case 2”), information on the DMSO concentration from seven steps
was used (cf. Table 3), discarding the result with the largest error. In the Tables 4–7 the
inverse problem solutions and comparison of DMSO concentration with experimental data
are presented for different cases. Identification results for the described cases are presented
in Tables 4 and 6. In turn, the DMSO concentration values for the identified parameters are
compared to the experiment in Tables 5 and 7, for cases “1” and “2”, respectively.

Table 4. Inverse problem solution using evolutionary algorithm for “case 1”.

Parameter Value from [32,33] Found Value Fitness Function

Thermal conductivity,
λ [W·m−1·K−1] 0.518 0.522

107.852194Specific heat capacity,
c [J·kg−1·K−1] 3567.5 3571.2

Density,
ρ [kg·m−3] 1100 1089.3

Table 5. Comparison of DMSO concentration with experimental data and numerical solution based
on identified thermophysical parameters using evolutionary algorithm for “case 1”.

Step DMSO Concentration Experimental Data

cd [%(w/w)] cd [%(w/w)]

1 7.8411 -
2 16.7257 16.3 ± 1.3
3 26.0791 24.5 ± 1.1
4 34.1794 34.2 ± 0.9
5 42.2754 41.7 ± 3.3
6 50.3708 47.8 ± 2.8
7 56.6697 52.2 ± 1.3
8 64.7463 55.9 ± 2.9

Table 6. Inverse problem solution using evolutionary algorithm for “case 2”.

Parameter Value from [32,33] Found Value Fitness Function

Thermal conductivity,
λ [W·m−1·K−1] 0.518 0.519

29.594674Specific heat capacity,
c [J·kg−1·K−1] 3567.5 3565.9

Density,
ρ [kg·m−3] 1100 1100
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Table 7. Comparison of DMSO concentration with experimental data and numerical solution based
on identified thermophysical parameters using evolutionary algorithm for “case 2”.

Step DMSO Concentration Experimental Data

cd [%(w/w)] cd [%(w/w)]

1 7.8411 -
2 16.7257 16.3 ± 1.3
3 26.0791 24.5 ± 1.1
4 34.1794 34.2 ± 0.9
5 42.2754 41.7 ± 3.3
6 50.3708 47.8 ± 2.8
7 56.6697 52.2 ± 1.3
8 64.7463 55.9 ± 2.9

Figures 8–11 show the process of identification using an evolutionary algorithm
after the 1st (1st generation means it is an initial population) and 300th generations (last
generation) for “case 1” (cf. Figures 8 and 9) and for “case 2” (cf. Figures 10 and 11). As can
be seen, for both cases, the starting population covers the entire range of possible values
of the identified parameters, consistent with the constraints (23), and, in turn, in the last
generation the individuals cluster primarily around the optimum, which is consistent with
the specific operation of the evolutionary algorithm. Figures 9 and 11 show chromosomes
of the last generation, only near the optimal solution. The stopping criterion for the
evolutionary algorithm was set to the maximum number of generations. Observing the
value of the fitness function (20) of the best chromosome, while the evolutionary algorithm
is running, allows one to conclude that its value has not changed in recent generations.

Materials 2024, 17, x FOR PEER REVIEW 16 of 24 
 

 

5 42.2754 41.7 ± 3.3  
6 50.3708 47.8 ± 2.8  
7 56.6697 52.2 ± 1.3  
8 64.7463 55.9 ± 2.9 

Figures 8–11 show the process of identification using an evolutionary algorithm after 
the 1st (1st generation means it is an initial population) and 300th generations (last gener-
ation) for “case 1” (cf. Figures 8 and 9) and for “case 2” (cf. Figures 10 and 11). As can be 
seen, for both cases, the starting population covers the entire range of possible values of 
the identified parameters, consistent with the constraints (23), and, in turn, in the last gen-
eration the individuals cluster primarily around the optimum, which is consistent with 
the specific operation of the evolutionary algorithm. Figures 9 and 11 show chromosomes 
of the last generation, only near the optimal solution. The stopping criterion for the evo-
lutionary algorithm was set to the maximum number of generations. Observing the value 
of the fitness function (20) of the best chromosome, while the evolutionary algorithm is 
running, allows one to conclude that its value has not changed in recent generations. 

 
Figure 8. The process of identification—evolutionary algorithm—after 1st generation (“case 1”). 

Figure 8. The process of identification—evolutionary algorithm—after 1st generation (“case 1”).



Materials 2024, 17, 5703 15 of 20
Materials 2024, 17, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 9. The process of identification—evolutionary algorithm—after 300th generation (“case 1”). 

Figure 9. The process of identification—evolutionary algorithm—after 300th generation (“case 1”).
Materials 2024, 17, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 10. The process of identification—evolutionary algorithm—after 1st generation (“case 2”). 

Figure 10. The process of identification—evolutionary algorithm—after 1st generation (“case 2”).



Materials 2024, 17, 5703 16 of 20
Materials 2024, 17, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 11. The process of identification—evolutionary algorithm—after 300th generation (“case 
2”). 

4. Conclusions 
The direct problem was formulated as an axisymmetric heat and mass transfer 

model, complemented by a liquidus tracking method protocol. This protocol adjusts the 
temperature and concentration to ensure that the temperature of the sample remains 
above or on the liquidus line, thereby eliminating the likelihood of ice crystallization in 
the cells. 

The obtained results of the temperature and DMSO concentrations were compared 
with experimental results taken from the literature, which were obtained by the research 
team of Pegg et al. [18]. The temperature distribution in the sample area relatively quickly 
reached values according to the established LT protocol. However, it was noted that there 
are discrepancies between the numerical simulation results and the experimental data. 
We believe that these incompatibilities may be caused by the assumed thermophysical 
parameters. 

The literature reports experimentally determined values for these parameters, which 
differ according to the source. In fact, the thermophysical parameters of biological 

Figure 11. The process of identification—evolutionary algorithm—after 300th generation (“case 2”).

4. Conclusions

The direct problem was formulated as an axisymmetric heat and mass transfer model,
complemented by a liquidus tracking method protocol. This protocol adjusts the tempera-
ture and concentration to ensure that the temperature of the sample remains above or on
the liquidus line, thereby eliminating the likelihood of ice crystallization in the cells.

The obtained results of the temperature and DMSO concentrations were compared
with experimental results taken from the literature, which were obtained by the research
team of Pegg et al. [18]. The temperature distribution in the sample area relatively quickly
reached values according to the established LT protocol. However, it was noted that there
are discrepancies between the numerical simulation results and the experimental data. We
believe that these incompatibilities may be caused by the assumed thermophysical parameters.

The literature reports experimentally determined values for these parameters, which
differ according to the source. In fact, the thermophysical parameters of biological samples
depend on many different factors, such as age, sex, etc. [16,17,34]. Therefore, in some
papers, thermophysical parameters are considered as uncertain parameters and are defined,
for example, as interval numbers or fuzzy numbers to account for these imprecisions in
their estimation [16,23,35,36].

The aim of this study was to identify the thermophysical parameters of articular
cartilage during the cryopreservation process, which are crucial for preparing a proper
mathematical model to simulate cryopreservation. Three parameters were the subject of
identification, namely thermal conductivity, specific heat capacity and density. This article
proposes a novel concept to solve the identification problem (inverse problem) to examine
whether the applied parameters are not the reason for the calculation error or to confirm
that the data adopted from the literature are correct.

The number of individuals in the population of an evolutionary algorithm directly
affects the quality of the solution and the computation time. A larger population provides
a greater diversity of individuals, which increases the chances of finding a better solution,
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but may lead to a longer computation time. A smaller population may converge to the
solution faster but with a greater risk of getting stuck in a local minimum. In turn, a larger
population increases computational costs because it requires the evaluation of a larger
number of individuals in each generation. A smaller population shortens the computation
time but may not provide sufficient diversity, which limits the quality of the solution. The
authors’ many years of experience in working with evolutionary algorithms allowed them
to choose the population size so as to maintain an appropriate balance between the quality
of the solution and the computation time. The population size is given in Table 1.

During the operation of the evolutionary algorithm, two types of selection were used
to choose individuals that would be subjected to the evolutionary operators: tournament
selection and ranking selection. During its operation, the algorithm randomly chose which
selection method would be applied in each generation, based on an equal probability of
occurrence. In the case of tournament selection, it involved randomly selecting individuals
who “compete” against each other, with the winner (the best individual) advancing to the
pool of individuals that will undergo crossover or mutation operators’ application. This
type of selection promotes the preservation of population diversity, while giving preference
to the best individuals. In the case of ranking selection, individuals are sorted based on the
value of the fitness function and then selected proportionally to their quality. By ensuring
that individuals with similar fitness function value have comparable chances of passing
to the next generation, this selection method helps maintain greater diversity within the
population. Additionally, in ranking selection, there is less emphasis on the best individuals
compared to tournament selection.

Two types of mutations were used in the algorithm: uniform and non-uniform (Gaus-
sian) mutations. The first type changes the gene value to a random value from a specified
range (cf. Equation (23)), thus allowing a high diversity of individuals and aiding in the
exploration of the solution space. However, its effect is limited by a low probability of
occurrence (cf. Table 1). On the other hand, the non-uniform (Gaussian) mutation changes
the gene value by adding a random value from a normal distribution, causing a “gentle”
change in the gene value (with the change becoming smaller as the generation number
increases). This mutation supports the accuracy of the solutions and effectively explores
the space around the best solutions.

The evolutionary algorithm, being part of the group of metaheuristic algorithms, can
have numerous modifications due to the variety of approaches to its operation. One such
element is the stopping criterion for the calculations. Usually, a single criterion is used,
but there is no obstacle to combining them. The most commonly used criteria include:
reaching the maximum number of generations—the algorithm terminates after a specified
number of generations, regardless of the quality of the solution; no improvement in the
objective function—when there is no significant improvement in the solution over several
consecutive generations, the algorithm can be stopped; reaching a specified objective
function value—the algorithm stops when the objective function reaches a value considered
sufficient; population convergence—when the population becomes homogeneous, meaning
most individuals have similar solutions, which may indicate that the optimal solution has
been reached. As stated in Section 3.2, the maximum number of generations was applied.

Analyzing the results obtained from solving the inverse problem, it can be assumed
that the parameters available in the literature (cf. Section 3.1) are correct (cf. Table 6).
Therefore, it is worth considering the differences in the results obtained from the numerical
simulation and the experiment data (cf. Figure 6a, Table 3) and checking which of the
parameters of the mathematical model has a significant impact on the result of the numerical
simulation. Sensitivity analysis methods can undoubtedly help to solve this problem, and
the topic will certainly be discussed by the authors in future scientific research.

In conclusion, the solution to the inverse problem considered in this paper is very satisfying.
An undeniable advantage of the evolutionary algorithm is its universality, as it only

processes information about the value of the objective function and, based on this, searches
for the optimal solution. One could argue that a properly designed evolutionary algorithm
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only requires information about the solution to the direct problem, obtained using any
numerical tool, whether it is one’s own code or results from commercial software. This
approach was chosen due to authors’ many years of experience in developing proprietary
algorithms based on evolutionary theory. In the case of classical optimization algorithms,
which the authors also worked on (i.e., gradient-based methods), it would be necessary
to differentiate the mathematical model with respect to the identified parameters, which,
due to the complex mathematical description, would be a highly complicated task. In
the future, the authors plan to attempt the use of sensitivity analysis methods (where
sensitivity functions are also utilized in gradient algorithms) to determine the impact
of mathematical model parameters on the obtained calculation results. Among other
optimization algorithms, it is certainly worth mentioning machine learning, which is
currently very popular and one of the most rapidly evolving areas in technology and
science. However, the authors have no experience in this area.

Finally, it is worth mentioning some limitations of this work. The model was developed
for the selected tissue and CPAs—articular cartilage and DMSO—which were applied in the
experimental research presented by Pegg et al. [18]. However, it should be remembered that
the cryopreservation process can be executed for different types of biological tissues, for
example, oocytes and embryos, sperm, semen and testicular tissue, stem cells or hepatocytes
and using different CPAs, such as glycol [1]. Meanwhile, our developed model is quite
universal, because a change in biological tissue and CPA will result in a modification of
input parameters only, such as thermophysical parameters. If the tissue in question contains
blood and lymphatic vessels, the Fourier equation should be supplemented additionally
with the heat source Q (compare with Equation (1)).

As a limitation, it can also be considered that the validation of the results was achieved
only by comparing with data from the literature. The authors’ lack of conducting their
own experiments is mainly due to the difficulties related to research on biological tissues,
including the problem of obtaining samples and access to appropriate medical equipment.
However, the modelling of cryopreservation has practical applications. A well-prepared
model can later be used for osmotic transport analysis, which allows one to estimate
changes in the cell volume of a given tissue and, in effect, to assess the damage of them.
Moreover, understanding the changes that occur in cells during the process gives the
opportunity to modify the LT protocol to expose the selected tissue less to the toxic impact
of CPA, without the need for another experiment (compare with the approach presented
by Yu et al. [11]). In addition, both finite difference and evolutionary algorithms have
limitations that can affect the accuracy and reliability of the results obtained. In the case
of the finite difference method, there may be a problem in obtaining adequate accuracy
for areas with large gradients and in discretizing the area. Problems with evolutionary
algorithms include sensitivity to the choice of parameters such as population size, mutation
and crossover rates and long simulation times. The use of hybrid algorithms, for example,
can minimize these errors and improve the computational efficiency of both methods.

Solving the direct problem using a numerical algorithm based on the finite difference
method enabled the simulation of the cryopreservation process through mathematical mod-
elling. The results obtained from the numerical analysis show a high degree of consistency
with the experimental results. The solution of the inverse problem aimed at identifying
the thermophysical parameters of the analyzed object, specifically targeting the values
for articular cartilage. As indicated, these parameters fall within wide ranges due to the
individual characteristics of biological tissues. The results obtained suggest that both the
direct and inverse analysis processes were conducted accurately. Future work will focus on
refining the mathematical model to achieve results even closer to experimental outcomes.

In further scientific work, the authors would like to conduct similar types of analyses
for other cryoprotectants, as well as simulate cryopreservation for other biological tissues
performed by a different method. It will also be the subject of further research to use hybrid
methods to solve the problem presented in this paper.
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