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Abstract: Silicon oxycarbide (SiOC), Ca- and Mg-modified silicon oxycarbide (SiCaOC and SiMgOC)
were synthesized via sol–gel processing with subsequent pyrolysis in an inert gas atmosphere. The
physicochemical structures of the materials were characterized by XRD, SEM, FTIR, and 29Si MAS
NMR. Biocompatibility and in vitro bioactivity were detected by MTT, cell adhesion assay, and
simulated body fluid (SBF) immersion test. Mg and Ca were successfully doped into the network
structure of SiOC, and the non-bridging oxygens (NBO) were formed. The hydroxycarbonate apatite
(HCA) was formed on the modified SiOC surface after soaking in simulated body fluid (SBF) for
14 days, and the HCA generation rate of SiCaOC was higher than that of SiMgOC. Accompanying
the increase of bioactivity, the network connectivity (NC) of the modified SiOC decreased from
6.05 of SiOC to 5.80 of SiCaOC and 5.60 of SiMgOC. However, structural characterization and
biological experiments revealed the nonlinear relationship between the biological activity and NC of
the modified SiOC materials.

Keywords: sol–gel; SiOC; network connectivity; apatite forming ability; cytotoxicity

1. Introduction

Bioactive glasses (BGs) have been widely used in bone regeneration and tissue engi-
neering due to their good bioactivity, biocompatibility, excellent chemical stability, and
well-defined bonding ability with soft tissues and bone, as well as high bone regeneration
capacity [1,2]. The superior bioactivity of BGs is greatly attributed to the formation of the
bone-like hydroxycarbonate apatite (HCA, Ca10(PO4)6(OH)2·CO3) layer in the biological
environment, inducing strong bonding of the BG surface to the bone tissue [3]. Rawlings [4]
and Strnad [5] proposed the network connectivity (NC) of bioactive glasses and revealed
the relationship between NC and bioactivity. To be specific, the tetrahedrons were described
by the notation Qn, in which n denoted the number of bridging oxygen atoms in the SiO4
unit and varied between zero and four [6].

However, two shortcomings limited the application of BGs: the poor mechanical
strength and the inability to resist crystallization during the preparation [7,8]. Recently,
silicon oxycarbide (SiOC)-based materials have been used in biomedical applications
for bone defect repair, such as load-supporting implants or biological coatings [9]. The
surface reactivity of SiOC-based materials is similar to that of BGs [10], and they can resist
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crystallization under higher temperatures (≤1300 ◦C) [11]. This can be credited to the
unique microstructure of SiOC, which has a network of corner-shared silicon-centered
tetrahedrons containing both Si–C and Si–O bonds but no C–O bonds [12]. SiOC exhibits
the full range of mixed bonded SiOxC4−x tetrahedra, i.e., SiO4, SiO3C, SiO2C2, SiOC3, and
SiC4, as well as a few free carbons [13,14].

Although SiOC exhibits better biocompatibility, it is biologically inert. Doping the
SiOC glass network with other elements, especially alkaline earth metals such as Li, Ca,
and Mg, can increase biological activity and reduce its NC [15,16]. Calcium (Ca) plays
a crucial role in bone formation and resorption as the primary constituent of biological
apatite (Ca10(PO4)6(OH)2) [17]. Magnesium (Mg) as an abundant and essential mineral in
the human body, can inhibit osteoclasts and enhance osteoblast activity [18]. In general, the
addition of Ca and Mg was found to enhance the biocompatibility and osteoinduction of the
materials and promote cell adhesion [19].For instance, Xie et al. [20] synthesized Ca and/or
B-modified SiOC and investigated their crystallization behavior, network architecture, and
chemical compositions. Ca/B doping could decrease the NC of SiOC from 5.95 to 5–5.5.
However, their investigation was unfortunately limited to the structural evolutions in the
material without further delving into the influence of doping on the bioactivity and biocom-
patibility of SiOC. Chen et al. [21] reported the excellent biocompatibility and bioactivity of
SiCaMgOC coatings roughly but showed that they lacked quantitative evaluation of bio-
logical activity using advanced techniques as well as a critical understanding regarding the
influence of individual elements (Mg or Ca) on the microstructure and bioactivity. Ionescu
et al. [22] demonstrated a weak negative correlation between the biological activity and NC
of modified SiOC by alkaline earth elements (Mg and Ca), and the quantitative model for
glasses could be obtained by calculating the number of bridging and non-bridging oxygens
(NBO) per silicon–oxygen tetrahedron in modified SiOC. But, their work in biological
activity was only evaluated by immersion in simulated body fluid (SBF) to induce bone-like
HAP without incorporating it with other important cell compatibility experiments.

There are very few reports on the modification research of SiOC-based materials, and
there is no systematic correlation between material structure and biological activity. The
objective of this study is to examine the bioactivity of Ca- and Mg-modified SiOC and
establish the quantifiable evaluation of material bioactivity through the changes of NC. The
quantitative structure–bioactivity model through computational algorithms in materials
science will also be considered in future work [23], and the highly bioactive SiOC will be
applied in bone defect repair.

To this end, the microstructures and bioactivity of Ca- and Mg-modified SiOC amor-
phous ceramics were investigated thoroughly in comparison with SiOC without any doping.
Previous studies demonstrated that with increasing concentrations of Ca and Mg, the bioac-
tivity of the material was enhanced while the biocompatibility decreased. Therefore, we
selected the samples with the highest biocompatibility for subsequent experiments. The
modified SiOCs doped with Ca and Mg were prepared by the sol–gel method, using
dimethyldiethoxysilane and methyltriethoxysilane as precursors and Ca/Mg acetylaceto-
nate as modifiers. The biological activity was evaluated through inducing HCA in SBF at
37 ◦C. In addition, the biocompatibility of the materials was investigated by MTT assay
and cell adhesion assay with mouse fibroblast L929 cells.

2. Materials and Methods
2.1. Materials Preparation

To prepare the Ca/Mg modified SiOC glasses, 1 mol dimethyldiethoxysilane (DMDES,
AR, 98%, Aladdin, Shanghai, China) and 1 mol methyltriethoxysilane (MTES, AR, 98%,
Aladdin, Shanghai, China) were mixed as precursors, which were further mixed with
deionized water and anhydrous ethanol to keep the molar ratio of H2O/OCH3

− for 1
and EtOH/Si for 2. After magnetic stirring in a water bath at 40 ◦C for 30 min, 0.05 mol
of Ca acetylacetonate (Ca(acac)2, AR, 98%, Aladdin, Shanghai, China) or 0.06 mol of Mg
acetylacetonate (Mg(acac)2, AR, 98%, Aladdin, Shanghai, China) were added to hydrolysis
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for 90 min. Note that the Ca:Si molar ratio is 1:40, and Mg:Si molar ratio is 1:33. Hydrochlo-
ric acid was added to keep pH at 4. The aged gel can be kept at room temperature for
one week.

C/C substrates (φ 10 × 3 mm, 1.75 g/cm3) were manually ground with 400#, 1000#,
and 2000# sandpapers, then corroded with aqua regia for 30 min, and cleaned with anhy-
drous ethanol and deionized water successively. The substrates were coated with aged
gel with a lift-off speed of 20 mm/min, then dried at 80 ◦C, and finally, subjected to py-
rolysis in argon gas at 1000 ◦C to obtain the ceramic coating. The pyrolyzed samples with
and without Ca/Mg modified SiOC ceramic coating were named SiCaOC, SiMgOC, and
SiOC, respectively.

2.2. Materials Characterization

The phase constitution of the samples was determined by X-ray diffraction (XRD,
Advance D8, Bruker, Romanshorn, Switzerland) equipped with Cu-Kα X-ray source in 2θ
range from 10◦ to 60◦ with 6◦/min of scanning rate. The surface morphology of samples
was observed by SEM (Nova NanoSEM230, FEI, Prague, Czech Republic) in the secondary
electron mode with a vacuum degree below 5 × 10−5 Pa and an acceleration voltage of
5 kV. The absorption spectra of the materials were recorded through FTIR (Spectrum Two
with STA8000, PerkinElmer, Eindhoven, The Netherlands). The microstructures were char-
acterized using 29Si MAS NMR. 29Si spectra were recorded utilizing Bruker ZG sequence at
spinning rates of 8 kHz, pulse angles of 22◦, and 120 s relaxation delay. The carbon content
of the samples was detected by a CS 600 carbon analyzer (Leco Corporation, St. Joseph, MI,
USA), and the oxygen content was detected by a TCH 600 Nitrogen/Oxygen/Hydrogen
analyzer (Leco Corporation, MI, USA). In addition, Si, Ca, and Mg contents in SBF were
detected by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, TCP-
5100-VDV, NYSE: A, Santa Clara, CA, USA).

2.3. Mineralization in SBF

Simulated body fluid (SBF) was prepared according to Kokubo’s [24] method to
evaluate the vitro acellular bioactivity. During this experiment, the samples were placed
vertically in the SBF at 37 ◦C. After the immersion, the samples were successively rinsed
with acetone (AC, AR, 98%, Aladdin, Shanghai, China), deionized water, and anhydrous
ethanol and then dried at 40 ◦C. The content of release ions was detected by ICP-OES, and
the pH of SBF was measured by a pH analyzer (TP110, TIMEPOWER, Shanghai, China),
respectively. The microstructures of samples after immersion in SBF were further observed
by SEM.

2.4. Cytotoxicity Test

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay was used
to evaluate the L929 cells’ proliferation after in contact with different materials extracts,
based on the reduction in tetrazolium salt by living cells [25,26]. To be specific, SiCaOC,
SiMgOC, and SiOC were sterilized by the autoclave (LDZM-100KBS, Shanghai, China)
and then immersed in the complete medium for 24 h, 48 h, and 72 h to obtain extracts
of different concentrations. Materials extracts and Dulcecco’s modified eagle medium
(DMEM) were used as experimental groups and the negative control group, respectively.

L929 cells were cultured in DMEM supplemented with 10% fetal calf serum (FCS)
at 37 ◦C and 5% CO2. Then, 100 µL cell suspension with a density of 5 × 104 cells/mL
was seeded onto the bottom of the 96-well cell culture plate and continuously cultured
for 24 h. After 24 h of cell culture, 100 µL material extract or 100 µL DMEM was added
to cell suspension corresponding to the experimental groups and negative control group,
respectively. The cells were incubated at 37 ◦C and 5% CO2 for 72 h. After that, 10 µL of
5 mg/mL MTT was added to all groups. The cells were incubated in the mixture of MTT
and DMEM for 4 h. After that, 150 µL dimethyl sulfoxide (DMSO) was added to dissolve
the cells. The optical absorbance (OD) of the supernatant was measured at a wavelength of
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630 nm using the automatic plate reader (ELX800, BioTek, Winooski, VT, USA). The relative
growth rate (RGR) of the cells was determined according to the formula in Equation (1) [27]:

RGR(%) =
OD(experimental group)

OD(negative control)
×100% (1)

Cell viability (RGR) of the negative control group measured by the MTT method was
defined as 100%. Then, the RGR of the experimental groups was calculated relative to
the negative control group. The cytotoxicity of the material is categorized into different
grades: RGR ≥ 100%; 75~95%; and 50~74% for grades 0, 1, and 2, respectively. Both grades
0 and 1 stand for non-cytotoxicity. Moreover, grade 2 corresponds to non-cytotoxicity or
cytotoxicity, depending on the final morphology of cells. The experiment was duplicated
three times under the same conditions.

2.5. Cell Adhesion Assay

L929 cell suspension with a density of 5 × 104 cells/mL was dropped evenly on
the surface of the three samples. After 72 h incubation, the samples were rinsed with
phosphate buffer saline (PBS), then fixed with 2.5% glutaraldehyde solution for 2 h, and
finally dehydrated with ethanol. The morphology of the cells adhered to the surface of the
materials was further observed by SEM.

2.6. Statistical Analysis

All the analyses were repeated at least three times, and the data were analyzed by
GraphPad Prism (ver.9.0.0) software using ANOVA one and two-way followed by Tukey
post hoc test to determine the difference significance [28,29]. The significances were shown
by p-value using * sign.

3. Results and Discussion
3.1. Microstructures

The phase constitutions of Ca-modified and Mg-modified SiOC glasses, as well as SiOC
without any doping, were analyzed by XRD, as shown in Figure 1. The incorporation of Ca
or Mg did not change the phase constitution of SiOC, i.e., amorphous SiO2 corresponding to
a broad peak between 20◦ and 25◦, which indicated that the three materials were completely
amorphous after 1000 ◦C pyrolysis.

 
Figure 1. XRD analysis of different samples after 1000 ◦C heat treatment.

Surface morphology and elemental distribution of initial and modified SiOC are shown
in Figure 2. The surface of SiOC was relatively smooth, with some minor cracks caused by
thermal stress during the pyrolysis process. In comparison with SiOC, the SiCaOC had a
much rougher surface with some obvious puddles, while the SiMgOC displayed a rougher
surface with some pronounced cracks. SiCaOC and SiMgOC showed fewer cracks, maybe
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because the rougher surfaces were in favor of stress release. Further EDS results evidenced
that both Ca and Mg have been distributed uniformly on the surface of glass materials.
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Figure 2. SEM and EDS analysis of different materials: (a) SiOC glass; (b) SiCaOC glass; (c) SiM-
gOC glass.

The chemical bands of three glass samples were investigated by FTIR spectroscopy, as
shown in Figure 3. Both the absorptions at around 1083 and 1220 cm−1 correspond to the
asymmetric stretching vibrations of the Si–O–Si [20,30]. The absorption at 800 cm−1 was
overlapped by symmetric stretching and bending vibration of Si–O–Si, as well as bending
vibration of Si–C. According to a study by Lyu et al. [31], the modification of Ca and Hf into
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the SiOC can form silica sites with NBO (Si–O−), leading to the appearance of absorption
in the range of 900–970 cm−1. In this manner, the new absorptions appearing at 939 cm−1

and 957 cm−1 could be explained by the presence of NBO in SiO4 tetrahedral units [32].
This also indicates the successful fabrication of SiCaOC and SiMgOC.

 

 
Figure 3. FTIR spectra of SiOC, SiCaOC, and SiMgOC glasses.

The microstructure and network architecture of samples were investigated by 29Si
MAS NMR spectra (Figure 4). In addition, based on the experimental NMR data, the values
of NC for various glass samples were determined from the following equation [22]:

NC =
[
4 × f

(
Q4)]+ [

3 × f
(
Q3)]+ [

2 × f
(
Q2)]+ [

1 × f
(
Q1)]+ [6 × f (SiO3C)]+

[8 × f (SiO2C2)] + [10 × f (SiOC3)] + [12 × f (SiC4)]
(2)

with Q being the Si atomic fractions among total network formers and f (x) the site fraction
of the corresponding species x from the experimental NMR data. The NCf of the samples
was calculated by Equation (2) and summarized in Table 1.

Table 1. Silicon site fractions of three SiOC-based glasses determined from 29Si–MAS NMR spectra.

Sample Q4SiO4
(I)

Q3SiO4
(II)

SiO3C
(III)

SiO2C2
(IV)

SiOC3
(V)

SiC4
(VI) NMR Composition Measured

Composition NC

SiOC 42.1% _ 30.6% 18.6% _ 8.7% Si1O1.49C0.25 Si1O1.49C0.51 6.05
SiCaOC 51.6% 1.8% 21.3% 11.1% 9.2% 5.0% Si1Ca0.05O1.54C0.23 Si1Ca0.05O1.54C0.56 5.80
SiMgOC 56.8% 2.8% 18.4% 8.4% 7.9% 5.7% Si1Mg0.06O1.59C0.20 Si1Mg0.06O1.59C0.57 5.60

The spectra of SiOC in Figure 4a were fitted with Gaussian peaks at around −107, −71,
−34, and −7 ppm, which correspond to the Q4SiO4(I), SiO3C (III), SiO2C2 (IV), and SiC4
(VI), respectively [12]. Furthermore, two new peaks at −91 and −11 ppm of both SiCaOC
and SiMgOC corresponded with Q3SiO4 (II) and SiOC3 (V), respectively, and those peaks
were hardly observed in the spectra of SiOC (Figure 4).

The relative fractions of different silicon species in three studied glass materials
that were analyzed from NMR spectra are shown in Table 1. Additionally, the relative
fractions of various SiOC-based glasses were also determined by carbon analyzer, nitro-
gen/oxygen/hydrogen analyzer, and ICP-OES, whose results were roughly in line with



Materials 2024, 17, 6159 7 of 15

the NMR composition except the higher content of carbon for the free carbon existed in
SiOC glass, rather than in the SiOC network (Table 1).

 

2 

Figure 4. 29Si MAS NMR of three materials: (a) SiOC glass; (b) SiCaOC glass; (c) SiMgOC glass.
The experimental (grey line) and simulated (red line) spectra, as well as the individual simulation
components (black lines), are shown. The results of the simulation correspond to Q4SiO4 (I), Q3SiO4

(II), SiO3C (III), SiO2C2 (IV), SiOC3 (V), and SiC4 (VI).

The proportion of Q4SiO4 sites increased significantly from 42.1% for SiOC to 51.6%
for SiCaOC and 56.8% for SiMgOC (Table 1). Accordingly, the fractions of SiO3C, SiO2C2,
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SiOC3, and SiC4 sites decreased after modification. Moreover, the addition of alkaline earth
metals results in the formation of a small fraction of Q3SiO4 sites, i.e., 1.8% for SiCaOC and
2.8% for SiMgOC. The NMR composition showed that the O/Si ratio increased from 1.49
for SiOC to 1.54 for SiCaOC and 1.59 for SiMgOC, while the C/Si ratio decreased from
0.25 for SiOC to 0.23 for SiCaOC and 0.20 for SiMgOC. That means more oxygen-rich Si
tetrahedral was formed after doping of Ca or Mg. Moreover, the modification with Ca or
Mg reduced the NC of the SiOC-based glasses, from 6.05 for SiOC to 5.80 for SiCaOC and
5.60 for SiMgOC (Table 1).

3.2. In Vitro Bioactivity

The apatite-forming ability of SiOC, SiCaOC, and SiMgOC were evaluated by im-
mersion in SBF, and their surface morphologies after different immersion periods were
observed by SEM, as shown in Figure 5. The surface of SiOC remained unchanged even
after the immersion in SBF for 14 days (Figure 5a–d). However, clear spherical sediments
with a diameter of 1–3 µm were observed on the surface of SiCaOC after immersion in
SBF for 3 days (Figure 5e). As the immersion time prolonged to 7 days, these sediments
were observed to grow up with a diameter of 6–10 µm (Figure 5f). At an immersion
time longer than 10 days, the surface of SiCaOC was coated fully with these sediments
(Figure 5g–h). The surface evolution of SiMgOC in SBF was similar to that of SiCaOC
but had two differences. The first one was that the appearance of sediments in SiMgOC
seemed to be postponed since no sediments formed at 3 days of immersion (Figure 5i) and
limited sediments appeared at 7 days of immersion (Figure 5j) with almost full coverage of
sediments until 14 days of immersion (Figure 5l). This demonstrates that SiCaOC has a
higher ability to generate sediments than SiMgOC. The other difference is in the larger size
of sediments in SiMgOC (diameter: 5–15 µm) compared to that of SiCaOC.

The morphologies of sediments at higher magnifications and corresponding EDS
analysis for SiCaOC and SiMgOC are shown in Figure 6. Both sediments exhibit a spherical
cauliflower morphology, which is consistent with previous studies by Haider et al. [33] and
Chen et al. [34]. Further EDS analysis revealed that the Ca/P molar ratio of the sediments
was 1.70 for SiCaOC and 1.69 for SiMgOC, respectively. Note that both values were almost
identical to that of stoichiometric HCA (1.69) [35], whose appearance can also be evidenced
by the formation of crystal nuclei in epitaxy on the material surface (Figure 6) [36]. The
modified SiOC (SiCaOC or SiMgOC) showed a higher bioactivity than SiOC, given they can
form HCA in SBF, and the induction of HCA for SiCaOC was faster than that of SiMgOC.
This may be related to the fact that Ca is the necessary element of HCA as well as Mg2+,
which can reduce the conversion rate of amorphous calcium–phosphate to the crystalline
HCA [37,38].

Figure 7 shows the change in different ion concentrations and pH values of the SBF
for 14 days. The Si ion concentration of all materials gradually increased as immersion
time increased, while the releasing rate of Si was sensitive to the materials, i.e., SiCaOC >
SiMgOC > SiOC (Figure 7a). However, the evolution of Ca ion concentration with respect
to the immersion time depends on the material itself. Ca ion of SiCaOC increased sharply
to 148.9 mg/L in the first two days for the release of Ca2+ from SiCaOC, then decreased
drastically to the lowest level (62.7 mg/L) after 14 days among all the materials (Figure 7b).
With the immersion time increased, SiMgOC exhibited a continuous decline in Ca ion
concentration, reaching the value of 69.3 mg/L after 14 days. A similar decreasing trend
was observed for SiOC, while this decreasing rate was much lower in comparison with
SiMgOC (Figure 7b). The concentration of P ions in the SBF of all experimental groups
exhibited a gradual decrease with increasing immersion time, and the decreasing rate
was sensitive to the materials, i.e., SiCaOC > SiMgOC > SiOC (~0) (Figure 7c). Note that
the generation of HCA in SBF may explain the decline in Ca and P ion concentrations of
SBF during the immersion of SiCaOC and SiMgOC. The pH of SBF immersed by both
SiCaOC and SiMgOC increased rapidly but then remained almost constant as immersion
time increased, but both were higher than that of SiOC (Figure 7d). The increase in pH
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for SiCaOC and SiMgOC after initial immersion could be related to the exchange of Ca2+

or Mg2+ in the materials with H+ or H3O+ in the SBF, accompanied by the formation of
Si–OH and the breaking of Si–O–Si in materials [39,40]. The subsequent formation of the
HCA layer consumed carbonate and phosphate ions, leading to the formation of more
H+ or H3O+ in the solution via shifting the following reversible reactions in the right
direction [41]:

HCO−
3 ↔ CO2+

3 + H+ (3)

HPO2−
4 ↔ PO3−

4 + H+ (4)
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Their combination brought the constant value of pH for SBF immersed by SiCaOC
and SiMgOC, while the missing of these reactions in SiOC should be responsible for the
stable value of pH (Figure 5). In addition, after 14 days, the pH reached ~7.54 for SiCaOC
and SiMgOC, slightly higher than that for SiOC (~7.45).

3.3. Biocompatibility Assessment

The cytotoxicity of the studied glass materials was evaluated by MTT assay with L929
cells for culturing for 3 days, with the results shown in Figure 8 and Table 2. With the
increase in extraction time, the absorbance of all experimental groups decreased, indicating
the number of living cells decreased. The cell viability of SiMgOC was higher than that of
the negative control, while the other two experimental groups (SiCaOC and SiOC) were
lower than that of the negative control (Figure 8). In addition, the cytotoxicity grade of
SiMgOC was 0, while that of SiOC and SiCaOC was 1, which indicated that SiMgOC
was the least toxic to cells, followed by SiCaOC and SiOC. It was noteworthy that the
cytotoxicity grade of either 0 or 1 indicated non-cytotoxicity [27]. Furthermore, SiMgOC
extract can significantly promote cell reproduction and differentiation, especially in low
concentrations. The results of the cytotoxicity test were in agreement with those previously
reported by Chen et al. [21].

 

3 

 

 
Figure 8. Absorbance of the different samples in MTT toxicity test. n = 3, for each group (**** p < 0.0001).

Table 2. The cytotoxicity grades of the materials.

Samples
Grade

Extraction of 24 h Extraction of 48 h Extraction of 72 h

SiOC 1 1 1
SiCaOC 1 1 1
SiMgOC 0 0 0
Negative 0 0 0
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Figure 9 shows the L929 cell morphology on the surface of the materials with the same
culture time of 72 h. The densest cells were observed on the surface of SiCaOC, followed
by SiMgOC and SiOC, accompanied by the decreasing bioactivity in Figure 5. Few cells
attached to the surface of SiOC grew well with obvious pseudopods (Figure 9a). On the
surface of SiCaOC, at least two layers of cells were observed (Figure 9b), causing poor
growth or death of cells. However, the surface of the SiMgOC was covered with a layer of
cells, and the cells grew well even around the cracks of the surface (Figure 9c). This could
explain well why the cytotoxicity of SiCaOC was higher than that of SiMgOC (Table 2),
although the bioactivity of SiCaOC was obviously higher than that of SiMgOC (Figure 5).
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3.4. Correlation Between Microstructure and Bioactivity

The doping of Ca and Mg resulted in the breakdown of the Si–O–Si bonds in the SiOC
network structure, leading to the formation of NBO (Si–O−), as schematically shown in
Figure 10. The Si–O− does not connect to the other ions directly by “bonding”, but rather,
it interacts with Ca2+ or Mg2+ through electrostatic interactions [9,15]. The formation of
NBO results in the disruption of the glass network, which, in turn, renders the glass more
reactive in aqueous solution like SBF (Figure 5).
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According to the research of Shearer et al. [19], the apatite formation of glass was
dependent on the level of polymerization. The higher the NC of the glass, the lower the
ion concentration released, which slowed down the formation of apatite. The formation of
NBO (Figures 3 and 4) decreased the NC (Table 1) and, thus, improved the glass bioactivity
in SBF (Figure 5). However, the NC of SiMgOC was lower than that of SiCaOC, but
SiCaOC showed higher bioactivity, as evidenced by faster induction of HCA on the surface
(Figure 5). This suggested that the NC may not be the sole determinant of the bioactivity
of glass materials, and other microstructural features should be included in designing
SiOC-based glasses with excellent bioactivity. In addition, the higher bioactivity still
cannot guarantee lower cytotoxicity since multiple layers of cells may be formed on the
surface, leading to the constrained growth and premature death of cells (Figure 9). These
complicated scenarios for the selection of doping elements should be carefully treated after
involving more microstructural factors. The above results demonstrated that the modified
SiOC exhibited excellent bioactivity and biocompatibility, thereby indicating its potential
for application in the biomedical field of bone defect repair.

4. Conclusions

In this study, SiOC, SiCaOC, and SiCaOC were successfully synthesized by sol–gel
method. The microstructure and bioactivity of these three glasses were observed and
quantitatively evaluated, respectively. The following conclusions can be derived from
this study:

(1) Ca and Mg were successfully doped into the network structure of SiOC by breaking
down the Si–O–Si bonding, leading to the formation of NBO. The incorporation of Ca
and Mg significantly reduced the NC of SiOC glasses from 6.05 to 5.80 of SiCaOC and
5.60 of SiMgOC, respectively;

(2) The bioactivity of modified materials was obviously improved, as evidenced by the
more rapid deposition of HCA on SiCaOC and SiMgOC. Both SiCaOC and SiMgOC
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demonstrated excellent biocompatibility, with the cells exhibiting distinct growth on
their surface;

(3) Among the three glasses, the highest bioactivity was found in SiCaOC, while the
lowest cytotoxicity was found in SiMgOC. Excessive bioactivity will lead to multiple
layers of cells on the surface, causing constrained growth as well as premature death
of cells;

(4) NC was not the sole determinant of the materials’ bioactivity, and other microstruc-
tural features should be included in designing high-performance SiOC-based glasses;

(5) The biocompatibility experiments conducted in this study are preliminary and insuf-
ficient. Comprehensive evaluations, including cell proliferation, sensitization, and
teratogenicity, as well as animal implantation, should be conducted in our next research.
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