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Abstract: Rotor shafts are the most heavily loaded and accident-prone parts of powerful turbine
generators, which are cooled using hydrogen. To eliminate damage sustained during operations,
repair work was carried out, including the removal of defective parts, surfacing, and turning. This
study tested the machinability of the rotor shaft using prototypes made from 38KhN3MFA steel. A
section of the shaft was degraded due to prolonged operation (250 thousand hours), and compared
to the central part, a decrease in the average grain size from 21.57 µm to 12.72 µm and an increase in
the amount of hydrogen absorbed during operation from 2.27 to 7.54 ppm were observed. With the
frequency of dry turning increasing from 200 to 315 RPM, the chips changed their form from mostly
rectangular with linear dimensions of 10 to 20 mm to large spiral rings with a diameter of 15 to 20 mm
and a length of more than 50 mm. Cracks of 1 to 4 mm in length were found in most chip particles at
both rotational speeds. Increasing the rotational speed from 200 to 315 and up to 500 RPM led to the
formation of an oxide film on the surface of the specimens, as evidenced by the appearance of oxygen
during local analyses of the elemental content on the chip surface. The saturation of specimens
by hydrogen gas led to the formation of finer chips compared to the non-hydrated material, and
the roughness of the machined surface increased at hydrogen contents of 6 and 8 ppm. In both
dry and coolant cutting operations, surface roughness reflects the degradation of the rotor shaft or
experimental prototypes due to hydrogenation, which can be used to diagnose the condition of the
rotor after long-term operation.

Keywords: hydrogen charging; 38KhN3MFA steel; turbine generator rotor shaft; turning; chips;
cutting products; oxide; computer simulation

1. Introduction

Turbogenerator (TG) and steam turbine rotor shafts are manufactured from CrMoNiV
steels (25Kh1M1FA, 20Kh3MVF, 34KhN3MA, 38KhN3MFA, 34NiCrMoV14-5, and
35NiCrMoV12-5) [1–4]. Depending on their intended use, as a result of heat treatments,
they have a microstructure consisting of metal matrices of sorbitol, troostite, or bainite
together with complex carbides, intermetallics, MnS, etc. The presence of vanadium in-
creases the fine-grained microstructure of the surface layer, while the presence of bainite in
the central part of the rotor shaft provides a good combination of strength, ductility, and
impact strength [1–3]. During the long-term operation of power equipment, under the
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complex influence of factors such as changes in speeds, loads, temperatures, and exposure
to technological media [5,6], including hydrogen-containing materials [4,7–11], irreversible
changes are made to the structural and phase composition. At the same time, the structure
of the steel undergoes different changes in various parts of the rotor, which is reflected in
the microhardness, which differs by 20% [2].

Surface defects that occur during machining range from nano- to macroscale, causing
microstructural, mechanical, and chemical effects that shape the performance proper-
ties and influence the operating conditions of the rotor system [12] and its turning pro-
cesses [7,13–17]. The evolution of the microstructure and chemical composition due to the
machining of materials causes integrity defects to form in the near-surface regions, which
can significantly change the resistance to various forms of corrosion and characteristics such
as fatigue and wear [18–21]. The surface and subsurface layers in chromium–molybdenum–
vanadium steel formed during machining have increased hardness and residual compres-
sive stresses of up to −1800 MPa, and they affect operational properties [22].

A study that focused on the effect of cutting temperatures and surface cooling rates
on the microstructure and properties of so-called induced white layers during the turning
of martensitic- and bainitic-hardened steel AISI 52100 showed that white layers formed
both above and well below the austenitic transformation temperature of the original
austenite Ac1, which was about 1023 K [23]. The surface cooling rate during turning
reached 104–105 ◦C/s for cutting speeds from 30 to 260 m/min, regardless of whether the
microstructure under study was bainite or martensite. For the orthogonal cutting of AISI
52100 steel, it was found that the white layer formed as a result of the rapid transformation
of austenite and the quenching process, and the dark layer formed as a result of the
tempering process [24]. Plastic deformation promotes the austenite transformation of the
white layer and the tempering process of the dark layer, and it plays a role in improving
the grain of both the white and dark layers. The rapid heating process caused by the
cutting process causes austenite transformation and increases the austenite nucleation rate.
Plastic deformation provides the driving force for the phase transformation, which can
accelerate the formation of the white layer. At the same time, defects, such as dislocations,
formed as a result of plastic deformation, which crushed the sub-grains in the white layer.
Heat transferred to various depths, and stresses caused by plastic deformation provide
the driving force for dynamic reduction and dynamic recrystallization in the dark layer;
sub-grains in the dark layer are segmented by the movement of dislocations. The feed
rate and cutting-edge radius affect surface integrity and fatigue endurance in turning
34CrNiMo6 steel [25]. The results show that the effect of residual stresses on fatigue life is
more pronounced than the effect of surface roughness.

The structural-phase state of alloys significantly affects their properties and machinabil-
ity [26–32]. Three different microstructures were obtained via controlled thermomechanical
treatment, namely ferrite–pearlite, hardened martensite, and the ferrite–bainite–martensite
of microalloyed vanadium steel 38MnSiVS5 [29]. The ferrite–bainite–martensitic microstruc-
ture shows better machinability due to its good surface texture, and the ferrite–perlite
microstructure with the lowest strength is characterized by lower cutting forces. The exper-
iments involved three different steel grades: C45 carbon steel, 37MnSi5 microalloy steel,
and 30CrV9 low-alloy steel, which were subjected to four different types of heat treatment:
normalizing annealing, mild annealing, quenching, and tempering followed by tempering.
These tests showed that a homogeneous microstructure is the most important factor when it
comes to the cutting quality of steel; the greater the difference in the hardness of structural
components with heterogeneous microstructures, the higher the value of roughness [30].

The important informative factors that allow us to assess the micromechanisms of
alloy fractures during machining include the study of chip morphology [31–38]. Two types
of 42CrMo4 steel bars were studied, and each bar was subjected to a different heat treatment
process to avoid any possible influence that chemical composition may have on the turning
process [39]. The steel modifications investigated exhibited substantial differences in
ductility (about 28.5% for the bainitic grade and 55.9% for the martensitic grade). The
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experiments performed in the current study show that the microstructure had no influence
on the chip length when steel ductility was similar. The chips produced during the turning
of 42CrMo4 exhibit regularly spaced serrated teeth above certain cutting speeds, the value
of which depended on the microstructure. These teeth are formed due to the adiabatic
nature of the shear process. The frequency of these serrated teeth increased with cutting
speed, and each time their values approached the value of the natural frequency of the
system, chatter occurred, and high forces were registered [39]. During the machining of
high-strength steel, a correlation was found between the evolution of the microstructure and
the quality and performance of the treated surface layer [40]. The relationship between the
microstructure and the performance of the machined surface was explored by establishing
a cutting model. The results show that the treatment forms a gradient microstructure,
which significantly improves the performance characteristics. According to the test results,
treatment significantly increases the hardness of the top layer of the high-strength alloy steel
while increasing its toughness, which is the result of the combined effect of fine-grained
hardening and dislocation hardening caused by the above treatment process. Thus, the
microstructure of machined surfaces is crucial to the overall performance and service life of
mechanical structures [35–41].

Wear products can also act as identifiers of the processes of destruction and the wear of
parts [11,12,42–49]. Both in machining conditions and during friction and wear, common tri-
bological concepts are often used to explain the physical nature of fractures [48–53]. In order
to reduce the number of experiments, computer modeling has become widespread in recent
years in terms of material properties [54–60], machining [61–67], and the calculation and
visualization of chip formation [68–73]. As a rule, in most works, fractography and chip for-
mation conditions are first studied, and only then is computer modeling performed [74–80].
For example, Kouadri et al. [81] discuss the mechanisms of chip formation during cut-
ting operations. Some experiments characterizing the morphology and microstructure of
chips are presented, as well as a study of chips at high loads. The mechanisms of chip
segmentation during cutting are analyzed. The influence of cutting conditions on cutting
forces is considered. As a result, the phenomenon of chip segmentation correlates with
cutting forces.

Modern turbine generator rotors are cooled using hydrogen. It is known that elements
of metal structures undergo changes in physical and mechanical characteristics during
operation in hydrogen-containing environments. Hydrogen, penetrating into the metal
through its surface, affects the plasticity, yield strength, and strength of the metal, and it
can also contribute to plastic deformation in the initial phase [4,9,10,82–85]. Therefore, it is
necessary to monitor changes in the properties of rotor steel during operation, considering
the embrittlement effect of hydrogen. One of the methods for diagnosing its condition is to
observe the fractography of the chips obtained from long-operated hydrogenation during
repair work operations and the emergency rotor shaft. Globally, such work was performed
by us for the first.

The aim of this work is to study structural transformations on the rotor shaft surface
as a result of long-term operations and to compare the morphology of chips formed
during the turning of shafts and the hydrogenated and non-hydrogenated prototypes of
38KhN3MFA steel.

2. Materials and Methodology

The chemical composition and properties of steel specimens are given in [7,9]. Spec-
imens of 38KhN3MFA steel, which were hardened in oil from a temperature of 1123 K
(holding time for 1 h) after tempering at 923, 953, and 1023 K for 2 h and cooling in air,
were studied. Photographs of the microstructure of the specimens [9] are shown in Figure 1.
The mechanical properties of five-fold cylindrical specimens with a working part diameter
of 5 mm and a stretching speed of 1 mm/min are shown in Table 1; they were situated
in a room-temperature environment. The specimens were saturated with hydrogen in
a gaseous state using a special installation [9]. The exposure of specimens to hydrogen
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leads to hydrogen occlusion, and its content increases in proportion to the square root
of the pressure (Figure 2), which is in good agreement with the known patterns of steel
hydrogenation [86].
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Table 1. Mechanical properties of 38KhN3MFA steel specimens under different heat treatment
regimens [9].

Tempering
Temperature, K

σu
MPa

σy
MPa

δ

%
ψ

%

923 940 790 21 67

953 890 750 18 48

1023 810 690 17 44

Materials 2024, 17, x FOR PEER REVIEW 4 of 19 
 

 

situated in a room-temperature environment. The specimens were saturated with 
hydrogen in a gaseous state using a special installation [9]. The exposure of specimens to 
hydrogen leads to hydrogen occlusion, and its content increases in proportion to the 
square root of the pressure (Figure 2), which is in good agreement with the known 
patterns of steel hydrogenation [86]. 

Table 1. Mechanical properties of 38KhN3MFA steel specimens under different heat treatment 
regimens [9]. 

Tempering Temperature, К 
σu 

MPa 
σy 

MPa 
δ 
% 

ψ 
% 

923 940 790 21 67 
953 890 750 18 48 
1023 810 690 17 44 

 

Figure 1. Microstructures of 38KhN3MFA steel specimens after tempering at 923 (a), 953 (b), and 
1023 K: (c) I—sorbite colonies; II—carbides. 

 
Figure 2. Dependences of the content of occluded hydrogen CH on the hydrogenation pressure P at 
a temperature of 530 K for 10 h. 

Sorbitol is a highly dispersed type of pearlite and comprises a eutectoid mixture of 
ferrite and cementite. The hardness, strength, and impact strength of sorbitol are higher 
than those of perlite. In terms of dispersion and hardness, it occupies an intermediate 
position between pearlite and troostite. The inter-plate distance in sorbite is 0.2 microns 
(in pearlite, 0.5–1.0 microns). Sorbitol is formed as a result of the decomposition of 
austenite at temperatures around 923 K during cooling (so-called quenching sorbite) and 
from martensite during tempering (tempering sorbite). With an increase in the tempering 
temperature, both the strength and ductility of steel decrease (Table 1), which is due to the 

Figure 2. Dependences of the content of occluded hydrogen CH on the hydrogenation pressure P at a
temperature of 530 K for 10 h.

Sorbitol is a highly dispersed type of pearlite and comprises a eutectoid mixture of
ferrite and cementite. The hardness, strength, and impact strength of sorbitol are higher
than those of perlite. In terms of dispersion and hardness, it occupies an intermediate
position between pearlite and troostite. The inter-plate distance in sorbite is 0.2 microns (in
pearlite, 0.5–1.0 microns). Sorbitol is formed as a result of the decomposition of austenite
at temperatures around 923 K during cooling (so-called quenching sorbite) and from
martensite during tempering (tempering sorbite). With an increase in the tempering
temperature, both the strength and ductility of steel decrease (Table 1), which is due to
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the enlargement of structural components, particularly an increase in the size of carbides
(Figure 1c).

Hydrogen practically does not degrade the strength properties and significantly re-
duces plasticity characteristics (Table 2 and Figure 3). At a pre-absorbed hydrogen content
of 8 ppm, its effect is manifested during tests in the air, and at a hydrogen environment
pressure of 10 MPa, the properties of hydrogenated and non-hydrogenated samples are
almost identical (Table 2), which is consistent with the patterns of the hydrogen embrit-
tlement of steels with a volume-centered cubic lattice under the influence of external and
internal hydrogen [82,86].

Table 2. Mechanical properties of 38KhN3MFA steel at room temperature in the air and under various
hydrogenation conditions [7,9].

Temperature The Conditions
of the Tests

σu
MPa

σy
MPa

δ

%
ψ

%Hardening, K Tempering, K

1133 913 air 950 800 17 51

1123

923

air 940 790 21 67

air, CH = 8 ppm 960 790 16 45

hydrogen, 0.8 MPa 930 810 18 55

hydrogen, 10 MPa 880 780 12 36

hydrogen, 10 MΠa,
CH = 8 ppm 900 790 12 35

953

air 890 750 18 48

air, CH = 8 ppm 900 740 14 31

hydrogen, 0.8 MPa 890 740 14 36

hydrogen, 10 MPa 880 760 11 28

hydrogen, 10 MPa,
CH = 8 ppm 900 750 12 29

1023

air 810 690 17 44

air, CH = 8 ppm 830 720 15 32

hydrogen, 0.8 MPa 790 700 13 36

hydrogen, 10 MPa 780 680 14 29

hydrogen, 10 MPa,
CH = 8 ppm 800 700 14 28

Full-scale studies were carried out in turning specimen conditions using 38KhN3MFA
steel on a lathe-screw cutter (YANGTUO CK6140X1000 manufactured by Shandong Yang-
tuo CNC Machine Tool Co., Ltd. (located in Zaozhuang, China)). A VK-8 penetrating cutter
was used; the machine speed was 200, 315, and 500 RPM; the loading rate was 0.1 mm.

Macrophotographs of the cutting products were taken with a Canon SX100 IS digital
camera (Canon Company, Tokyo, Japan) equipped with a 10× optical zoom lens and a
PowerShot SX100 IS image stabilizer. Microstructure photographs were taken using a
microscope with a maximum magnification of 1000×. A microscope was used to take
more detailed pictures of the cutting products: Zeiss Stemi 2000 (Carl Zeiss Company, Jena,
Germany)—C Stereo Microscopes and a SIGETA digital camera (Industrial color digital
camera UCMOS 1300, 1.3 MP and SIGETA International Color Digital Camera MCMOS
5100 5.1 MP.1) with a maximum resolution of 150 microns. The accuracy of the measure-
ments was confirmed by the number of experiments, namely, from 3 to 5 experiments
were performed at the same loads and speeds, which allowed us to obtain chips with
comparable morphology and size. The chips were measured using a microscope with the
appropriate software (Computer complex. ToupTek ToupView 3.7) using a scale setting that
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corresponded to 1 cm divisions. Local analysis for the determination of chemical elements
was performed on an EVO-40XVP electron microscope (Carl Zeiss Company, Germany)
with an INCA Energy 350 microanalysis system.
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hydrogenation (CH = 8.1 ppm) (3).

3. Results and Discussion
3.1. Analysis of Changes in Shaft Microstructure Parameters That Occurred During Operation

The rotor shaft consists of a middle active part (barrel) and two shanks. It is charac-
terized by a single forging of steel from the high-strength category. To manufacture the
shaft, an ingot about twice as large is used, which is the limit value for modern metallurgy.
The large size of the shaft and the peculiarities of its operation lead to various operating
situations that require repair work. In Figure 4, the appearance of the rotor shaft before
and after repair work is shown.
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Figure 4. Damaged (a) and repaired (b) turbogenerator rotor shaft before transportation to the NPP
turbine hall.

After 250,000 h of turbine unit operation, the hydrogen seals of the rotor shaft on the
turbine side were destroyed. As a result of the friction of the fragments of the hydrogen
seal against the tangential ridge, the shaft was partially destroyed (Figure 5). The boss
bearings melted. The metallographic inspection showed that the rotor shaft metal in the
hydrogen seal zone changed compared to the rotor shaft’s metal, which did not come into
contact with the hydrogen seal.
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Figure 5. Damaged TGV-1000 shaft (after winding short circuit) in the hydrogen sealing zone.
(a)—rotor body, (b)—retaining ring.

The repair technology consisted of the fact that an insert made of the same material
weighing up to 20 kg is mounted in place of the damaged material. “Sealing” is only part
of the technological process of problem solving. Most attention is paid to the method of its
installation on the rotor barrel and the proposed design of a special lock. The analysis of
the durability of the structure under significant centrifugal forces arising during operation
was taken into account.

After repairs, the “rotor-retaining ring” unit was connected to the grid on 28 August
2012, and up until the present time (2024), a reserve rotor has been used for safety (with
controlled dimensions (Table 3)).

Figure 6 shows the machine shop where the steam turbine rotor shaft is machined.
In some cases, machining does not require dismantling the rotor shaft, but it takes place
on-site in the machine shop.
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which significant degradation processes are not recorded, and the microstructure of this 
zone corresponds to the initial conditional state (Figures 7 and 8a). Arrow II schematically 
shows the place of destruction of the hydrogen seal, where microstructural changes were 

Figure 6. Rotor shaft of the turbine unit with damaged blades (a) and disassembled bearing (b).

Table 3. Rotor section dimensions (diameter designations are shown in Figure 7).

Section D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

I–I (0◦) 1100.12 884.80 649.61 599.19 677.16 578.72 677.30 677.14 578.74 677.05 579.07 677.18 679.51

II–II (120◦) 1100.16 884.90 649.69 599.19 677.18 578.70 677.34 677.15 578.72 677.08 579.10 677.19 679.52

III–III (240◦) 1100.20 884.85 649.63 599.16 677.20 578.71 677.32 677.14 578.73 677.12 579.08 677.18 679.51

Average 1100.16 884.85 649.63 599.18 677.18 578.71 677.32 677.14 578.73 677.08 579.08 677.18 679.51

The dimensions of the individual sections of the rotor shaft are shown in Table 3, and
the conceptual diagram of the TG shaft is shown in Figure 7. Arrow I shows the area in
which significant degradation processes are not recorded, and the microstructure of this
zone corresponds to the initial conditional state (Figures 7 and 8a). Arrow II schematically
shows the place of destruction of the hydrogen seal, where microstructural changes were
recorded (Figures 7 and 8b). Here, in the zone of maximum hydrogen exposure, an increase
in the microhardness of the shaft was found (Table 4).
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Figure 7. Schematic of the rotor shaft. Test area I—central part, which corresponds to the initial
condition; Test area II—hydrogen seal. H—hydrogen, A, B, C, D—microhardness measurement
locations (Table 4), D1–D13—rotor section diameters (Table 3).
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Figure 8. Microstructure on the rotor shaft surface (a,b). The initial conditional state from the rotor
shaft surface (I—(a)). The state in the hydrogen seal zone (II—(b)).

For site I, the average grain size was D = 21.57 µm, and the variance was σ = 63.88 µm2;
for site II, the average grain size was D = 12.72 µm, and the variance was σ = 54.27 µm2. The
largest average values of the data shown in the histograms (the central columns through
which the maximum (extremum) of the normal distribution 2D RVE passes) correspond to
6, 7, and 8 (Figure 9a) and 9, 10, and 11 points of grain size (Figure 9b) according to DSTU
8972:2019 [87]. After machining and obtaining chips from areas I and II, the amount of
hydrogen was determined to be 2.27 and 4.72 ppm (Figure 10a,b).

Figure 11a,b show a schematic diagram that considers a scenario where a larger
amount of hydrogen is fixed in the finer microstructure of the rotor shaft. During long-term
operation, the rotor shaft comes into contact with a hydrogen-containing medium that
cools the rotor shaft, and due to newly formed defects and damage due to the presence
or formation of a thinner microstructure, the hydrogen saturation of the surface and near-
surface layers occurs.
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Figure 10. Amount of hydrogen in the chips (a,b). Initial conditional state of the rotor shaft surface
(I—(a)); state in the hydrogen seal zone (II—(b)).

Thus, during operation, under the influence of loads and the hydrogen environment,
the rotor shaft undergoes structural changes that must be considered during its further
exploitation. Since surface changes affect chip formation during turning [8,11,25,28], this
paper considers the possibility of assessing the condition of the shaft’s surface by analyzing
the generated chips and developing recommendations for shaft repair work based on the
comparative studies results of the shaft and prototypes made from 38KhN3MFA steel.
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Table 4. Hardness of the rotor sections (designations are shown in Figure 8).

Measurement Location Hardness HB

A 285/291

B 230/243

C 238/251

D 257/270

3.2. Classification and Analysis of Chips of the Rotor Shaft and Experimental Prototypes

The appearance of 38KhN3MFA steel cutting products after machining is shown in
Figure 12, and the distribution on the diagram according to the developed classification
is shown in Figure 13. The following types of chips were identified: 1—rectangular with
linear dimensions within 10–15 mm. Their number is more than 35% for cutting conditions
of 200 RPM. At 315 RPM, their number decreases, but chips of type 4 and 7 appear, the
former having the form of large coiled spiral rings with a diameter of 15–20 mm, and the
latter having a large ribbon shape with a chip length of more than 50 mm. There are also
several types of small chips, and their description is available in publication [11].
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315 RPM results in the formation of an oxide film on the surface of the specimens, as 
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Figure 13. Distribution of chips in percentages according to the developed classification at speeds of
200 RPM and 315 RPM: 1—rectangular and large (predominantly 10–15 mm in length); 2—rolled into
a half-ring with a radius of 5–7 mm; 3—completely rolled (compact) (radius up to 5; predominantly
1–3 mm); 4—rolled into rings (from 7 mm—mainly 15–20 mm); 5—semi-rolled with linear dimensions
of 10–15 mm; 6—small broken chips of less than 2.0 mm; 7—large chips over 50 mm in length.

Figure 14 shows the appearance of the cut products: a rectangular particle (4.15 by
7.40 mm) with a crack indicated by arrow I (Figure 14a). The length of the crack is 3.10,
and the width of the crack at the beginning is 0.54 mm. On the surface of the particle, the
colors of variability are almost invisible. Figure 14b shows an image of a particle formed
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under cutting conditions at 315 RPM. Arrow II indicates a crack with a width of 0.42 mm
and a length of 1.5 mm; III indicates the left side of the chip, which shows the colors of the
variability. The width of the cloves in this area is 0.37 mm, and for the rest of the chip, it is
0.32 mm.
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Figure 14. Appearance of chips obtained under dry cutting conditions: 200 RPM (a) and 315 RPM (b).
A rectangular particle (4.15 by 7.40 mm) with a crack indicated by arrow I. dotted frame—colors of
the variability.

The brightness of the color variation depends on the thickness of the oxide film formed
and the wavelength of light that hits the surface of the material. It is important to note
that the metal’s melting point differs for each individual alloy and metal type. Therefore,
there are a large number of tables and lists of color and temperature correlations. The part
that has irregularities also has a dense film. The colors of variability on the surface of the
particle are blue and dark green. For carbon steel, this corresponds to a surface temperature
of 583–603 K [88,89]. Increasing the rotational speed from 200 to 315 RPM results in the
formation of an oxide film on the surface of the specimens, as evidenced by the appearance
of oxygen during local analysis of the elemental content on the chip surface (Figure 15).
An even more significant increase in temperature and, consequently, surface oxidation
occurs at rotational speeds up to 500 RPM, so this turning mode is not recommended. The
computer calculations below confirm the increase and change in the turning temperature
of the workpiece.
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Figure 15. Results of local analysis of the element content on the chip surface after turning at 200 (a)
and 315 RPM (b).

Figure 16 shows photos of the inner surface of the chip (corresponding to the chips
shown in Figure 14). At 200 RPM, chips with stripes and vertical cracks were formed:
position I (Figure 14a) had areas with small welded particles; position II had chips with
welded particles of the material at 315 RPM (position III). The welded particles are larger in
size and have a larger area compared to those shown in Figure 16a. Material delamination
(position IV) and areas with microrelief (position V) were also observed, i.e., two different
competing micromechanisms of fracture during chip formation were recorded. Thus,
when the temperature rises, conditions are created for welding the material, which is
accompanied by an increase in roughness.
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Figure 16. Internal surface of chips (photo of chips from Figure 14a) at 200 RPM (a) and 315 RPM
(photo of chips from Figure 14b) (b).

Images of 2D and 3D computer reconstructions of the chip’s surface are shown in
Figures 17 and 18. In order to summarize the results of the roughness scale, the scale’s
size ranges from 0 to 100 units. As shown in Figure 14, in the locations of vertical cracks
(position I), a maximum depth from 0 to −50 units can be observed. On the left, a section
along the entire crack with a height of up to 50 units was recorded. On the right part of the
image, near a narrower crack, there is no such section. However, on the right, in the most
extreme part, peaks with a height of up to 45 units were recorded. Area (II) has a gentle
microrelief with elevations from −15 to 15 units.
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 Figure 17. Two-dimensional (a) and three-dimensional (b) reconstruction of the chip area presented
in Figure 17a.
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In Figure 18, position III indicates areas with heights ranging from 20 to 50 units that
were most likely formed during the welding of the material. The elongated depression (IV)
has a depth fluctuation from −15 to −35 units. The area with a smooth microrelief (V) is
characterized by heights from −5 to +15 units.
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The presence of absorbed hydrogen in steel at amounts of 6–8 ppm contributes to the
formation of fine chips regardless of the turning frequency (Figure 19). The macroimages
of hydrogenated chips are shown in [7]. They are characterized by a significant number of
cracks compared to the chips that were separated from non-hydrogenated specimens. The
use of computer vision technology allows us to determine the presence of such damage
and draw a conclusion about the condition of the material.
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ing (b).

The formation of a larger number of cracks in the hydrogeneted material can be
attributed to the influence of hydrogen penetrating into the surface and subsurface layers.
The temperature increase, intensification of plastic deformation, and presence of pores in the
material affect the state and distribution of hydrogen. Molecular hydrogen accumulates in
the pores and creates high pressures that contribute to steel embrittlement. The presence of
hydride-forming elements can contribute to the retention of atomic hydrogen in steel [90].
Thus, a thorough diagnosis and fractographic analysis of the chips allow us to draw
conclusions about the formation of chips under the complex influence of factors.

The surface roughness after turning specimens from 38KhN3MFA steel depends on
the rotational speed (Figure 20). It is recorded that at 100 RPM, the roughness is greater
than at 200 RPM, which is explained by the fact that under such conditions, an outgrowth
formed between the cutter and the workpiece, which interfered with finishing. An increase
in the temperature in the cutting zone at 315 RPM contributed to an increase in roughness,
but further increases in speed led to a more uniform removal of workpiece material and a
decrease in roughness (curves 1, 2, 3, 4, 6, and 7). This pattern was particularly clear under
dry cutting conditions for the specimen with ferrite–pearlite microstructure (curve 1). The
highest roughness was observed for the specimen cut from the degraded part of the shaft
(curves 5 and 6). This can be explained by the fact that during the interaction of the surface
and subsurface layers of the rotor shaft during operation, complex physical and chemical
processes are reflected as a result of long-term processes that lead to structural changes.
For example, for turbine unit shafts, it was recorded that during long-term operation (up
to 250 thousand hours), the surface hardness of the rotor shaft decreases from 290 HB to
250 HB. It was recorded that in the microstructure of the shaft, the amount of cementite
decreased from 87% to 62%, and the proportion of free ferrite increased from 5% to 20%
over 250 thousand hours of operation. The average microhardness of ferrite decreased
from 1.9 GPa to 1.5 GPa. An increase in the content of alloying elements in carbides was
recorded: Cr and V—by 1.15–1.6 times; Mo—by 2.2–2.8 times [7,91,92]. The hydrogen
saturation of the specimen with a sorbitan microstructure at a hydrogen concentration of
2 ppm reduced the surface roughness compared to the non-saturated specimen. At such
lower hydrogen concentrations, the “plasticising effect” of hydrogen in the steel matrix
was observed [85,93,94]. For specimens with a hydrogen concentration of 6 and 8 ppm, the



Materials 2024, 17, 6257 14 of 19

microhardness (Table 4) and roughness (Figure 20; curves 4 and 5) were higher than for
the unhydrogenated sample, indicating the brittle nature of the hydrogen effect. Also, the
embrittling effect of hydrogen [7,9,82,85,86] is confirmed by a decrease in the values of δ
and ψ after the saturation of the specimens with hydrogen (Tables 1 and 2).
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Cutting conditions: 1 and 7—dry cutting; 2–6—cutting with coolant.

Thus, during machining, the processes of forming micro- and macro-geometric param-
eters and the stress–strain state of the surface and subsurface layers of the part continue.
Hydrogen localizes and intensifies the processes of plastic deformation and facilitates
fracture by penetrating into the formed microcracks. Active radicals interact with the
juvenile surface of the workpiece and the tool through chemisorption, reducing energy con-
sumption during turning, and “nanofluids” and lubricants are used to improve machining
and to cool the tool during technological operations [11,43–49]. In both dry and coolant
cutting, the surface roughness reflects the degradation of the rotor shaft or experimental
prototypes due to hydrogenation, which can be used to diagnose the condition of the rotor
after long-term operation. Thus, taking into account the embrittlement effect of hydrogen
on the properties and formation of chips allows for a more reliable assessment of the change
in the operational characteristics of the rotor shaft.

4. Conclusions

Comparative studies of the turning products of a long-term operated rotor shaft and
experimental samples of rotor steel 38KhN3MFA were carried out at turning speeds from
100 to 500 rpm. The effect of absorbed hydrogen on the surface roughness and the appear-
ance of the formed chip particles was evaluated. The parameters of the microstructure
corresponding to area I—the central part of the rotor shaft (initial conditional state)—and
area II—the location where the hydrogen seal and bearing were destroyed—were analyzed.
In the area degraded due to long-term operation (250,000 h), a decrease in the average grain
size from 21.57 µm (area I) to 12.72 µm (area II) and an increase in the amount of hydrogen
absorbed during operation from 2.27 (area I) to 7.54 ppm (area II) were observed.

Dry turning at 200 RPM mainly produces rectangular chips with linear dimensions of
10 to 15 mm. With an increase in frequency to 315 RPM, the number of large spiral rings
with a diameter from 15 to 20 mm increases with a chip length of more than 50 mm. Cracks
of 1–4 mm in length were found in most chip particles for both turning frequencies.

Increasing the rotational speed from 200 to 315 RPM leads to the formation of an oxide
film on the surface of the specimens, as evidenced by the appearance of oxygen during local
analysis of the elemental content on the chip surface. As the temperature rises, conditions
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are created for welding the material, which is accompanied by an increase in roughness. An
even more significant increase in temperature and, consequently, surface oxidation occurs
at rotational speeds up to 500 RPM, so this turning mode is not recommended.

The saturation of specimens with gaseous hydrogen led to the formation of finer
chips compared to the non-hydrated material. At a hydrogen content value of 2 ppm, the
roughness of the machined surface was less than that at 6 ppm and 8 ppm. The maximum
roughness values were Rz = 48–58 for the material cut from the degraded part of the rotor.
In both dry and coolant cutting, the surface roughness reflects the degradation of the rotor
shaft or experimental prototypes due to hydrogenation, which can be used to diagnose the
condition of the rotor after long-term operation.
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Nomenclature and Abbreviations

σu ultimate tensile strength (UTS)
σy yield strength (YS)
δ elongation
ψ reduction in area
CH hydrogen concentration in specimens
P hydrogen pressure
D average grain size
RPM revolutions per minute
TGV turbogenerator with hydrogen cooling
HB Brinell hardness
HELP hydrogen-enhanced localized plasticity
HEDE hydrogen-enhanced decohesion effect
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