Biodegradable Nanocomposites Based on Blends of Poly(Butylene Adipate–Co–Terephthalate) (PBAT) and Thermoplastic Starch Filled with Montmorillonite (MMT): Physico-Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TPS–MMT/PBAT Nanocomposites
2.3. Mechanical Properties
2.4. Dynamic Mechanical Thermal Analysis (DMTA)
2.5. X-ray Diffraction (XRD)
2.6. Nuclear Magnetic Resonance (NMR)
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Mechanical Properties
3.3. Dynamic Mechanical Thermal Analysis (DMTA)
3.4. Nuclear Magnetic Resonance (NMR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, F.; Pinheiro, I.; Gouveia, R.; Thim, G.; Lona, L. Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym. Compos. 2018, 39, E9–E29. [Google Scholar] [CrossRef]
- Peidayesh, H.; Heydari, A.; Mosnáčková, K.; Chodák, I. In situ dual crosslinking strategy to improve the physico-chemical properties of thermoplastic starch. Carbohydr. Polym. 2021, 269, 118250. [Google Scholar] [CrossRef]
- Saparová, S.; Ondriš, L.; Kovaľaková, M.; Fričová, O.; Peidayesh, H.; Baran, A.; Hutníková, M.; Chodák, I. Effects of glycerol content on structure and molecular motion in thermoplastic starch-based nanocomposites during long storage. Int. J. Biol. Macromol. 2023, 253, 126911. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulos, S.; Karger-Kocsis, J.; Kmetty, Á.; Lendvai, L.; Psarras, G. Thermoplastic starch modified with microfibrillated cellulose and natural rubber latex: A broadband dielectric spectroscopy study. Carbohydr. Polym. 2017, 157, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Chivrac, F.; Pollet, E.; Avérous, L. Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater. Sci. Eng. R Rep. 2009, 67, 1–17. [Google Scholar] [CrossRef]
- Dang, K.M.; Yoksan, R.; Pollet, E.; Avérous, L. Morphology and properties of thermoplastic starch blended with biodegradable polyester and filled with halloysite nanoclay. Carbohydr. Polym. 2020, 242, 116392. [Google Scholar] [CrossRef]
- Peidayesh, H.; Mosnáčková, K.; Špitalský, Z.; Heydari, A.; Šišková, A.O.; Chodák, I. Thermoplastic starch–based composite reinforced by conductive filler networks: Physical properties and electrical conductivity changes during cyclic deformation. Polymers 2021, 13, 3819. [Google Scholar] [CrossRef] [PubMed]
- Šmídová, N.; Peidayesh, H.; Baran, A.; Fričová, O.; Kovaľaková, M.; Králiková, R.; Chodák, I. Influence of Air Humidity Level on the Structure and Mechanical Properties of Thermoplastic Starch-Montmorillonite Nanocomposite during Storage. Materials 2023, 16, 900. [Google Scholar] [CrossRef]
- Drakopoulos, S.X.; Špitalský, Z.; Peidayesh, H.; Lendvai, L. The Effect of Drying of Glycerol-Plasticized Starch upon Its Dielectric Relaxation Dynamics and Charge Transport. J. Polym. Environ. 2023, 31, 5389–5400. [Google Scholar] [CrossRef]
- Lendvai, L.; Sajó, I.; Karger-Kocsis, J. Effect of storage time on the structure and mechanical properties of starch/bentonite nanocomposites. Starch-Stärke 2019, 71, 1800123. [Google Scholar] [CrossRef]
- Khan, B.; Bilal Khan Niazi, M.; Samin, G.; Jahan, Z. Thermoplastic starch: A possible biodegradable food packaging material—A review. J. Food Process Eng. 2017, 40, e12447. [Google Scholar] [CrossRef]
- Lendvai, L.; Karger-Kocsis, J.; Kmetty, Á.; Drakopoulos, S.X. Production and characterization of microfibrillated cellulose-reinforced thermoplastic starch composites. J. Appl. Polym. Sci. 2016, 133, 42397. [Google Scholar] [CrossRef]
- Sun, S.; Liu, P.; Ji, N.; Hou, H.; Dong, H. Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing. Food Hydrocoll. 2018, 77, 964–975. [Google Scholar] [CrossRef]
- Zhang, M.; Thomas, N.L. Preparation and properties of polyhydroxybutyrate blended with different types of starch. J. Appl. Polym. Sci. 2010, 116, 688–694. [Google Scholar] [CrossRef]
- Palai, B.; Biswal, M.; Mohanty, S.; Nayak, S.K. In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind. Crops Prod. 2019, 141, 111748. [Google Scholar] [CrossRef]
- Martinez Villadiego, K.; Arias Tapia, M.J.; Useche, J.; Escobar Macías, D. Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: A review. J. Polym. Environ. 2022, 30, 75–91. [Google Scholar] [CrossRef]
- Cai, J.; Xiong, Z.; Zhou, M.; Tan, J.; Zeng, F.; Lin, S.; Xiong, H. Thermal properties and crystallization behavior of thermoplastic starch/poly (ɛ-caprolactone) composites. Carbohydr. Polym. 2014, 102, 746–754. [Google Scholar] [CrossRef] [PubMed]
- de Campos, A.; Tonoli, G.H.; Marconcini, J.M.; Mattoso, L.H.; Klamczynski, A.; Gregorski, K.S.; Wood, D.; Williams, T.; Chiou, B.-S.; Imam, S.H. TPS/PCL composite reinforced with treated sisal fibers: Property, biodegradation and water-absorption. J. Polym. Environ. 2013, 21, 1–7. [Google Scholar] [CrossRef]
- Olivato, J.; Müller, C.; Carvalho, G.; Yamashita, F.; Grossmann, M.V.E. Physical and structural characterisation of starch/polyester blends with tartaric acid. Mater. Sci. Eng. C 2014, 39, 35–39. [Google Scholar] [CrossRef]
- Lendvai, L.; Apostolov, A.; Karger-Kocsis, J. Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly (butylene adipate-co-terephthalate). Carbohydr. Polym. 2017, 173, 566–572. [Google Scholar] [CrossRef]
- Dammak, M.; Fourati, Y.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Boufi, S. Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Ind. Crops Prod. 2020, 144, 112061. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Harnkarnsujarit, N.; Chongcharoenyanon, B.; Kwon, S.; Ko, S. Enhanced properties of PBAT/TPS biopolymer blend with CuO nanoparticles for promising active packaging. Food Packag. Shelf Life 2023, 37, 101072. [Google Scholar] [CrossRef]
- Wei, D.; Wang, H.; Xiao, H.; Zheng, A.; Yang, Y. Morphology and mechanical properties of poly (butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly (butylene adipate-co-terephthalate). Carbohydr. Polym. 2015, 123, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly (butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wang, M.; Zhang, Z.; Yang, L.; Ma, L.; Liu, H. Preparation and Properties of Poly (butylene adipate-co-terephthalate)/thermoplastic Hydroxypropyl Starch Composite Films Reinforced with Nano-Silica. Polymers 2023, 15, 2026. [Google Scholar] [CrossRef]
- Ayana, B.; Suin, S.; Khatua, B. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr. Polym. 2014, 110, 430–439. [Google Scholar]
- Thipmanee, R.; Sane, A. Effect of zeolite 5A on compatibility and properties of linear low-density polyethylene/thermoplastic starch blend. J. Appl. Polym. Sci. 2012, 126, E252–E259. [Google Scholar] [CrossRef]
- Dufresne, A.; Castaño, J. Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch-Stärke 2017, 69, 1500307. [Google Scholar] [CrossRef]
- Baran, A.; Fričová, O.; Vrábel, P.; Popovič, Ľ.; Peidayesh, H.; Chodák, I.; Hutníková, M.; Kovaľaková, M. Effects of urea and glycerol mixture on morphology and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites studied using XRD and NMR. J. Polym. Res. 2022, 29, 257. [Google Scholar] [CrossRef]
- Chung, Y.-L.; Ansari, S.; Estevez, L.; Hayrapetyan, S.; Giannelis, E.P.; Lai, H.-M. Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr. Polym. 2010, 79, 391–396. [Google Scholar] [CrossRef]
- Yang, F.; Chen, G.; Li, J.; Zhang, C.; Ma, Z.; Zhao, M.; Yang, Y.; Han, Y.; Huang, Z.; Weng, Y. Effects of quercetin and organically modified montmorillonite on the properties of poly (butylene adipate-co-terephthalate)/thermoplastic starch active packaging films. ACS Omega 2022, 8, 663–672. [Google Scholar] [CrossRef] [PubMed]
- El Nokab, M.E.H.; Lasorsa, A.; Sebakhy, K.O.; Picchioni, F.; van der Wel, P.C. Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocoll. 2022, 127, 107500. [Google Scholar] [CrossRef]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef]
- Madhumitha, G.; Fowsiya, J.; Mohana Roopan, S.; Thakur, V.K. Recent advances in starch–clay nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23, 331–345. [Google Scholar] [CrossRef]
- Santos, R.A.; Muller, C.M.; Grossmann, M.V.; Mali, S.; Yamashita, F. Starch/poly (butylene adipate-co-terephthalate)/montmorillonite films produced by blow extrusion. Quim. Nova 2014, 37, 937–942. [Google Scholar] [CrossRef]
- Olivato, J.; Marini, J.; Pollet, E.; Yamashita, F.; Grossmann, M.; Avérous, L. Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay. Carbohydr. Polym. 2015, 118, 250–256. [Google Scholar] [CrossRef]
- Guo, M.; Jin, Y.; Han, X.; Sun, J.; Yuan, J.; Tian, H. Biodegradable Poly (Butylene Adipate-Co-Terephthalate) and Thermoplastic Starch Sustainable Blends Modified by Epoxy-Terminated Hyperbranched Polyester with Excellent Mechanical Properties and High Transparency. Starch-Stärke 2023, 75, 2200169. [Google Scholar] [CrossRef]
- ISO 1133-1; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method. ISO: Geneva, Switzerland, 2011.
- ASTM, D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- Chen, Q.; Hou, S.; Schmidt-Rohr, K. A simple scheme for probehead background suppression in one-pulse 1H NMR. Solid State Nucl. Magn. Reson. 2004, 26, 11–15. [Google Scholar] [CrossRef]
- Garalde, R.A.; Thipmanee, R.; Jariyasakoolroj, P.; Sane, A. The effects of blend ratio and storage time on thermoplastic starch/poly (butylene adipate-co-terephthalate) films. Heliyon 2019, 5, e01251. [Google Scholar] [CrossRef]
- Van Soest, J.J.; Hulleman, S.; De Wit, D.; Vliegenthart, J. Crystallinity in starch bioplastics. Ind. Crops Prod. 1996, 5, 11–22. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef]
- Aouada, F.A.; Mattoso, L.H.; Longo, E. New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind. Crops Prod. 2011, 34, 1502–1508. [Google Scholar] [CrossRef]
- Šmídová, N.; Šoltýs, A.; Hronský, V.; Olčák, D.; Popovič, Ľ.; Chodák, I. Aging-induced structural relaxation in cornstarch plasticized with urea and glycerol. J. Appl. Polym. Sci. 2021, 138, 50218. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Wang, Z.; Dai, B.; Liu, J.; Chen, Y.; Zeng, G.; He, Y.; Liu, Y.; Liu, R. Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion. Carbohydr. Polym. 2019, 223, 115122. [Google Scholar] [CrossRef]
- Jalalvandi, E.; Majid, R.; Ghanbari, T.; Ilbeygi, H. Effects of montmorillonite (MMT) on morphological, tensile, physical barrier properties and biodegradability of polylactic acid/starch/MMT nanocomposites. J. Thermoplast. Compos. Mater. 2015, 28, 496–509. [Google Scholar] [CrossRef]
- Menard, K.P. Dynamic Mechanical Analysis: A Practical Introduction, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 95–122. [Google Scholar]
- Bashir, M.A. Use of dynamic mechanical analysis (DMA) for characterizing interfacial interactions in filled polymers. Solids 2021, 2, 108–120. [Google Scholar] [CrossRef]
- Fourati, Y.; Tarrés, Q.; Mutjé, P.; Boufi, S. PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydr. Polym. 2018, 199, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, H.; Guidez, A.; Prashantha, K.; Soulestin, J.; Lacrampe, M.; Krawczak, P. Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr. Polym. 2015, 115, 364–372. [Google Scholar] [CrossRef]
- Fričová, O.; Hutníková, M. Viscoelastic behavior of starch plasticized with urea and glycerol. AIP Conf. Proc. 2019, 2131, 020011. [Google Scholar]
- Kou, Y.; Dickinson, L.; Chinachoti, P. Mobility characterization of waxy corn starch using wide-line 1H nuclear magnetic resonance. J. Agric. Food Chem. 2000, 48, 5489–5495. [Google Scholar] [CrossRef]
- Šmídová, N.; Fričová, O.; Chodák, I.; Kovaľaková, M. Structural characterization of poly (butylene-adipate-co-terephthalate)(PBAT)/thermoplastic starch blends. AIP Conf. Proc. 2023, 2778, 040026. [Google Scholar]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Ngouajio, M.; Fernandez, R.T. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym. Degrad. Stab. 2010, 95, 2641–2647. [Google Scholar] [CrossRef]
- Mutungi, C.; Passauer, L.; Onyango, C.; Jaros, D.; Rohm, H. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohydr. Polym. 2012, 87, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Cranston, E.; Kawada, J.; Raymond, S.; Morin, F.G.; Marchessault, R.H. Cocrystallization model for synthetic biodegradable poly (butylene adipate-co-butylene terephthalate). Biomacromolecules 2003, 4, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y. Crystalline/Amorphous Phase Structure and Molecular Mobility of Biodegradable Poly (butylene adipate-c o-butylene terephthalate) and Related Polyesters. Biomacromolecules 2002, 3, 390–396. [Google Scholar] [CrossRef]
TPS wt% | PBAT wt% | MMT php * | Tensile Stress (MPa) | Tensile Strain (%) | Young’s Modulus (MPa) |
---|---|---|---|---|---|
0 | 100 | 0 | 29.6 ± 3.3 | 845 ± 96 | 42.8 ± 3.4 |
10 | 90 | 0 | 21.3 ± 0.9 | 696 ± 44 | 68.7 ± 2.9 |
10 | 90 | 2 | 18.7 ± 1.4 | 627 ± 57 | 76.0 ± 2.6 |
10 | 90 | 5 | 18.8 ± 0.8 | 629 ± 35 | 73.0 ± 5.0 |
20 | 80 | 0 | 17.2 ± 1.8 | 641 ± 58 | 63.3 ± 1.4 |
20 | 80 | 2 | 13.0 ± 2.1 | 500 ± 101 | 59.6 ± 4.1 |
20 | 80 | 5 | 11.2 ± 2.0 | 380 ± 134 | 63.9 ± 1.3 |
30 | 70 | 0 | 13.1 ± 1.4 | 586 ± 61 | 50.2 ± 2.0 |
30 | 70 | 2 | 10.7 ± 2.0 | 469 ± 128 | 52.6 ± 3.7 |
30 | 70 | 5 | 10.3 ± 1.5 | 429 ± 100 | 53.0 ± 2.0 |
100 | 0 | 0 | 7.2 ± 0.5 | 33.7 ± 8.6 | 363 ± 20 |
TPS wt% | PBAT wt% | MMT php * | Storage Modulus (GPa) |
---|---|---|---|
0 | 100 | 0 | 70 |
10 | 90 | 0 | 84.7 |
10 | 90 | 2 | 82.3 |
10 | 90 | 5 | 78.3 |
20 | 80 | 0 | 94.2 |
20 | 80 | 2 | 85.3 |
20 | 80 | 5 | 85.8 |
30 | 70 | 0 | 125 |
30 | 70 | 2 | 103.7 |
30 | 70 | 5 | 123.2 |
100 | 0 | 0 | 395 |
NS1 | NS2 | BS | ||||||
---|---|---|---|---|---|---|---|---|
TPS wt% | PBAT wt% | MMT php * | Linewidth (Hz) | Rel. Int. (%) | Linewidth (Hz) | Rel. Int. (%) | Linewidth (Hz) | Rel. Int. (%) |
0 | 100 | 0 | 1700 | 27.2 | 3100 | 22.7 | 17,000 | 50.1 |
10 | 90 | 0 | 1900 | 28.3 | 3500 | 26.1 | 22,000 | 45.6 |
10 | 90 | 2 | 1950 | 31.6 | 3900 | 25.7 | 22,500 | 42.7 |
10 | 90 | 5 | 2050 | 34.6 | 4000 | 24 | 23,000 | 41.4 |
20 | 80 | 0 | 1700 | 19.5 | 2600 | 33.6 | 20,000 | 46.9 |
20 | 80 | 2 | 1800 | 21.8 | 2800 | 32.9 | 21,000 | 45.3 |
20 | 80 | 5 | 1900 | 25.7 | 3000 | 29.8 | 22,500 | 44.5 |
30 | 70 | 0 | 1900 | 17.6 | 2100 | 32.3 | 21,000 | 50.1 |
30 | 70 | 2 | 2150 | 21.8 | 2450 | 30.1 | 22,000 | 48.1 |
30 | 70 | 5 | 2200 | 26.2 | 2600 | 29.9 | 23,000 | 43.9 |
100 | 0 | 0 | 1900 | 60.2 | - | - | 26,000 | 39.8 |
Component | Functional Group | Chemical Shift (ppm) |
---|---|---|
PBAT | –COOR (p1, p5) | 173.2 |
164.6 | ||
–C6H4– (p2) | 134.2 | |
129.6 | ||
–CH2–COOR (p6) | 34.2 | |
–CH2– (p4) | 25.9 | |
–O–CH2 (p3) | 65.2 | |
TPS | C1 | 103 |
C2–C5 | 65.5–78.8 | |
C4 | 82.1 | |
C6 | 61.4 | |
Glycerol | CH2 (g2) | 63.6 |
CH (g1) | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peidayesh, H.; Ondriš, L.; Saparová, S.; Kovaľaková, M.; Fričová, O.; Chodák, I. Biodegradable Nanocomposites Based on Blends of Poly(Butylene Adipate–Co–Terephthalate) (PBAT) and Thermoplastic Starch Filled with Montmorillonite (MMT): Physico-Mechanical Properties. Materials 2024, 17, 540. https://doi.org/10.3390/ma17030540
Peidayesh H, Ondriš L, Saparová S, Kovaľaková M, Fričová O, Chodák I. Biodegradable Nanocomposites Based on Blends of Poly(Butylene Adipate–Co–Terephthalate) (PBAT) and Thermoplastic Starch Filled with Montmorillonite (MMT): Physico-Mechanical Properties. Materials. 2024; 17(3):540. https://doi.org/10.3390/ma17030540
Chicago/Turabian StylePeidayesh, Hamed, Leoš Ondriš, Simona Saparová, Mária Kovaľaková, Oľga Fričová, and Ivan Chodák. 2024. "Biodegradable Nanocomposites Based on Blends of Poly(Butylene Adipate–Co–Terephthalate) (PBAT) and Thermoplastic Starch Filled with Montmorillonite (MMT): Physico-Mechanical Properties" Materials 17, no. 3: 540. https://doi.org/10.3390/ma17030540
APA StylePeidayesh, H., Ondriš, L., Saparová, S., Kovaľaková, M., Fričová, O., & Chodák, I. (2024). Biodegradable Nanocomposites Based on Blends of Poly(Butylene Adipate–Co–Terephthalate) (PBAT) and Thermoplastic Starch Filled with Montmorillonite (MMT): Physico-Mechanical Properties. Materials, 17(3), 540. https://doi.org/10.3390/ma17030540