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Abstract: Closed-cell aluminum foams have many excellent properties, such as low density, high
specific strength, great energy absorption, good sound absorption, electromagnetic shielding, heat
and flame insulation, etc. As a new kind of material, closed-cell aluminum foams have been used
in lightweight structures, traffic collision protections, sound absorption walls, building decorations,
and many other places. In this paper, the recent progress of closed-cell aluminum foams, on fabri-
cation techniques, including the melt foaming method, gas injection foaming method, and powder
metallurgy foaming method, and on processing techniques, including powder metallurgy foaming
process, two-step foaming process, cast foaming process, gas injection foaming process, mold pressing
process, and integral foaming process, are summarized. Properties and applications of closed-cell
aluminum foams are discussed based on the mechanical properties and physical properties separately.
Special focuses are made on the newly developed cast-forming process for complex 3D parts and the
improvement of mechanical properties by the development of small pore size foam fabrication and
modification of cell wall microstructures.

Keywords: porous metal; metal foam; aluminum foam; closed-cell foam

1. Introduction

There are a variety of porous structures in nature, such as coral, bone, sponge, wood,
etc. Inspired by nature, human beings fabricated a series of porous materials [1–7]. Porous
metal has excellent mechanical and physical properties, such as low density, high specific
strength, and good sound absorption [8–17]. Aluminum foams have become the most
popular and widely studied porous metal because of their low cost, unique properties,
easiness of fabrication, and rich reserves [18,19].

Aluminum foams can be categorized into closed-cell and open-cell foams according to
their pore structure [20], as shown in Figure 1. Their structures, properties, and applications
are distinct. Open-cell foams are often used as sound-absorbing materials [21] or liquid
filtration materials [22]. Detailed descriptions of open-cell foams can be found in [22]. This
paper mainly introduces closed-cell foams. In the following content, all the mentioned
aluminum foams refer to closed-cell aluminum foams.

The research on aluminum foams can be traced back to 1925 [3,23]. After nearly a
hundred years of development, a series of fabrication methods have been developed and
commercial production has been achieved [3,11,24,25]. The pore size of foams is generally
1~25 mm, their porosities can reach 98%, and their density is around 0.05~1.3 g/cm3;
therefore, they are ultra-light materials [8]. Aluminum foams have high strength and great
energy absorption capacity, compressive plateau stress σp is around 2~30 MPa, and energy
absorption capacity W is around 1~15 MJ/m3 [26,27]. Aluminum foams have good sound
absorption performance and electromagnetic shielding effectiveness, their sound absorption
coefficient can be greater than 0.6 [28], and for the electromagnetic wave of frequency
below 200 MHz, the shielding effectiveness can reach 80 dB [29]. Aluminum foams have
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high porosity and low thermal conductivity [30]. They are not flammable and can be
used for heat and flame insulation [10]. Because of these excellent properties, aluminum
foams have been used in many places such as sound absorption barriers, architectural
decoration, military protection, aerospace, and aeronautics parts. An excellent combination
of mechanical and functional properties provides wide prospects for the application of
aluminum foams [3,10,31,32].
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Figure 1. (a) Closed-cell aluminum foam [33] (reproduced with permission from Springer); (b,c) open-
cell aluminum foam [34,35] (reproduced with permission from Elsevier and Hindawi).

Fabrication, processing, and properties are the most important research fields of alu-
minum foams. This paper aims to comprehensively review the fabrication and processing
techniques and explore the unique properties and diverse applications of aluminum foams.
In addition, the current status of research and development in aluminum foam is discussed.
It accomplishes this by providing an overview of existing developments and identifying
future opportunities in this industry.

2. Fabrication

In decades of research, many fabrication methods were proposed to obtain aluminum
foam. The most important and widely used fabrication techniques are the melt foam-
ing (MF) method, gas injection foaming (GIF) method, and powder metallurgy foaming
(PMF) method, as these methods have achieved commercial application. The compari-
son of these three methods is shown in Table 1, the research progress is reviewed in the
following content.

Table 1. Comparison of aluminum foams fabricated by the MF, GIF, PMF method.

Fabrication Methods Pore Size Porosity Advantages Disadvantages

MF 1~8 mm 50~90% Fabrication of large-size blocks
Low cost Poor shaping ability

GIF 1~25 mm 75~98%
Simple process
Continuous production
Low cost

Difficult to disperse particles in the melt
Blowing efficiency is low
Pore size is large
Poor mechanical properties

PMF 1~6 mm 50~90%

Near-net shape forming
Fabrication of sandwich structures
Metallurgical bonding between
metal sheets

Pore structure control is difficult
Large-size parts are difficult to make
High cost

2.1. Melt Foaming Method

Shinko Wire Company in Japan developed the MF method commercially in 1986 with
a trademark of ALPORAS® [3,36]. The ALPORAS process, as shown in Figure 2a, has
been widely used since it was invented. The process of this method is to add a thickening
agent (TA, usually 1~3 wt% Ca) to the aluminum melt and stir the melt for some time for
foam stabilization, then add the foaming agent (FA), quickly stir to disperse it into the melt,
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and begin to foam [36]. The MF method is suitable for the fabrication of large-size foam
blocks and can produce blocks with a length of about 2 m, width of about 1 m, and height
of over 0.3 m. The pore size is about 1~8 mm, and the porosity is around 50~90%. After
slicing blocks into panels, these panels can be used for sound absorption barriers [37] and
architectural decoration [38], as shown in Figure 2b. The disadvantage of this method is its
poor shaping ability, as usually only blocks can be fabricated.
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Figure 2. (a) The ALPORAS process [36] (reproduced with permission from John Wiley and Sons);
(b) MF aluminum foam panels (reproduced with permission from Fumeite, Hebei, China).

To obtain MF foams with uniform pore structures, a lot of studies about the fabrication
process have been carried out.

Many studies focused on the thickening and foaming procedure. These studies tried
to add different kinds of TAs and FAs to the melt. TAs mainly include Ca [36], Mg [39],
fly ash [40], SiC [41], Al powders [42], and MnO2 [43]. Among the TAs, Ca shows the best
foam stabilization ability, and melt treatment with Ca is the only option for commercial
production. Song et al. [44] found that controlling the viscosity of the melt within a certain
range by adjusting the content of Ca can obtain good foaming results. FAs mainly include
metal hydrides and carbonates [3], for example, TiH2 [36], ZrH2 [45], CaCO3 [41], and
MgCa(CO3)2 [46]. Among these FAs, TiH2 is the most widely used and shows the best foam-
ing results. The decomposition temperature of raw TiH2 is low (<500 ◦C) [47,48], far below
the foaming temperature (>600 ◦C), and it is not suitable for foaming. The decomposition
temperature of TiH2 can be increased by pre-oxidization treatment [49,50] or coating [51]
to achieve better foaming results. In these two methods, pre-oxidation treatment is more
commonly used. Preheating TiH2 at 480~520 ◦C in an oxidizing atmosphere can increase its
decomposition temperature to above 600 ◦C and fit the foaming temperature [49]. Starting
from Ca as the TA and TiH2 as the FA, Yuan [52] studied key parameters of the fabrication
process, including the stirring process, melt thickening temperature, TiH2 particle size, and
foaming temperature, and then the realized batch fabrication of 500 × 1000 × X mm slabs.

Aluminum foams with smaller pore sizes and uniform pore structure have better
mechanical properties (MEPs) [53]. However, it is difficult to fabricate foams with pore
diameters (dr) smaller than 3 mm by the traditional MF method. The wettability of TiH2
in aluminum melt is poor [45], and it is difficult to uniformly disperse TiH2 powders into
the melt after a few minutes of mechanical stirring before foaming. Although foaming
under high pressure [54] or rapidly cooling the sample before the melt is completely
foamed [53] can reduce the pore size, these methods are difficult to realize in commercial
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production. In order to solve this problem, Cheng [33] ball milled the mixed powders of
Cu and pre-oxidized TiH2. During the mechanical ball milling process, TiH2 is broken and
embedded into Cu powders, as shown in Figure 3a. Cu powders have better wettability
with aluminum melt and are easier to disperse into the melt. Foams with dr of 1.6 mm can
be fabricated by using this method. Zhou [55] selected AlMg35 alloy with a low melting
point (about 450 ◦C). Add 5~10 wt% of pre-oxidized TiH2 powder into the AlMg35 melt,
stir at 500 ◦C for 15~30 min, and TiH2 powders can be uniformly dispersed into the AlMg35
melt. AlMg35 alloy is brittle, and the solidified AlMg35-TiH2 composite FA can be easily
broken into small pieces, as shown in Figure 3b. Foams with dr of below 1 mm can be
fabricated by using the AlMg35-TiH2 composite FA, as shown in Figure 4. Compared with
the ball milling method, this one is more suitable for commercial production.
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2.2. Gas Injection Foaming Method

In the early 1990s, Alcan company in Canada discovered that foams could be pro-
duced by injecting gas into liquid aluminum matrix composites, and the GIF method was
developed [3]. The process is shown in Figure 5a. Bubbles are blown into aluminum alloy
melt containing ceramic particles (usually SiC or Al2O3). Bubbles rise, accumulate, and
solidify, and aluminum foams are fabricated [56]. Porosities of foams fabricated by this
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method are generally 75~98%, the pore size is generally 3~25 mm [8,57], and under certain
conditions, foams with dr of 1 mm can be obtained [58,59]. The GIF method is suitable for
the continuous production of slabs. The advantages of this method are its simple process,
low cost, and continuous production [3,56]. Disadvantages are that it is difficult to disperse
ceramic particles in the melt, blowing efficiency is low, pore size is large, and MEPs of
products are poor.
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In order to design a reasonable foaming process, research concerning the stability of
foam has been carried out. The main factors affecting foam stability are ceramic particles
and oxide film on the cell wall surface [61–65]. Directly blowing gas into pure aluminum
or aluminum alloy melt cannot foam, there must be certain amounts of ceramic particles
in the melt to foam [66]. Leitlmeier et al. [56] found that when the melt contains certain
amounts of ceramic particles, the bubbles need to rise for a certain distance to obtain a
stable foam structure. The minimum bubble traveling distance is inversely related to the
volume fraction of ceramic particles in the melt. Liu [67] analyzed the above phenomenon
and found that certain amounts of ceramic particles must be adsorbed on the bubble surface
during the bubble-rising process. To obtain stable foam, the particle coverage ratio on the
bubble surface must be greater than 14%. The influence of particle type, size, and content
on foam stability was systematically studied in the reference [68,69], and requirements
for the content and size of ceramic particles were concluded in the reference [8,69]. When
the volume fraction of ceramic particles is between 5~20% and the size is 1~20 µm, stable
foams can be obtained. However, no stable foam can be obtained when blowing inert gas
into a melt containing ceramic particles [63,64]. Zhou [64] found that stable foams can be
fabricated only when the oxygen volume fraction of gas is larger than 1.6%. An oxide film
about 15 nm thick covers the entire bubble surface. The oxide film avoids particles piercing
the surface of liquid films and limits the flow direction of drainage, and, when foams are
deformed at the accumulation stage, the oxide film can protect the foams [65].

For the fabrication process, the design of nozzles, blowing mode, and base metal were
studied to optimize pore structure. In terms of the design of nozzles, Liu [70] and Yuan [71]
found that gas chamber volume, orifice diameter, and gas flow rate are important factors
affecting bubble size. Bubble size can be effectively reduced by reducing gas chamber
volume, orifice diameter, or gas flow rate (A gas chamber is defined as the space between
the nozzle tip and the point where the pressure drop is large [72]). When the gas chamber
volume is the same, gas injection devices with more orifices can blow smaller bubbles.
Yuan [60,73] studied the bubble formation process during the static GIF process. The
influence of contact angle is elucidated. When the contact angle becomes larger, bubbles
detach later, and bubble size becomes larger. The existence of a wedge angle on the orifice
can reduce the equivalent contact angle and reduce bubble size. For the blowing modes,
the vibration and movement of nozzles can effectively reduce bubble size. In the work of
Babcsán [58], the use of ultrasonic vibration on the nozzle was shown to enable precise
control of bubble size. Wang [74] used a high-speed horizontal oscillation system and
reduced the pore size of foams from 10 mm to less than 4 mm. Based on this oscillation
system, a bubble formation and detachment model [75] was established. According to the
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model, bubble size is inversely proportional to the oscillation frequency and amplitude,
and is proportional to the gas flow rate. Noack et al. [59] found that rotation of the gas
injector can effectively reduce the pore size of foams, and foams with dr below 1 mm
can be obtained in this way. In terms of the base metal, aluminum foams fabricated by
hypoeutectic Al-Si alloy have a better pore structure and foam stability, and the average
pore size is smaller [76].

2.3. Powder Metallurgy Foaming Method

In the 1990s, the Fraunhofer Institute in Germany made a breakthrough in the fab-
rication process of the PMF method [3]. The process is to compact the mixed powder of
metal and FA to obtain a condensed precursor, then heat the precursor above its melting
temperature, the FA in the precursor releases gas to form a foam structure, and aluminum
foam is obtained after cooling [77], as shown in Figure 6a. The PMF method can realize
near-net shape forming, and shaped aluminum foam parts (SAFPs) can be fabricated with-
out machining [77,78]. Additionally, the PMF method is suitable for the fabrication of
aluminum foam sandwich (AFS) panels, as shown in Figure 6b. Because the metallurgical
bonding between foams and metal panels can be achieved [79]. Banhart et al. [32,77,79]
reported the commercial production of AFS panels. The disadvantage of this method is that
the cost of metal powder is high, and when fabricating products with nonuniform thickness
or large size, the precursor is difficult to heat uniformly, which may cause a nonuniform
pore structure.
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Densification of precursors, alloy compositions, selection of FAs, and foaming process
are important factors during the fabrication process. The precursors have to be condensed
before foaming to prevent gas loss during foaming [4]. Various techniques, extrusion,
powder rolling, uniaxial, and isostatic pressing have been used for powder consolida-
tion [77,82,83]. For alloy composition, early works concentrated on pure Al, and it was
soon discovered that alloys have advantages over pure Al [3]. Al-Si [84], Al-Si-Cu [85],
Al-Mg-Si [86], Al-Sn [87], Al-Si-Mg-Cu-Sn [88], and other systems were developed. In
these systems, AlSi6Cu4, AlSi6Cu6, and AlSi8Mg4 are more commonly used [79]. FAs
mainly include TiH2 [77], CaCO3 [89], ZrH2 [90], Mg-Al alloy powders [91], LiAlH4 [92],
etc. TiH2 has the best foaming result. Pre-oxidation treatment can retard the decomposition
of TiH2 and has a beneficial effect on pore morphology [49]. The cell structure of foams
can be improved by pretreating TiH2 with a layer of Sn powder [93]. With regard to the
foaming process, heating and cooling rates have an important effect on the foaming process.
Insufficient heating rates during foaming, <1 K/s, may cause cracks in the precursor and
gas loss [94], while at higher heating rates, the precursor might not be heated uniformly,
resulting in inhomogeneous foaming [95]. During the cooling process, increasing the cool-
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ing rate (>2.5 K/s) can mitigate drainage and bubble coalescence and reduce the number
of defects in the cell wall. However, when the cooling rate is too high, it can introduce
thermal shock to the foam, causing cell rupture [96]. In recent years, the development of
synchrotron technology enables real-time observation during the fabrication of aluminum
foams. Nucleation, growth of bubbles [97,98], and evolution of pore structure [99–103]
have been investigated, which can guide optimization of the fabrication process.

3. Processing

The reason that metallic materials are commonly used is not only their properties,
but also numerous processing methods [104]. Although great progress has been made in
the fabrication techniques, the wide use of aluminum foams still faces challenges. The
porosity of aluminum foams is usually over 50%, and porous structures seriously limit their
processing behavior [104,105]. The pore structure of foams collapses when it is compressed,
so it is difficult to process through plastic deformation. Foam melt with high viscosity
is difficult to flow, and not suitable for conventional casting processes. Due to the low
proportion of metal and oxidation on the interface, the weldability of aluminum foams
is poor [106]. SAFPs are usually processed by machining, which leads to high cost and
low efficiency.

During the development process of aluminum foams, many techniques have been
tried for processing. Some of the most important processing techniques, PMF foaming
process, two-step foaming (TSF) process, cast foaming (CF) process, GIF process, mold
pressing (MP) process, and integral foaming (IF) process are summarized here.

3.1. Powder Metallurgy Foaming Process

SAFPs can be produced by using the PMF process, as shown in Figure 7. When the
precursor in the mold is heated, the FAs in the precursor decompose and the precursor
expands and fills the mold [80], as shown in Figure 6a. However, this process has some
limitations. When producing products with large size or nonuniform thickness, it is
difficult to heat the precursor uniformly, which may cause a nonuniform pore structure.
Additionally, the mold-filling ability of solid precursor is not good enough, sometimes the
mold cannot be fully filled [107]. In addition, the price of metal powder is high and leads
to high product costs.
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3.2. Two-Step Foaming Process

The TSF process is to add FA TiH2 into the thickened melt, quickly disperse the
FA, and cool the melt to obtain a solid precursor, then heat the precursor in a mold to
obtain SAFPs [108,109], as shown in Figure 8. The TSF process has similar problems to
the PMF process. It is difficult to heat the precursor uniformly, and the mold-filling ability
of the precursor is not good enough. In addition, generally, there are many pores in the
precursors, pores reduce the thermal conductivity of precursors and worsen the foaming
result. According to the experimental result of Shang et al. [108], good foaming results can
be obtained only when the precursor porosity is lower than 56%.
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3.3. Cast Foaming Process

Yuan [104] developed the CF process on the basis of the MF method, the process is
shown in Figure 9a. Near eutectic Al-Si-Mg alloy with a low melting point (557 ◦C) is
used as the precursor alloy. Add pre-oxidized TiH2 FA into the thickened Al-Si-Mg melt
at ~600 ◦C, and stir to disperse the TiH2 powders uniformly into the melt. Pre-oxidized
TiH2 will not decompose rapidly at 600 ◦C, and the precursor melt can be cast into a mold.
The precursor melt is heated by the 700 ◦C high-temperature mold, TiH2 releases gas, melt
expands and SAFP is obtained. The mold-filling ability of liquid precursor is good, and
complex shape SAFPs can be produced, as shown in Figure 9b. Near net-shaped parts with
dense skin can be produced.

Metallic molds are not suitable for the CF process, because repeated heating and
cooling can cause deformation or even damage to metallic molds. The application of
the CF process through investment casting provides the opportunity for commercialized
production of SAFPs [104].

But there are still some problems with this process. In order to ensure that the precursor
melt can be cast into the mold, and fit the decomposition temperature of FA TiH2, only
aluminum alloys with a low melting point can be used. The eutectic Al-Si-Mg alloy, which
is not an appropriate alloy for foam fabrication, is needed in this process. The stability of
Al-Si-Mg foams is worse than Al-Ca foams. Surface shrinkage and inhomogeneous pore
structure defects may appear. Therefore, this process is only suitable for the production of
small-size parts.
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Figure 9. (a) The CF process [104] (reproduced/adapted with permission from Elsevier); (b) an
aluminum foam portrait with complex shape produced by using CF process [104] (reproduced with
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3.4. Gas Injection Foaming Process

Cingi et al. [110] combined the investment casting process with the GIF process to
produce SAFPs, as shown in Figure 10a–c. Aluminum foam parts with dense skin can be
obtained in this way. The limitation of this process is that only simple shape parts can be
fabricated, and pore structure control is difficult.
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Babcsán et al. [58,111] reported the production of ALUHAB aluminum foam, sub-
millimeter pore size foams. According to the literature [58], ALUHAB foams have an
extremely stable pore structure, which can be re-melted or cast into complex shapes
without damage to the foam structure, as shown in Figure 10d. However, nano-scale
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particles have to be dispersed in the melt before foaming, which is difficult to achieve in
commercial production.

3.5. Mold Pressing Process

Filice et al. [112] and Banhart et al. [32] found that aluminum foams or their composite
structures can be mold pressed or forged to produce SAFPs, as shown in Figure 11a,b.

Zhang et al. [113] found that AFS panels can keep their pore structure during MP
deformation, as shown in Figure 11c. The risk of core fracture can be reduced by adopting
multi-step forming and increasing the core relative density.

Liu [114] found that aluminum foams can deform during the solid–liquid–gas coex-
isting state and shape formation can be achieved through MP, as shown in Figure 11d–g.
Characteristic parameters were almost unchanged during formation.
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However, this process still has some limitations. MP process is more suitable for the
deformation of aluminum foam panels. It is still difficult to realize the deformation of
aluminum foams with big sizes or complex shapes. When the deformation is large, the pore
structure of foams might be destroyed or even condensed. In addition, when aluminum
foams are heated at high temperatures, oxidization will happen on the surface and defects
might appear.

3.6. Integral Foaming Process

The IF of aluminum is similar to methods of producing polymer integral foams [105,115–117],
as shown in Figure 12. MgH2 FA with a relatively low decomposition temperature is put in
the runner and gating system. Liquid metal is injected with high velocities into permanent
steel molds. During this stage, FA is dispersed into the melt. The FA releases gas and
the melt begins to foam, and, at the same time, solidification of the melt happens at the
surface of the mold. Near net-shaped foam parts with dense skin can be obtained in this
way. However, control of sample pore structure is difficult in this process.
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3.7. Summary

The above-mentioned processes produced some prototypes, but there is still a big gap
between real production. Processing techniques of aluminum foams cannot be connected
with fabrication methods. Many processing techniques, such as the TSF process and CF
process, are not practical for fabrication, limitations of these processing methods are low
efficiency, poor shaping ability, or difficulty of pore structure control. The MF method,
which is suitable for the commercial production of large-size aluminum foams, is not
suitable for producing SAFPs.

Processing of aluminum foams is still difficult. If a practical processing technique with
good shaping ability, uniform pore structure, and high efficiency can be developed, it will
be of great importance to the further development of aluminum foams.

4. Properties and Applications

In this chapter, the properties and applications of aluminum foams are introduced,
and the MEPs are emphatically elucidated.

4.1. Mechanical Properties
4.1.1. Basic Concepts

The unique deformation behavior of aluminum foams during compression determines
that it is suitable for energy absorption and crash protection [25]. Deformation during
compression can be divided into three stages [118], as shown in Figure 13. In the first stage,
elastic deformation occurs. In the second stage, the plateau stress stage, with the increase
in strain ε, the stress σ almost remains constant. In the third stage, densification stage, σ
increases sharply with the increase in ε. When aluminum foams are used for protection,
energy can be absorbed while keeping the stress of protected objects below a relatively
low level [2].
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The main parameters of aluminum foams, porosity P, relative density ρs, average pore
size dr, densification strain εd, plateau stress σp, and energy absorption at densification
strain Wd can be calculated according to the equations below:

P = 1 − ρ∗

ρAl
(1)

where ρAl is the density of bulk Al, and ρ∗ is the density of aluminum foam.
Relative density:

ρs =
ρ∗

ρAl
= 1 − P (2)

The average pore diameter can be calculated as [119]:

dr =
ds

0.785
=

∑N
i=1 di

0.785N
(3)

where dr is the average pore diameter of aluminum foam, ds is the average diameter of
pores on the 2D sample image, di is the equivalent diameter of each pore, and N is the
number of pores.

Energy absorption during deformation is

W =
∫ ε

0
σdε (4)

Energy absorption at densification strain εd is

Wd =
∫ εd

0
σdε (5)

The unit of W and Wd is MJ/m3. According to the equations above, it is obvious that
aluminum foams with higher values of σp or εd have higher Wd.

According to the reference [120], the value of εd depends on the energy absorption
efficiency η.

η =
W
σ

=

∫ ε
0 σdε

σ
(6)

Before the densification stage, the increase rate of W is greater than σ, and η increases
with the increase in ε. In the densification stage, strain hardening becomes obvious. The in-
crease rate of σ exceeds W, and η will decrease, as shown in Figure 13a. The ε corresponding
to the turning point of the η curve is εd.

dη

dε
|ε=εd = 0 (7)

Sometimes there is a slope during the plateau stress stage and the equivalent plateau
stress σp is often used.

σp =

∫ εd
ε0

σdε

εd − ε0
(8)

In real occasions, the stress reached during compression cannot be too high. Otherwise,
damages or injuries might be caused [26]. So, sometimes using the σ-W diagram instead of
ε-W diagram is more suitable.

Quasi-static compressive test (QSCT) results [26] of aluminum foams are shown in
Figure 14. It can be seen from Figure 14a,b that σ and W increase monotonically with the
increase in ρs at the same ε level. However, aluminum foams with higher ρs do not always
possess higher value of W at the same σ level. This can be seen in Figure 14c,d.
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Aluminum foams are often used for weight reduction and energy absorption. There-
fore, in practical applications, it may be a concern how much energy aluminum foam
with a given weight can absorb. Zhou [27] proposed the concept of energy absorption per
unit mass W∗ (unit: J/g), Equation (9), and energy absorption efficiency per unit mass
η∗, Equation (10).

W∗ =
W
ρ∗

=

∫ ε
0 σdε

ρ∗
(9)

η∗ =
η

ρ∗
=

∫ ε
0 σdε

ρ∗σ
(10)

The QSCT results [27] are shown in Figure 15. The W∗ of the aluminum foam with
the lowest ρs is not always the highest, as shown in Figure 15d. And it can be seen from
Figure 15e that each η∗ curve has a peak value. The peak value decreases with the increase
in the ρs. Comparing Figure 15a,d,e, it can be found that when the porosity is lower
than 55%, the peak value of η∗ is only about 0.2. If the porosity is further reduced, W∗ is
almost the same, but the stress σ increases sharply. This indicates that, although samples
with higher ρs have higher σp and Wd, they may not be suitable for energy absorption or
crash protection.

When used for energy absorption or crash protection, it is not always the case that
aluminum foams with higher ρs or σp have better energy absorption ability. For samples
with different ρs, there exists an optimal σ value, under which each sample can absorb
the maximum energy. Therefore, it is necessary to clarify the optimized use conditions of
aluminum foams and find out the most suitable application.

Different from QSCT conditions, gas trapped in the cell wall increases the σp and W
of closed-cell aluminum foams at higher strain rates

.
ε [121–125]. According to the result

of Paul et al. [126], the Wd of ALPORAS foams increased by more than 50% when the
.
ε

increased from 3.3 × 10−5 s−1 to 1.6 × 10−1 s−1. This means that aluminum foams are
suitable for crash protection.
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4.1.2. Influencing Factors

The MEPs of aluminum foams are mainly influenced by pore structure, cell wall
defects, and microstructure [127–133].

• Pore Structure

The pore structure of aluminum foams is of great importance to their MEPs, and
the specific factors are relative density ρs, pore morphology, and homogeneity of pores.
Yang et al. [134] found that with the increase in ρs from 0.08 to 0.36, σp increased by more
than 10 times, and Wd increased by more than 7 times. This indicates that the MEPs of
aluminum foams can be controlled or adjusted within a large range by adjusting the ρs to
meet the requirements of different applications. Sugimura et al. [135] studied the influence
of cell morphology on its MEPs and found that samples with less curved and serrated cell
walls exhibit higher stiffness. Zuo et al. [54] found that the σp of Al9Si foams with the same
porosity of 75% doubled when dr decreased from 3 mm to 1 mm [54]. With the decrease in
dr, there are more pores per unit volume, and structural defects are dispersed.

Based on a lot of research work, control of pore structure has been realized (introduced
in Sections 2.1–2.3), and the MEPs of aluminum foams have been greatly improved, as
shown in Figure 4. For small pore foams with dr of 1~2 mm and porosity of around 60~70%,
σp increased to about 15~30 MPa and Wd increased to about 10~15 J/cm3.

• Defects in the Cell Wall

During the cooling and solidification stage of foam fabrication, defects such as cell
wall broken and shrinkage will inevitably occur [136–138]. These defects are harmful to the
MEPs. In real conditions, isolated pore structures cannot be obtained. According to the
reference [137], for MF aluminum foam with a porosity of 77%, more than 90% of the pores
have cell wall broken defects, and for GIF aluminum foam with a porosity of 86%, more
than 30% of the pores have cell wall broken defects. In addition, there are many micropores
in the cell wall [136].
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Hu [139] found that after water spray chilling, the proportion of broken cell walls is
significantly reduced, as shown in Figure 16. The number of micropores is also reduced, as
shown in Figure 17.
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of micropores, sample cooling rate 0.10 ◦C/s.

• Microstructure and Properties of the Cell Wall

The cell wall is the stressed portion and cell wall properties directly determine the
properties of aluminum foams [130,140]. Figure 18 summarizes the relationship between
ρs and σp of MF foams with different compositions. It can be seen that the σp of samples
with similar ρs has a big difference that can be more than double. This indicates that the
microstructure of aluminum foams has a big influence on their properties.

When the fabrication process is stable and the pore structure is controllable, the
microstructure and properties of the cell wall become the most important factor. In addition,
improving the MEPs of aluminum foams by reducing dr may lead to an increase in ρs and
the decrease in εd, which is bad for energy absorption and protection, while modification
of cell wall microstructures does not have such problems.
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Figure 18. Relationship between ρs and σp of MF aluminum foams with different compositions
[26,134,141–143].

The microstructure of aluminum foams is quite different from conventional bulk
Al alloys. Aluminum melt has to be treated before foaming [81]. For example, the MF
method requires the thickening process before foaming [36], and in the process of the GIF
method, ceramic particles have to be dispersed in the melt before foaming [66]. Hu [144]
characterized the microstructure of MF foams by the improved anodization method, as
shown in Figure 19c–f.
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[144] (reproduced with permission from Springer); (c,d) α-Al grains in the cell wall without and Figure 19. (a,b) Schematic diagram of the anisometric growth model of grains in the foamed melt [144]

(reproduced with permission from Springer); (c,d) α-Al grains in the cell wall without and with
inoculation [144] (reproduced with permission from Springer); (e,f) α-Al grains in the plateau border
without and with inoculation [144] (reproduced with permission from Springer).
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The solidification of aluminum foams and conventional bulk alloys are very different.
Hu [144] proposed the solute diffusion model of growing α-Al grains in foamed melt
restricted by surrounding bubbles, as shown in Figure 19a,b. In foamed melt, the solute
diffusion of grain growth is limited by the bubbles, resulting in solute enrichment at the
solid–liquid interface, thus the grain size of aluminum foams is smaller than bulk aluminum
alloys under the same conditions. Grains in aluminum foams will replicate the contours
of cell walls or plateau borders, presenting irregular shapes, as shown in Figure 19c,e.
The grain morphology of aluminum foams can be modified by increasing the cooling
rate or inoculation treatment, as shown in Figure 19d,f. After modification of cell wall
microstructures by increased cooling rate and inoculation, the strength and toughness of
aluminum foams can be improved simultaneously [139].

After decades of research, aluminum foams with different alloy compositions have
been fabricated. For example, MF pure Al [36], Al-Cu [145], Al-Mn [146], Al-Zn [147],
Al-Sc [142] systems, GIF Al-Si-Mg [57], Al-Si-Cu [56] systems, PMF Al-Si [84], Al-Si-Cu [85],
Al-Mg-Si [86], Al-Sn [87], and Al-Si-Mg-Cu-Sn [88] systems. Heat treatment [145,148,149],
matrix composite [150–152], and other methods have been used for strengthening.

Although much research on the microstructure and properties of aluminum foams
have been reported, there is still room for improvement. During the fabrication process
of aluminum foams, priorities are usually given to the foamability of the melt and pore
structure control, while the microstructure is relatively less concerned. Some research
works directly use a certain type of aluminum alloy to foam. However, most aluminum
alloys are not developed for the fabrication of foams. After foaming, the microstructure of
foams is significantly different from the original bulk alloy. In addition, heat treatment is
necessary for many high-strength alloys, but heat treatment may destroy the pore structure
of aluminum foams. These problems limit the MEPs of aluminum foams. The MEPs of
aluminum foams can be further improved if the cell wall microstructure can be modified
while keeping a uniform pore structure.

4.1.3. Problems

At present, the MEPs of aluminum foams are not good enough, and there are still some
problems. First, there is a gap between the predicted and the tested results. Second, the
MEPs of aluminum foams are not stable and difficult to control within a reasonable range.

Various methods, such as theoretical model prediction [153], finite element simula-
tion [154], and machine learning [155] have been used to predict the mechanical property
parameters of aluminum foams. Here, the Gibson–Ashby model [153], one of the most
commonly used theoretical models, is used to predict the plateau stress of aluminum
foams under idealistic conditions. According to the reference [156], the plateau stress of
tetrakaidekahedral simplified closed-cell foams is

σ∗
p

σs
= 0.33

(
ρ∗

ρAl

)2
+ 0.44

(
ρ∗

ρAl

)
(11)

where σ∗
p is the predicted plateau stress of aluminum foams, σs is the yield strength of

bulk aluminum alloys, ρ∗/ρAl is the relative density of aluminum foam. For foams with a
relative density below 0.2, the influence of (ρ∗/ρAl)

2 can be neglected, and the equation
can be simplified as

σ∗
p

σs
≈ 0.44

(
ρ∗

ρAl

)
(12)

The yield strength of cast aluminum alloys is about 130 MPa [157] and 250 MPa for
aluminum alloys with higher Si content and hardness [135], so the σ∗

p can be calculated:

σ∗
p ≈ 57 ∼ 110

(
ρ∗

ρAl

)
MPa (13)
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Figure 20 compares predicted results with tested results in the recent literature. It can
be seen that the tested result is lower than the predicted result, which means the MEPs of
aluminum foams still have room for improvement.
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Figure 20. Comparison of tested and predicted σp of aluminum foams [26,57,141,158–160].

In addition to the large difference between predicted and tested results, the MEPs of
aluminum foams are not stable. According to Figure 20, for samples with similar ρs, the
gap of σp can be more than 100%. This is because foams fabricated by different methods
have different pore structures and microstructures. For foams with the same porosity,
mechanical property parameters, such as σp, Wd, cannot be clarified within a certain range,
and there is no standard or grade to regulate the MEPs of aluminum foams at present. This
is not conducive to their applications.

4.1.4. Applications

Figure 21 shows some cases of aluminum foams used for protection. In Figure 21a,b,
AFS panels are used on the high-speed train. In Figure 21c,d, aluminum foams and
their composite structure are used in automobiles. Figure 21e–g show the application of
aluminum foams in different protective occasions.

In practical applications, in addition to the direct use of aluminum foams, aluminum
foam composite structures are often used [161]. Composite structures with metal sheets
or tubes can be fabricated by PMF, adhesion, and other techniques. Compared with bare
foams, composite structures have higher strength and MEPs [162]. However, this is not
the main topic of this paper. Detailed descriptions of the fabrication and properties of
aluminum foam composite structures can be found in recent reviews [161,162].
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4.2. Physical Properties
4.2.1. Sound Absorption and Applications

Aluminum foams have good sound absorption properties. The surface of foams
is not flat, hence, when a sound wave is transmitted to the surface, the wave diffusely
reflects, and its intensity is weakened. After drilling holes, the connected cells of aluminum
foams form a Helmholtz resonant sound absorption structure [168], which creates strong
friction between the intensely vibrating air and the connected cells, and results in more
sound energy consumption [37]. It can effectively absorb sound waves with frequencies of
250~5000 Hz [37,169]. Sound absorption of closed-cell aluminum foams can be improved
by drilling holes [170], setting a cavity at the back of aluminum foams [22], or a certain
degree of compression [171].

Compared with traditional sound-absorbing materials, like rock wool board and
polymers, aluminum foams are environment friendly, non-toxic, and have the advantages
of strong weather resistance and a beautiful appearance [37,38,168]. Aluminum foams have
been used in architectural decoration and road traffic occasions for sound absorption, as
shown in Figure 22.
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4.2.2. Electromagnetic Shielding and Applications

When an electromagnetic wave is transmitted to the surface of aluminum foams,
reflection loss, absorption loss, wave–current interaction, and eddy-current loss reduce its
intensity [29,172,173]. Xu et al. [174] tested the electromagnetic shielding effectiveness of
aluminum foam samples with porosities of 75~93%. The shielding effectiveness ranges
from 25–75 dB within the frequency of 130 to 1800 MHz.

Compared with traditional metal wire mesh, aluminum foams have higher shielding
effectiveness. Compared with metal sheets, they are easier to install and have the advantage
of being lightweight [29]. A damping box made of AFS panels for electromagnetic waves is
shown in Figure 23.
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Figure 23. A damping box made of AFS panels for electromagnetic waves [79] (reproduced with
permission from Jonh Wiley and Sons).

4.2.3. Heat Insulation and Applications

There are a large number of pores inside aluminum foams. Because the volume
fraction of metal is small, and the surface of foams is usually covered by oxides, their
thermal conductivity is low [175,176]. According to the experimental data of Zhu et al. [30],
the thermal conductivity of aluminum foams with a porosity of 80% is 3.2 W/m·K and
1.7 W/m·K for a porosity of 90%. The low thermal conductivity makes it suitable for heat
insulation and related occasions. Figure 24 shows the use of aluminum foams for barbecue
plates and cooking ovens.
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Figure 24. AFS panels for heat insulation [79]: (a) a barbecue plate; (b) a cooking plate for wood fire
oven (reproduced with permission from Jonh Wiley and Sons).

5. Conclusions and Perspectives

The most important research directions of aluminum foams, fabrication, processing,
and properties are summarized in this paper, and their applications are briefly introduced.

(1) The main fabrication methods of aluminum foams are the MF method, GIF method,
and PMF method, and all these methods have been used in commercial production.
The MF method is suitable for the fabrication of large-size blocks; the GIF method is
suitable for the continuous production of foam slabs; and the PMF method is suitable
for the fabrication of shaped parts or composite structures. Extensive research has led
to the precise control of aluminum foam pore structure, enabling the production of
foams with small pore sizes, uniform structures, and excellent properties.

(2) The processing techniques of aluminum foams are introduced. Although various
processes have been reported, many of them have failed to achieve commercial
production due to poor pore structure, high costs, low efficiency, or the difficulty
of fabricating large-size products. The difficulties in processing seriously limit the
application of aluminum foams, making it of great significance to develop practical
processing techniques.

(3) Aluminum foams are suitable for energy absorption and crash protection. When
used for protection, it is not always the case that foams with higher strength have
better energy absorption ability. The MEPs of aluminum foams are mainly influenced
by their pore structure, cell wall defects, and cell wall microstructure. Control of
pore structure has been realized while the cell wall microstructure is relatively less
concerned. Currently, the MEPs of aluminum foams are not good enough and still
have room for improvement.

(4) In addition to MEPs, aluminum foams have many other unique characteristics includ-
ing sound insulation, electromagnetic shielding, and heat resistance. They have been
utilized in various fields including architecture, transportation, etc.

As reviewed above, the fabrication methods of aluminum foams have become stable
and pore structure control and commercial production have been achieved. However, the
processing of aluminum foams is still very difficult, and their MEPs are not good enough.
If practical processing techniques can be developed, or the MEPs of aluminum foams can
be further improved, these will be of great importance to their applications.
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