
Citation: Tornabene, F.; Viscoti, M.;

Dimitri, R. On the Importance of the

Recovery Procedure in the Semi-

Analytical Solution for the Static

Analysis of Curved Laminated Panels:

Comparison with 3D Finite Elements.

Materials 2024, 17, 588. https://

doi.org/10.3390/ma17030588

Academic Editor: Enrique Casarejos

Received: 19 December 2023

Revised: 18 January 2024

Accepted: 22 January 2024

Published: 25 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

On the Importance of the Recovery Procedure in the
Semi-Analytical Solution for the Static Analysis of Curved
Laminated Panels: Comparison with 3D Finite Elements
Francesco Tornabene * , Matteo Viscoti and Rossana Dimitri

Department of Innovation Engineering, School of Engineering, University of Salento, 73100 Lecce, Italy;
matteo.viscoti@unisalento.it (M.V.); rossana.dimitri@unisalento.it (R.D.)
* Correspondence: francesco.tornabene@unisalento.it

Abstract: The manuscript presents an efficient semi-analytical solution with three-dimensional
capabilities for the evaluation of the static response of laminated curved structures subjected to
general external loads. A two-dimensional model is presented based on the Equivalent Single
Layer (ESL) approach, where the displacement field components are described with a generalized
formulation based on a higher-order expansion along the thickness direction. The fundamental
equations are derived from the Hamiltonian principle, and the solution is found by means of Navier’s
approach. Then, an efficient recovery procedure, derived from the three-dimensional elasticity
equations and based on the Generalized Differential Quadrature (GDQ) method, is adopted for the
derivation of the three-dimensional solution. Some examples of investigation are presented, where
the numerical predictions of refined three-dimensional Finite-Element-based models are matched
with a high level of accuracy. The model is validated for both straight and curved panels, taking into
account different lamination schemes and load shapes. Furthermore, it is shown that the numerical
solution to the elasticity problem in the recovery procedure is determining and accurately predicting
the three-dimensional static response of the doubly-curved shell solid.

Keywords: equivalent single sayer; generalized differential quadrature; higher order theories; Navier
solution; static analysis; stress and strain recovery

1. Introduction

Recent advancements in engineering applications require innovative strategies to
accurately the static and dynamic responses of structural components of very complex
shapes [1–5]. For this reason, advanced models are necessary to describe the geometry and
the mechanical characteristics of these structures with reduced computational costs [6,7].
Three-dimensional approaches based on the elasticity equations provide highly accurate
predictions of the structural response of a doubly-curved solid, but they can be computa-
tionally expensive [8,9]. On the other hand, two-dimensional formulations that consider a
higher-order description of the field variable can be a valid alternative to three-dimensional
models [10–13]. In a two-dimensional theory, a doubly-curved surface is considered
to have equivalent mechanical properties instead of a doubly-curved three-dimensional
solid [14–16]. The unknown field variables are described using either the Equivalent Single
Layer (ESL) or the Layer-Wise (LW) approaches [17–21]. More specifically, in ESL theo-
ries, a higher-order expansion is established along the thickness direction by means of
the so-called thickness functions. However, for moderately thick and thick panels, a LW
description of the field variable may be more accurate. According to the LW methodology,
the fundamental relations are written in each layer of shell, and the interaction between
adjacent laminae is taken into account through compatibility conditions. Referring to
two-dimensional ESL theories, when the shell laminated structure is made of advanced
materials, it is very likely that a higher-order expansion of the unknown field variable is
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required [22–24], leading to the well-known Higher-Order Shear Deformation Theories
(HSDTs). The higher-order expansion in hand can be performed with both polynomial and
non-polynomial thickness functions [25–28]. Besides, the coupling between two-adjacent
layers, which is known as zigzag effects, can be easily modeled in ESL theories with the
so-called zigzag thickness functions, as shown in Refs. [29–31]. In this way, a piecewise
inclination of the displacement field profile is provided. The approach provided for the
first time in Ref. [32] has been shown to be very simple and accurate, among others. On the
other hand, in Refs. [33–35], the refined zigzag theories are presented, where the zigzag
functions are derived from the stiffness properties of the lamination scheme of the selected
panel, leading to the so-called refined zigzag theories.

Among two-dimensional approaches, an efficient strategy to define the fundamental
relations can be found in the well-known generalized formulation [36–39], where the
through-the-thickness expansion of the configuration variable up to an arbitrary order
is modeled regardless of the effective expression of the selected thickness function. In
this way, several structural models with different kinematic assumptions can be derived.
Furthermore, classical formulations like the First Order Shear Deformation Theory (FSDT)
and the Third Order Shear Deformation Theory (TSDT) can be seen as particular cases of
the generalized higher-order theory [40,41]. The adoption of a generalized configuration
variable can be an efficient strategy when structures of different materials and various
lamination schemes are studied with an arbitrary variation of mechanical properties, as
happens in the case of Functionally Graded Materials (FGMs) [42–44], Carbon Nanotube
(CNT) composites [45–47], honeycomb and lattice cells [48,49], as well as three-dimensional
Variable Angle Tow (3D-VAT) composites [50–52]. Furthermore, the adoption of HSDTs
allows one to study the effect of porosity because the presence of voids with an arbitrary
distribution within the structure leads to a reduction in material stiffness [53,54].

For structures with complex shapes, materials, and boundary conditions, it is very
difficult to derive a closed-form solution to the governing equations; where numerical
approximations must be used to discretize the problem [55–58]. On the other hand, it is pos-
sible to derive a closed-form solution if some simplifications are taken into account [59–63].
In addition, some applications of practical interest can be examined with an infinite series
expansion of each unknown variable [64–67]. It should be noted that exact solutions for
simply supported layered structures are typically adopted to check the accuracy of the
numerical solution. Among semi-analytical solutions for linear elasticity, a milestone is
the research work by Pagano [68,69], where a three-dimensional closed-form solution is
derived for laminated composite plates and sandwich panels. Then, two-dimensional
models have been developed for laminated plates and curved sandwich shells. Starting
from formulations based on the Classical Plate Theory (CPT), refined theories can be found
in literature based on FSDT and TSDT. Recent developments in the field of smart materials
have led to the development of new formulations regarding plates and shells with smart
properties like piezoelectricity, magnetostriction, and heat transfer [70], and closed-form
solutions have been derived for the validation of numerical simulations. Some preliminary
works regarding laminated plates with piezoelectric [71,72] and piezomagnetic [73,74]
properties must be cited.

It is interesting to note that closed-form solutions may not be used for practical ap-
plications because of the assumptions that are usually considered. However, some results
of more practical interest can be obtained with semi-analytical formulations. In a semi-
analytical theory, the solution is obtained with an expansion of degrees of freedom (DOFs)
up to a sufficient order. The Navier method and the Levy procedure have been extensively
adopted in several papers regarding linear elasticity problems for plates and shells [75–78].
More specifically, the Navier solution, based on the description of the field variable with a
trigonometric series, can be adopted in the case of simply-supported laminated panels with
cross-ply lamination schemes and antisymmetric angle-ply composites. In contrast, the
Levy method [79,80] is suitable for panels with two simply supported edges and the other
two subjected to arbitrary boundary conditions. An arbitrary load case can be analyzed
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with the Navier method if the external actions are expanded with a double Fourier trigono-
metric series. It has been shown in Ref. [81] that this methodology can also be adopted
for closed panels of revolution. On the other hand, the Navier approach can be difficult to
apply to structures of very complex shapes made of non-conventional materials because
a significantly high number of terms of the harmonic expansion should be considered to
obtain a sufficient level of accuracy. For this reason, a numerical model is more frequently
adopted to derive an approximate solution under a limited number of hypotheses. Among
numerical techniques, the Finite Element Method (FEM), which is extensively adopted
in several applications and commercial codes, is based on a local interpolation of the
unknown field variable in a discrete computational grid by means of the so-called shape
functions [82–84]. In contrast, the class of spectral collocation methods [85–87] are based
on a global interpolation of the solution by means of higher-order functions; therefore, a
smoother solution can be derived with a reduced number of DOFs. Belonging to this class,
the Generalized Differential Quadrature (GDQ) method [88–92] approximates the deriva-
tives of an arbitrary function as a weighted sum of the function itself. It has been shown
in several papers that the highest level of accuracy, computational stability, and efficiency
is reached when the computational domain is discretized with non-uniform grids [93,94].
Moving from the GDQ numerical technique, the Generalized Integral Quadrature (GIQ)
allows one to compute the integrals with a significantly reduced number of DOFs [95,96].

When a two-dimensional solution is derived, the reconstruction of the effective struc-
tural response of the panel can be difficult since it is not guaranteed, a priori, that the
distribution of stress components satisfies the three-dimensional elasticity equations. This
issue may lead to erroneous results, especially for moderately thick structures, where
the stress components acting in the thickness direction cannot be neglected. For this
reason, a correction of the stress and strain profiles should be conducted based on the
three-dimensional elasticity equations. In Refs. [97–99], an effective stress and strain re-
covery procedure is provided for the evaluation of the static response of moderately thick
doubly-curved shell structures made of laminated composite materials with arbitrary orien-
tation and FGM, starting from a refined two-dimensional GDQ-based numerical solution.
The recovery procedure has been demonstrated to be an effective tool for the reconstruc-
tion of the three-dimensional response of doubly-curved shell structures with advanced
lamination schemes, starting from numerical solutions of refined formulations based on
HSDTs. In some previous works [100,101], the recovery procedure has been applied to
some two-dimensional GDQ-based numerical solutions for the prediction of the static
response of doubly-curved shells with generally anisotropic materials. However, the effects
of this procedure on two-dimensional semi-analytical solutions have not been checked.

In the present work, a two-dimensional model based on the ESL approach with HSDTs
is presented to predict the linear static response of laminated curved panels. The geometry
of the structure is described with the differential geometry basics and curvilinear principal
coordinates. The generalized formulation is adopted for the description of the kinematic
field, and a higher-order expression is provided along the thickness direction of the panel
for each displacement field component. Furthermore, the zigzag effects are considered
in the kinematic model. Following the ESL approach, the mechanical properties of each
layer, modeled with a generally anisotropic constitutive relationship, are homogenized
on the reference surface. The fundamental equations are derived from the Hamiltonian
principle, accounting for an arbitrary distribution of the external surface loads, which are
applied at the top and bottom of the laminated panel. Then, the semi-analytical Navier
solution is found under some geometric and mechanical assumptions, taking into account
a Fourier series expansion of the unknown field variable. Finally, a recovery procedure
based on the three-dimensional elasticity equations for a doubly-curved solid is applied
for the reconstruction of the three-dimensional response of the panel. Some examples
of investigation are presented, where the accuracy of the semi-analytical formulation is
checked for different curvatures, lamination schemes, and load cases. The numerical
predictions have been performed with various kinematic field assumptions, and the results
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are compared to those coming from three-dimensional finite element models. Furthermore,
some comparisons are conducted with the results of refined GDQ numerical models. It
is shown that the recovery procedure determines when a semi-analytical procedure is
adopted. In this way, it is possible to accurately predict the three-dimensional response
of curved laminated structures with a reduced computational cost even though a two-
dimensional formulation is adopted. On the other hand, if the stress and strain profiles are
derived directly from the two-dimensional solution without any post-processing technique,
some results may be obtained that are not consistent with the equilibrium of the structure
under external loads.

2. Geometry of a Shell Structure

A doubly-curved shell is a three-dimensional solid within the Euclidean space whose
position vector, denoted by R(α1, α2, α3), is dependent on three parameters αi = α1, α2, α3.
These parameters are defined in the closed interval αi ∈

[
α0

i , α1
i
]

with i = 1, 2, 3, where
α0

i < α1
i are the extremes of the domain at issue. Following the ESL approach, the position

vector R of a doubly-curved shell element is defined in terms of a reference surface, denoted
by r(α1, α2), located in the middle thickness h(α1, α2) of the panel:

R(α1, α2, ζ) = r(α1, α2) +
h(α1, α2)

2
zn(α1, α2) (1)

In the previous relation, z = 2ζ/h is a dimensionless coordinate for the thickness
direction, oriented alongside the outward normal unit vector n(α1, α2). This vector can
be calculated at each point of the reference surface in terms of the partial derivatives of
r(α1, α2) with respect to the principal coordinates α1, α2, denoted by the symbol r,i = ∂r/∂αi
with i = 1, 2. One gets [16]:

n(α1, α2) =
r,1 × r,2

|r,1 × r,2|
(2)

Following Equation (1), the geometric properties of the three-dimensional shell ele-
ment can thus be defined from those of the reference surface r(α1, α2). The principal radii
of curvature Ri(α1, α2) = R1, R2, referred to the αi = α1, α2 principal direction, can thus be
derived as follows:

Ri(α1, α2) = − r,i × r,i

r,ii × n
i = 1, 2 (3)

Note that the symbol r,ij = ∂2r/
(
∂αi∂αj

)
with i, j = 1, 2 refers to the second order

derivatives of the reference surface r with respect to αi, αj = α1, α2. For the sake of com-
pleteness, the principal curvature kni = 1/Ri with i = 1, 2 can be introduced along each
principal direction. The Lamè parameters Ai(α1, α2) = A1, A2 can be computed at each
point of the physical domain according to the following relation:

Ai(α1, α2) =
√

r,i × r,i i = 1, 2 (4)

The Lamè parameters Ai = A1, A2 are used for the computation of the infinitesimal
arch lengths dsi = ds1, ds2 along the principal directions αi = α1, α2 of the reference surface.
The arch length si with i = 1, 2 is defined so that si ∈ [0, Li], being Li the length of the
parametric line. The following relation can thus be written:

dsi = Aidαi i = 1, 2 (5)

On the other hand, the scaling parameters Hi = H1, H2 are defined in order to evaluate
the scaling effects along the thickness direction that can be seen in a solid with one or
more curvatures:

Hi(α1, α2, ζ) = 1 +
ζ

Ri
i = 1, 2 (6)
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The three-dimensional shell solid is obtained from the superimposition of l different
layers of thickness hk, therefore the total thickness of the structure is thus obtained as
the sum of the width of each k-th lamina, with k = 1, . . . , l, which is located between its
intrados and its extrados, denoted by ζk and ζk+1, respectively [16]:

h(α1, α2) =
l

∑
k=1

hk(α1, α2) =
l

∑
k=1

(ζk+1 − ζk) (7)

3. Kinematic Relations

In the present section, a generalized ESL approach is presented for the expansion up
to the (N + 1)-th order of the three-dimensional displacement field vector U(k)(α1, α2, ζ) =[
U(k)

1 U(k)
2 U(k)

3

]T
along the thickness direction. To this end, three thickness functions

F(kτ)αi (ζ) = F(kτ)α1 , F(kτ)α2 , F(kτ)α3 are introduced for each τ-th kinematic expansion order
with τ = 0, . . . , N + 1. Remembering that the thickness coordinate is defined so that
ζ ∈ [ζk, ζk+1] for k = 1, . . . , l, a generalized formulation can be derived, and the vector
u(τ)(α1, α2) of the generalized displacement field components u(τ)

1 , u(τ)
2 , u(τ)

3 is introduced
for each τ = 0, . . . , N + 1. One gets the following relation [16]:

U(k)(α1, α2, ζ) =
N+1

∑
τ=0

F(kτ)(ζ)u(τ)(α1, α2) ⇔

U(k)
1

U(k)
2

U(k)
3

 =
N+1

∑
τ=0

F(kτ)α1 0 0
0 F(kτ)α2 0
0 0 F(kτ)α3


u(τ)

1

u(τ)
2

u(τ)
3

 (8)

The ESL formulation of the previous relation allows one to derive a generalized two-
dimensional theory for the mechanical elasticity problem. The selection of a particular
expression of the thickness functions allows one to obtain several models for the static
analysis of shell structures, including classical approaches like the CPT, FSDT, and TSDT.
On the other hand, the thickness function related to τ = N + 1 simulates the zig-zag effect
that occurs in the interlaminar region, which consists of an abrupt variation of the profile
of each displacement field component. In the present work, power thickness functions
are used for each τ = 0, . . . , N, together with Murakami’s zigzag function associated to
τ = N + 1:

F(kτ)αi (ζ) =

{
ζτ τ = 0, . . . , N

(−1)kzk = (−1)k
(

2
ζk+1−ζk

ζ − ζk+1+ζk
ζk+1−ζk

)
τ = N + 1

(9)

When the thickness functions of Equation (9) are used, the notation EDZ-N can be
used for the identification of the higher-order theory [16]. More specifically, “E” means
that the two-dimensional theory is based on the ESL approach, whereas “D” means that
an axiomatic expansion is adopted of the displacement field components, which are the
configuration variables of the problem. When the zig-zag function is considered for
τ = N + 1, the letter “Z” is used. Finally, N denotes the maximum expansion order of the
configuration variable.

At this point, the kinematic relations are derived for the ESL theory from those
of the three-dimensional elasticity problem, as shown in Ref. [16]. If ε(k)(α1, α2, ζ) =[

ε
(k)
1 ε

(k)
2 γ

(k)
12 γ

(k)
13 γ

(k)
23 ε

(k)
3

]T
is the three-dimensional strain vector of the k-th layer, the

following condensed relation can be taken into account:

ε(k)(α1, α2, ζ) = DU(k) = Dζ

(
3

∑
i=1

Dαi
Ω

)
U(k) (10)
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In the previous relation, D is the kinematic differential operator, which is split in those
denoted by Dζ and Dαi

Ω = Dα1
Ω , Dα2

Ω , Dα3
Ω , which contain the derivatives with respect to the

coordinate ζ and α1, α2, respectively. In an extended form, Dζ can be expressed as:

Dζ =



1
H1

0 0 0 0 0 0 0 0
0 1

H2
0 0 0 0 0 0 0

0 0 1
H1

1
H2

0 0 0 0 0
0 0 0 0 1

H1
0 ∂

∂ζ 0 0
0 0 0 0 0 1

H2
0 ∂

∂ζ 0
0 0 0 0 0 0 0 0 ∂

∂ζ


(11)

On the other hand, the kinematic operators Dα1
Ω , Dα2

Ω , Dα3
Ω of size 9 × 3 take the follow-

ing aspect:
Dα1

Ω =
[
Dα1

Ω 0 0
]

Dα2
Ω =

[
0 Dα2

Ω 0
]

Dα3
Ω =

[
0 0 Dα3

Ω

] (12)

The sub-operators Dα1
Ω , Dα2

Ω , Dα3
Ω are written in an extended form as:

Dα1
Ω =



1
A1

∂
∂α1

1
A1 A2

∂A2
∂α1

− 1
A1 A2

∂A1
∂α2

1
A2

∂
∂α2

− 1
R1
0
1
0
0


, Dα2

Ω =



− 1
A1 A2

∂A1
∂α2

1
A2

∂
∂α2

1
A1

∂
∂α1

− 1
A1 A2

∂A2
∂α1

0
− 1

R2
0
1
0


, Dα3

Ω =



1
R1
1

R2
0
0

1
A1

∂
∂α1

1
A2

∂
∂α2

0
0
1


(13)

Introducing Equation (8) in Equation (10), the generalized ESL kinematic relations
are obtained, accounting for the effects of the curvature of the shell and the higher-order
kinematic expansion of the displacement field variable [16]:

ε(k) =
N+1

∑
τ= 0

3

∑
i=1

Z (kτ)αiε(τ)αi (14)

As can be seen, the three-dimensional strain vector ε(k)(α1, α2, ζ) has been expressed in
terms of the generalized strain vector, for each τ = 0, . . . , N + 1, denoted by ε(τ)αi (α1, α2) =[

ε
(τ)αi
1 ε

(τ)αi
2 γ

(τ)αi
1 γ

(τ)αi
2 γ

(τ)αi
13 γ

(τ)αi
23 ω

(τ)αi
13 ω

(τ)αi
23 ε

(τ)αi
3

]T
, whose definition is reported

in the following:

ε(τ) αi = Dαi
Ωu(τ) for

τ = 0, . . . , N + 1,
i = 1, 2, 3

(15)
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On the other hand, the ESL kinematic operator Z (kτ)αi is defined for each
τ = 0, . . . , N + 1 in terms of the generalized thickness functions of Equation (8):

Z(kτ)αi = Dζ F(kτ)αi =



F(kτ)αi
H1

0 0 0 0 0 0 0 0

0 F(kτ)αi
H2

0 0 0 0 0 0 0

0 0 F(kτ)αi
H1

F(kτ)αi
H2

0 0 0 0 0

0 0 0 0 F(kτ)αi
H1

0 ∂F(kτ)αi
∂ζ 0 0

0 0 0 0 0 F(kτ)αi
H2

0 ∂F(kτ)αi
∂ζ 0

0 0 0 0 0 0 0 0 ∂F(kτ)αi
∂ζ


(16)

4. Constitutive Relationship

In the present section, the constitutive behavior of the three-dimensional shell solid is
described within the two-dimensional ESL model employing higher-order theories. Refer-
ring to an arbitrary k-th layer of the solid, a three-dimensional linear elastic constitutive
relation is considered, defined as follows [16]:

σ(k) = E(k)
ε(k) ↔



σ
(k)
1

σ
(k)
2

τ
(k)
12

τ
(k)
13

τ
(k)
23

σ
(k)
3


=



E(k)
11 E(k)

12 E(k)
16 E(k)

14 E(k)
15 E(k)

13

E(k)
12 E(k)

22 E(k)
26 E(k)

24 E(k)
25 E(k)

23

E(k)
16 E(k)

26 E(k)
66 E(k)

46 E(k)
56 E(k)

36

E(k)
14 E(k)

24 E(k)
46 E(k)

44 E(k)
45 E(k)

34

E(k)
15 E(k)

25 E(k)
56 E(k)

45 E(k)
55 E(k)

35

E(k)
13 E(k)

23 E(k)
36 E(k)

34 E(k)
35 E(k)

33





ε
(k)
1

ε
(k)
2

γ
(k)
12

γ
(k)
13

γ
(k)
23

ε
(k)
3


k = 1, . . . , l (17)

In the previous relation, E(k) denotes the three-dimensional stiffness matrix, whose

generic component E(k)
ij with i, j = 1, . . . , 6 relates the i-th element of the stress vector,

denoted by σ(k)(α1, α2, ζ), to the j-th element of the strain vector ε(k)(α1, α2, ζ). The consti-
tutive behavior of each lamina is usually provided not in the geometric reference system,
as happens in Equation (17), but in the material reference system O′α̂1α̂2α̂3, whose axes are
oriented along the material symmetry directions. For this reason, the equation reported
in the following should be considered, where σ̂(k) and ε̂(k) are the vectors of the three-
dimensional stress and strain components, respectively, written with respect to O′α̂1α̂2α̂3
material reference system, whereas E(k) is the corresponding stiffness matrix:

σ̂(k) = E(k)ε̂(k) ↔



σ̂
(k)
1

σ̂
(k)
2

τ̂
(k)
12

τ̂
(k)
13

τ̂
(k)
23

σ̂
(k)
3


=



E(k)
11 E(k)

12 E(k)
16 E(k)

14 E(k)
15 E(k)

13

E(k)
12 E(k)

22 E(k)
26 E(k)

24 E(k)
25 E(k)

23

E(k)
16 E(k)

26 E(k)
66 E(k)

46 E(k)
56 E(k)

36

E(k)
14 E(k)

24 E(k)
46 E(k)

44 E(k)
45 E(k)

34

E(k)
15 E(k)

25 E(k)
56 E(k)

45 E(k)
55 E(k)

35

E(k)
13 E(k)

23 E(k)
36 E(k)

34 E(k)
35 E(k)

33





ε̂
(k)
1

ε̂
(k)
2

γ̂
(k)
12

γ̂
(k)
13

γ̂
(k)
23

ε̂
(k)
3


k = 1, . . . , l (18)

In the previous equation, E(k)
ij with i, j = 1, . . . , 6 are the elements of the matrix E(k).

More specifically, they can be taken as equal to the three-dimensional stiffness components
of the material of the -th layer, namely E(k)

ij = C(k)
ij . However, when the kinematic field

assumption of Equation (8) neglects the stretching effect, E(k)
ij turn out to be the reduced
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elastic coefficients Q(k)
ij , which are calculated from the three-dimensional ones according to

what is exerted in Ref. [16].
Finally, Equation (18) can revert to Equation (17) if the stiffness matrix E(k) is rotated

by means of the transformation matrix T(k), as defined in Ref. [16]. One gets:

E(k)
= T(k)E(k)

(
T(k)

)T
(19)

In the present study, the material axis α̂3 is taken along the thickness direction of
the shell; therefore, the equivalence α̂3 = ζ is considered. As a consequence, the rotation
matrix T(k) depends only on the angle ϑ(k) between α1 and α̂1 reference axes such that
T(k) = T(k)

(
ϑ(k)

)
. Introducing the generalized higher-order expansion of the kinematic

relations of Equation (14) in the three-dimensional constitutive relationship of Equation (17),
the following higher-order constitutive relationship comes out:

σ(k) = E(k)
ε(k) =

N+1

∑
η=0

3

∑
j=1

E(k)Z (kη)αjε(η)αj for k = 1, . . . , l (20)

At this point, the previous relation can be used for the evaluation of the virtual
variation δΦ of the elastic strain energy of the shell:

δΦ =
l

∑
k=1

∫
α1

∫
α2

ζk+1∫
ζk

(
δε(k)

)T
σ(k)A1 A2H1H2dα1dα2dζ (21)

The computation of the integrals of Equation (21) in the closed interval [ζk, ζk+1]
allows one to introduce the generalized stress resultants, which are collected for each
τ = 0, . . . , N + 1 and i = 1, 2, 3 in the generalized stress resultant vector

S(τ)αi =
[

N(τ)αi
1 N(τ)αi

2 N(τ)αi
12 N(τ)αi

21 T(τ)αi
1 T(τ)αi

2 P(τ)αi
1 P(τ)αi

2 S(τ)αi
3

]T
[16]:

δΦ =
N+1

∑
τ=0

3

∑
i=1

∫
α1

∫
α2

(
δε(τ)αi

)T
S(τ)αi A1 A2dα1dα2 (22)

Finally, the higher-order ESL elastic constitutive relationship can be written in terms of
S(τ)αi and ε(τ)αi by substituting Equation (20) in the final expression of the virtual variation
of the elastic strain energy δΦ, as reported in Equation (22). One gets:

S(τ)αi =
N+1

∑
η=0

3

∑
j=1

A(τη)αiαjε(η)αj for τ = 0, . . . , N + 1, i = 1, 2, 3 (23)

In the previous equation, A(τη)αiαj denotes the generalized higher-order constitutive
operator, which is defined for each τ, η = 0, . . . , N + 1 and i, j = 1, 2, 3 as follows [16]:

A(τη)αiαj =
l

∑
k=1

ζk+1∫
ζk

(
Z(kτ)αi

)T
E(k)Z(kη)αj H 1H 2dζ =

[
A(τη)[00] αiαj A(τη)[01] αiαj

A(τη)[10] αiαj A(τη)[11] αiαj

]
(24)
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For the sake of clarity, the sub-matrices A(τη)[00] αiαj , A(τη)[01] αiαj , A(τη)[10] αiαj ,
A(τη)[11] αiαj are reported below in an extended form:

A(τη)[00] αiαj =



A
(τη)[00]αiαj
11(20)11 A

(τη)[00]αiαj
12(11)12 A

(τη)[00]αiαj
16(20)13 A

(τη)[00]αiαj
16(11)14 A

(τη)[00]αiαj
14(20) A

(τη)[00]αiαj
15(11)

A
(τη)[00]αiαj
12(11) A

(τη)[00]αiαj
22(02) A

(τη)[00]αiαj
26(11) A

(τη)[00]αiαj
26(02) A

(τη)[00]αiαj
24(11) A

(τη)[00]αiαj
25(02)

A
(τη)[00]αiαj
16(20) A

(τη)[00]αiαj
26(11) A

(τη)[00]αiαj
66(20) A

(τη)[00]αiαj
66(11) A

(τη)[00]αiαj
46(20) A

(τη)[00]αiαj
56(11)

A
(τη)[00]αiαj
16(11) A

(τη)[00]αiαj
26(02) A

(τη)[00]αiαj
66(11) A

(τη)[00]αiαj
66(02) A

(τη)[00]αiαj
46(11) A

(τη)[00]αiαj
56(02)

A
(τη)[00]αiαj
14(20) A

(τη)[00]αiαj
24(11) A

(τη)[00]αiαj
46(20) A

(τη)[00]αiαj
46(11) A

(τη)[00]αiαj
44(20) A

(τη)[00]αiαj
45(11)

A
(τη)[00]αiαj
15(11) A

(τη)[00]αiαj
25(02) A

(τη)[00]αiαj
56(11) A

(τη)[00]αiαj
56(02) A

(τη)[00]αiαj
45(11) A

(τη)[00]αiαj
55(02)


(25)

A(τη)[01] αiαj =



A
(τη)[01]αiαj
14(10) A

(τη)[01]αiαj
15(10) A

(τη)[01]αiαj
13(10)

A
(τη)[01]αiαj
24(01) A

(τη)[01]αiαj
25(01) A

(τη)[01]αiαj
23(01)

A
(τη)[01]αiαj
46(10) A

(τη)[01]αiαj
56(10) A

(τη)[01]αiαj
36(10)

A
(τη)[01]αiαj
46(01) A

(τη)[01]αiαj
56(01) A

(τη)[01]αiαj
36(01)

A
(τη)[01]αiαj
44(10) A

(τη)[01]αiαj
45(10) A

(τη)[01]αiαj
34(10)

A
(τη)[01]αiαj
45(01) A

(τη)[01]αiαj
55(01) A

(τη)[01]αiαj
35(01)


(26)

A(τη)[10] αiαj =


A
(τη)[10]αiαj
14(10) A

(τη)[10]αiαj
24(01) A

(τη)[10]αiαj
46(10) A

(τη)[10]αiαj
46(01) A

(τη)[10]αiαj
44(10) A

(τη)[10]αiαj
45(01)

A
(τη)[10]αiαj
15(10) A

(τη)[10]αiαj
25(01) A

(τη)[10]αiαj
56(10) A

(τη)[10]αiαj
56(01) A

(τη)[10]αiαj
45(10) A

(τη)[10]αiαj
55(01)

A
(τη)[10]αiαj
13(10) A

(τη)[10]αiαj
23(01) A

(τη)[10]αiαj
36(10) A

(τη)[10]αiαj
36(01) A

(τη)[10]αiαj
34(10) A

(τη)[10]αiαj
35(01)

 (27)

A(τη)[11] αiαj =


A
(τη)[11]αiαj
44(00) A

(τη)[11]αiαj
45(00) A

(τη)[11]αiαj
34(00)

A
(τη)[11]αiαj
45(00) A

(τη)[11]αiαj
55(00) A

(τη)[11]αiαj
35(00)

A
(τη)[11]αiαj
34(00) A

(τη)[11]αiαj
35(00) A

(τη)[11]αiαj
33(00)

 (28)

The generalized elastic coefficients of Equations (25)–(28) can be computed with
the following condensed expression, setting the definitions ∂0F(kτ)αi /∂ζ0 = F(kτ)αi and
∂0F(kη)αj /∂ζ0 = F(kη)αj :

A
(τη)[ f g]αiαj
nm(pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nm

∂ f F(kη)αj

∂ζ f
∂g F(kτ)αi

∂ζg
H1 H2
Hp

1 Hq
2

dζ for

τ, η = 0, . . . , N + 1,
n, m = 1, . . . , 6,
p, q = 0, 1, 2,
αi, αj = α1, α2, α3,
f , g = 0, 1

(29)

The quantities B(k)
nm with n, m = 1, . . . , 6 occurring in the previous expression denote

the three-dimensional elastic stiffness coefficients E(k)
nm of Equation (17). As can be seen, their

value is corrected with the shear correction factor, denoted by κ(ζ), in order to consider
the effects of shear stresses to the global deflection of the structure when lower order
displacement field assumptions are considered:

B(k)
nm =

{
E(k)

nm

κ(ζ)E(k)
nm

for
n, m = 1, 2, 3, 6,
n, m = 4, 5

(30)
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Accordingly, when a linear distribution of the displacement field components is
considered in Equation (8), the value κ(ζ) = 5/6 is assumed, whereas in the case of higher-
order theories, a unitary value κ(ζ) = 1 is assigned to this quantity. The value κ(ζ) = 5/6
is here assumed, as in classical formulations for beams with rectangular cross-sections. The
higher-order constitutive relation of Equation (23) can be written in terms of the kinematic
field assumption of Equation (8) in order to provide a relationship between the stress
resultant vector S(τ)αi and the generalized displacement field vector u(τ). Substituting the
definition of the vector ε(τ)αi of the generalized strain components of Equation (15) in the
higher-order constitutive relation of Equation (23), the relation reported in the following
is obtained:

S(τ)αi =
N+1

∑
η=0

3

∑
j=1

A(τη)αiαj D
αj
Ωu(η) =

N+1

∑
η=0

3

∑
j=1

O(τη)αiαj u(η) for
τ = 0, . . . , N + 1,
i = 1, 2, 3

(31)

The matrix O(τη)αiαj of size 9 × 3, defined for each τ, η = 0, . . . , N + 1 and
αi, αj = α1, α2, α3 is reported in the following in an extended form:

O(τη)αiαj =



O(τη)αiα1
11 O(τη)αiα2

12 O(τη)αiα3
13

O(τη)αiα1
21 O(τη)αiα2

22 O(τη)αiα3
23

O(τη)αiα1
31 O(τη)αiα2

32 O(τη)αiα3
33

O(τη)αiα1
41 O(τη)αiα2

42 O(τη)αiα3
43

O(τη)αiα1
51 O(τη)αiα2

52 O(τη)αiα3
53

O(τη)αiα1
61 O(τη)αiα2

62 O(τη)αiα3
63

O(τη)αiα1
71 O(τη)αiα2

72 O(τη)αiα3
73

O(τη)αiα1
81 O(τη)αiα2

82 O(τη)αiα3
83

O(τη)αiα1
91 O(τη)αiα2

92 O(τη)αiα3
93



for
τ, η = 0, . . . , N + 1,
i, j = 1, 2, 3

(32)

The complete expression of the coefficients O
(τη)αiαj
gr with g = 1, . . . , 9 and r = 1, 2, 3

can be found in Ref. [16].

5. Governing Equations

Once the kinematic and constitutive relations have been presented, the fundamen-
tal governing equations are derived for the linear static analysis of doubly-curved shell
structures. Following an energetic procedure, the equilibrium configuration of the solid
is derived from the minimum potential energy principle, taking into account the elastic
deformation energy of the system, denoted by Φ, and the virtual work Le of external loads.
If the virtual variation of each physical quantity is denoted by δ, the following relation is
considered [16]:

δΦ − δLe = 0 (33)

As shown in Equation (22), the virtual variation δΦ of the elastic strain energy is
written in terms of the virtual variation of the vector δε(τ)αi of the generalized strain
components. Applying the integration by parts rule, an expression of the variation δΦ is
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obtained in terms of the virtual variation of the generalized displacement field components
δu(τ)

1 , δu(τ)
2 , δu(τ)

3 :

δΦ =
N+1
∑

τ=0

∫
α1

∫
α2

(
−
(

∂
(

N
(τ)α1
1 A 2

)
∂α1

+
∂
(

N
(τ)α1
21 A 1

)
∂α2

+ N(τ)α1
12

∂A1
∂α2

− N(τ)α1
2

∂A2
∂α1

+

(
T
(τ)α1
1
R 1

− P(τ)α1
1

)
A1 A2

)
δu(τ)

1 +

−
(

∂
(

N(τ)α2
2 A1

)
∂α2

+
∂
(

N(τ)α2
12 A2

)
∂α1

+ N(τ)α2
21

∂A2
∂α1

− N(τ)α2
1

∂A1
∂α2

+

(
T(τ)α2

2
R2

− P(τ)α2
2

)
A1 A2

)
δu(τ)

2 +

−
(

∂
(

T
(τ)α3
1 A2

)
∂α1

+
∂
(

T
(τ)α3
2 A1

)
∂α2

−
(

N
(τ)α3
1
R1

+
N

(τ)α3
2
R2

)
A1 A2 − S(τ)α3

3 A1 A2

)
δu(τ)

3

)
dα1dα2+

+
N+1
∑

τ=0

∮
α1

(
N(τ)α1

21 δu(τ)
1 + N(τ)α2

2 δu(τ)
2 + T(τ)α3

2 δu(τ)
3

)
A1dα1+

+
N+1
∑

τ=0

∮
α2

(
N(τ)α1

1 δu(τ)
1 + N(τ)α2

12 δu(τ)
2 + T(τ)α3

1 δu(τ)
3

)
A2dα2

(34)

The virtual work of external actions, denoted by δL(3D)
e , is computed as the sum of

the virtual work of the actions q(+)
ia = q(1)ia and q(−)

ia = q(2)ia with i = 1, 2, 3 acting at the
top (j = 1) and the bottom (j = 2) of the shell, respectively. Referring to a doubly-curved
three-dimensional solid, one gets:

δL(3D)
e =

∫
α1

∫
α2

(
2

∑
j=1

(
3

∑
i=1

q(j)
ia δU(j)

i

)
H(j)

1 H(j)
2

)
A1 A2dα1dα2 (35)

In the previous relation, U(+)
i = U(1)

i and U(−)
i = U(2)

i with i = 1, 2, 3 are the virtual
variations of the displacement field components at the top (ζ = h/2) and the bottom
(ζ = −h/2) surfaces of the three-dimensional solid, respectively. The application of the
static equivalence principle introduces a set of generalized loads for each τ = 0, . . . , N + 1

kinematic expansion order, which are collected in the vector q(τ)(α1, α2) =
[
q(τ)1 q(τ)2 q(τ)3

]T
.

They are associated to the virtual variation of the vector u(τ)(α1, α2) of the generalized
displacement field components. The following relation is thus obtained:

δLe =
N+1

∑
τ=0

∫
α1

∫
α2

(
δu(τ)

)T
q(τ)A1 A2dα1dα2 =

N+1

∑
τ=0

∫
α1

∫
α2

3

∑
i=1

q(τ)i δu(τ)
i A1 A2dα1dα2 (36)

According to the static equivalence principle, the virtual work δL(3D)
e of Equation (35)

turns out to be equal to the virtual work δLe of Equation (36):

δL(3D)
e = δLe (37)

Substituting in Equation (35) the kinematic assumptions of Equation (8) and introduc-
ing them in Equation (37), the following expression is derived for the generalized loads
q(τ)i = q(τ)1 , q(τ)2 , q(τ)3 [16]:

q(τ)i =
2

∑
j=1

q(j)
ia Fαi(j)

τ H(j)
1 H(j)

2 for i = 1, 2, 3 (38)

In the previous equation, the quantity Fαi(j)
τ with j = 1, 2 denotes the thickness function

associated to U(+)
i and U(−)

i , whereas H(j)
1 , H(j)

2 with j = 1, 2 are the scaling parameters
calculated at the top (ζ = h/2) and the bottom (ζ = −h/2) surfaces of the shell.
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Starting from Equation (35), it is possible to embed in the present formulation a general
surface load. To this end, an arbitrary surface distribution q(α1, α2) is considered, whereas
the magnitude of the external load at issue is denoted by q(j)

i

q(j)
ia

(
α1, α2,±h

2

)
= q(j)

i

∣∣∣
ζ=±h/2

q(α1, α2) for
i = 1, 2, 3
j = 1, 2

(39)

In the case of a constant distribution of the external load, the distribution q(α1, α2) = 1
is considered.

Introducing in Equation (33) the expression of the virtual work of external actions and
remembering Equation (34), the higher-order equilibrium equations are derived on the
shell reference surface. Employing a compact notation, it gives:

3

∑
i=1

D∗αi
Ω S(τ)αi − q(τ) = 0 for τ = 0, . . . , N + 1 (40)

In the previous relation, D∗αi
Ω = D∗α1

Ω , D∗α2
Ω , D∗α3

Ω denote the equilibrium operators,
which can be expressed with a matrix notation as follows:

D∗α1
Ω =

D∗α1
Ω
0
0

, D∗α2
Ω =

 0
D∗α2

Ω
0

, D∗α3
Ω =

 0
0

D∗α3
Ω

 (41)

An extended version of the quantities D∗αi
Ω = D∗α1

Ω , D∗α2
Ω , D∗α3

Ω is reported below:

D∗α1
Ω =

[ (
D∗α1

Ω

)
1

(
D∗α1

Ω

)
2

(
D∗α1

Ω

)
3

(
D∗α1

Ω

)
4

(
D∗α1

Ω

)
5

(
D∗α1

Ω

)
6

(
D∗α1

Ω

)
7

(
D∗α1

Ω

)
8

(
D∗α1

Ω

)
9

]
D∗α2

Ω =
[ (

D∗α2
Ω

)
1

(
D∗α2

Ω

)
2

(
D∗α2

Ω

)
3

(
D∗α2

Ω

)
4

(
D∗α2

Ω

)
5

(
D∗α2

Ω

)
6

(
D∗α2

Ω

)
7

(
D∗α2

Ω

)
8

(
D∗α2

Ω

)
9

]
D∗α3

Ω =
[ (

D∗α3
Ω

)
1

(
D∗α3

Ω

)
2

(
D∗α3

Ω

)
3

(
D∗α3

Ω

)
4

(
D∗α3

Ω

)
5

(
D∗α3

Ω

)
6

(
D∗α3

Ω

)
7

(
D∗α3

Ω

)
8

(
D∗α3

Ω

)
9

] (42)

where each term D∗αi
Ω with i = 1, 2, 3 reads as:(

D∗α1
Ω

)
1
=
(

D∗α2
Ω

)
3
=
(

D∗α3
Ω

)
5
= 1

A1

∂
∂α1

+ 1
A1 A2

∂A2
∂α1

,
(

D∗α1
Ω

)
4
=
(

D∗α2
Ω

)
2
=
(

D∗α3
Ω

)
6
= 1

A2

∂
∂α2

+ 1
A1 A2

∂A1
∂α2

,(
D∗α1

Ω

)
3
= −

(
D∗α2

Ω

)
1
= 1

A1 A2

∂A1
∂α2

,
(

D∗α1
Ω

)
2
= −

(
D∗α2

Ω

)
4
= − 1

A1 A2

∂A2
∂α1

,(
D∗α1

Ω

)
5
= −

(
D∗α3

Ω

)
1
= 1

R1
,
(

D∗α2
Ω

)
6
= −

(
D∗α3

Ω

)
2
= 1

R2
,
(

D∗α1
Ω

)
7
=
(

D∗α2
Ω

)
8
=
(

D∗α3
Ω

)
9
= −1,(

D∗α1
Ω

)
6
=
(

D∗α1
Ω

)
8
=
(

D∗α1
Ω

)
9
=
(

D∗α2
Ω

)
5
=
(

D∗α2
Ω

)
7
=
(

D∗α2
Ω

)
9
=
(

D∗α3
Ω

)
3
=
(

D∗α3
Ω

)
4
=
(

D∗α3
Ω

)
7
=
(

D∗α3
Ω

)
8
= 0

(43)

Introducing in Equation (40) the definition of S(τ)αi in terms of u(τ), as happens
in Equation (31), the fundamental equations are derived in each point of the physical
domain for the static analysis of doubly-curved shells with higher-order theories for each
τ = 0, . . . , N + 1 [16]:

N+1

∑
η=0

L(τη)u(η) = q(τ) for τ = 0, . . . , N + 1 (44)

The fundamental matrix L(τη) referred to an arbitrary τ, η = 0, . . . , N + 1 occurring in
Equation (44) turns out to be of size 3 × 3, reading as follows [16]:

L(τη) =


L (τη)α1α1

11 L (τη)α1α2
12 L (τη)α1α3

13

L (τη)α2α1
21 L (τη)α2α2

22 L (τη)α2α3
23

L (τη)α3α1
31 L (τη)α3α2

32 L (τη)α3α3
33

 =
3

∑
i=1

3

∑
j=1

D∗αi
Ω A(τη)αiαj D

αj
Ω for τ, η = 0, . . . , N + 1 (45)
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As shown in Equations (33) and (34), the application of the integration by parts
rule with respect to the integration along α1, α2 allows one to also derive the boundary
conditions of the problem, which are applied at the edges of the rectangular physical
domain

[
α0

1, α1
1
]
×
[
α0

2, α1
2
]

of extremes α0
i , α1

i with i = 1, 2. More specifically, the boundary
conditions reported below are applied at the edges of the shell located at α1 = α0

1 or α1 = α1
1:

N(τ)α1
1 = N(τ)α1

1 or u(τ)
1 = u(τ)

1

N(τ)α2
12 = N(τ)α2

12 or u(τ)
2 = u(τ)

2

T(τ)α3
1 = T(τ)α3

1 or u(τ)
3 = u(τ)

3

(46)

where N(τ)α1
1 , N(τ)α2

12 , T(τ)α3
1 and u(τ)

1 , u(τ)
2 , u(τ)

3 are pre-determined values of the generalized
stress resultants and the generalized displacement components, respectively, which can be
assigned a-priori. In the same way, the following boundary conditions are derived for the
physical domain edges with α2 = α0

2 or α2 = α1
2:

N(τ)α1
21 = N(τ)α1

21 or u(τ)
1 = u(τ)

1

N(τ)α2
2 = N(τ)α2

2 or u(τ)
2 = u(τ)

2

T(τ)α3
2 = T(τ)α3

2 or u(τ)
3 = u(τ)

3

(47)

In the previous relation, the fixed values of the generalized stress resultants and gener-

alized displacement field components are denoted by N(τ)α1
21 , N(τ)α2

2 , T(τ)α3
2 and u(τ)

1 , u(τ)
2 ,

u(τ)
3 , respectively.

Starting from Equations (46) and (47), the boundary conditions of physical interests
are derived because they assign a null value to the kinematic and static quantities along
the shell sides. In particular, the Simply-supported (S) boundary conditions are defined
in order to neglect in-plane displacements of the lateral surfaces of the doubly-curved
shell solid:

N(τ)α1
1 = 0, u(τ)

2 = u(τ)
3 = 0 at α1 = α0

1 or α1 = α1
1

N(τ)α2
2 = 0, u(τ)

1 = u(τ)
3 = 0 at α2 = α0

2 or α2 = α1
2

(48)

6. Semi-Analytical Navier Solution

In the present section, a semi-analytical solution is found for the higher-order differen-
tial problem of Equation (44). To this end, the Navier method is adopted; therefore, some
geometric assumptions are made. More specifically, it is assumed that the geometry of the
shell is characterized by constant values of the Lamè parameters A1, A2 and of the principal
radii of curvature R1, R2. As a result, the relations reported in the following are considered:

A1 = 1 ⇒ ∂n+m A1
∂sn

1 ∂sm
2

= 0, A2 = 1 ⇒ ∂n+m A2
∂sn

1 ∂sm
2

= 0,

R1 = cost ⇒ ∂n+mR1
∂sn

1 ∂sm
2

= 0, R2 = cost ⇒ ∂n+mR2
∂sn

1 ∂sm
2

= 0
(49)

As a consequence, the lengths L1, L2 of the curvilinear parametric lines can be calcu-
lated in terms of the radii R1, R2 as follows:

L1 = s1
1 − s0

1 =
(
α1

1 − α0
1
)

R1

L2 = s1
2 − s0

2 =
(
α1

2 − α0
2
)

R2
(50)

In the case of a cylindrical surface with kn1 = 0 and R2 = R, the quantities L1, L2 read
as follows:

L1 = s1
1 − s0

1 = α1
1 − α0

1

L2 = s1
2 − s0

2 =
(
α1

2 − α0
2
)

R
(51)
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When a rectangular plate is studied, the principal curvatures are null, namely
kn1 = kn2 = 0, therefore, the lengths of the parametric lines are calculated from the
following expression:

L1 = s1
1 − s0

1 = α1
1 − α0

1

L2 = s1
2 − s0

2 = α1
2 − α0

2

(52)

The semi-analytical Navier solution accounts for the harmonic distribution of the
unknown field variable within the physical domain (s1, s2) ∈ [0, L1] × [0, L2]. The dis-
placement field components u(τ)

1 , u(τ)
2 and u(τ)

3 are thus expressed for each τ-th kinematic
expansion order with τ = 0, . . . , N + 1 as follows:

u(τ)
1 (s1, s2) =

Ñ
∑

n=1

M̃
∑

m=1
U(τ)

1nm cos
(

nπ
L1

s1

)
sin
(

mπ
L2

s2

)
u(τ)

2 (s1, s2) =
Ñ
∑

n=1

M̃
∑

m=1
U(τ)

2nm sin
(

nπ
L1

s1

)
cos
(

mπ
L2

s2

)
u(τ)

3 (s1, s2) =
Ñ
∑

n=1

M̃
∑

m=1
U(τ)

3nm sin
(

nπ
L1

s1

)
sin
(

mπ
L2

s2

)
(53)

In the previous equation, the quantities n and m denote the wave number of the solu-
tion along s1 and s2, respectively, whereas the quantities U(τ)

1nm, U(τ)
2nm and U(τ)

3nm are the wave
amplitudes associated to each wave number n, m. The total number of waves along s1 and
s2 is denoted by Ñ and M̃, respectively. According to the Navier’s method, these quantities
are assumed as Ñ = M̃ = ∞. It can be seen that the harmonic expansion of Equation (53)
respects the following boundary conditions along the edges of the physical domain:

u(τ)
1 (s1 = 0, s2) ̸= 0 u(τ)

1 (s1 = L1, s2) ̸= 0 u(τ)
1 (s1, s2 = 0) = 0 u(τ)

1 (s1, s2 = L2) = 0

u(τ)
2 (s1 = 0, s2) = 0 u(τ)

2 (s1 = L1, s2) = 0 u(τ)
2 (s1, s2 = 0) ̸= 0 u(τ)

2 (s1, s2 = L2) ̸= 0

u(τ)
3 (s1 = 0, s2) = 0 u(τ)

3 (s1 = L1, s2) = 0 u(τ)
3 (s1, s2 = 0) = 0 u(τ)

3 (s1, s2 = L2) = 0

(54)

As far as the external loads are concerned, the quantities q(±)
1 , q(±)

2 and q(±)
3 of

Equation (39), which are applied at the top and bottom surfaces of the shell, are also
expanded in a harmonic form by means of the following expression:

q(±)
1 (s1, s2) =

Ñ
∑

n=1

M̃
∑

m=1
Q(±)

1snm cos
(

nπ
L1

s1

)
sin
(

mπ
L2

s2

)
q(±)

2 (s1, s2) =
Ñ
∑

n=1

M̃
∑

m=1
Q(±)

2snm sin
(

nπ
L1

s1

)
cos
(

mπ
L2

s2

)
q(±)

3 (s1, s2) =
Ñ
∑

n=1

M̃
∑

m=1
Q(±)

3snm sin
(

nπ
L1

s1

)
sin
(

mπ
L2

s2

)
(55)

with Ñ = M̃ = ∞. The wave amplitudes of the external loads, defined for each wave
number n, m, are denoted by Q(±)

1snm, Q(±)
2snm and Q(±)

3snm. In Figures 1 and 2 we report the
expressions of the wave amplitudes of some load shapes of practical interest.
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3 of reference magnitudes q(±)
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3 applied on a
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The generalized external actions q(τ)1 , q(τ)2 and q(τ)3 introduced in Equation (38) which
are on the shell reference surface, are expanded for each τ = 0, . . . , N + 1 with
trigonometric series:

q(τ)1 (s1, s2) =
Ñ
∑

n=1

M̃
∑

m=1
Q(τ)

1snm cos
(

nπ
L1

s1

)
sin
(

mπ
L2

s2

)
q(τ)2 (s1, s2) =

Ñ
∑

n=1

M̃
∑

m=1
Q(τ)

2snm sin
(

nπ
L1

s1

)
cos
(

mπ
L2

s2

)
q(τ)3 (s1, s2) =

Ñ
∑

n=1

M̃
∑

m=1
Q(τ)

3snm sin
(

nπ
L1

s1

)
sin
(

mπ
L2

s2

)
(56)

being Q(τ)
1snm, Q(τ)

2snm and Q(τ)
3snm the amplitudes of the generalized external actions q(τ)1 , q(τ)2 ,

q(τ)3 associated to the τ-th kinematic expansion order, with τ = 0, . . . , N + 1. Introducing
Equations (55) and (56) in the static equivalence principle of Equation (37), the following
definitions of the generalized amplitudes Q(τ)

1snm, Q(τ)
2snm, Q(τ)

3snm of the actions q(τ)1 , q(τ)2 , q(τ)3

are obtained in terms of the wave amplitudes Q(±)
1snm, Q(±)

2snm, Q(±)
3snm of the surface loads

applied at the top and bottom surfaces of the shell:

Q(τ)
1snm = Q(−)

1snmF(1)α1(−)
τ H(−)

1 H(−)
2 + Q(+)

1snmF(l)α1(+)
τ H(+)

1 H(+)
2

Q(τ)
2snm = Q(−)

2snmF(1)α2(−)
τ H(−)

1 H(−)
2 + Q(+)

2snmF(l)α2(+)
τ H(+)

1 H(+)
2

Q(τ)
3snm = Q(−)

3snmF(1)α3(−)
τ H(−)

1 H(−)
2 + Q(+)

3snmF(l)α3(+)
τ H(+)

1 H(+)
2

(57)

As it is well-known, the semi-analytical Navier solution can be found only for cross-ply
lamination schemes. Therefore, the three-dimensional elastic constitutive relationship of
Equation (17), written in the reference system of the problem for a generally anisotropic
material, takes the following aspect:

σ
(k)
1

σ
(k)
2

τ
(k)
12

τ
(k)
13

τ
(k)
23

σ
(k)
3


=



E(k)
11 E(k)

12 0 0 0 E(k)
13

E(k)
12 E(k)

22 0 0 0 E(k)
23

0 0 E(k)
66 0 0 0

0 0 0 E(k)
44 0 0

0 0 0 0 E(k)
55 0

E(k)
13 E(k)

23 0 0 0 E(k)
33





ε
(k)
1

ε
(k)
2

γ
(k)
12

γ
(k)
13

γ
(k)
23

ε
(k)
3


k = 1, . . . , l (58)

In addition, the material orientation angle ϑ(k) occurring in Equation (19) is selected
so that ϑ(k) = ±π/2 or ϑ(k) = 0. Introducing the harmonic expansion of the unknown
field variables of Equation (53) and of the generalized external actions of Equation (56) in

the fundamental relations of Equation (44), the vector U(τ)
nm =

[
U(τ)

1nm U(τ)
2nm U(τ)

3nm

]T
of the

wave amplitude of the displacement field components is derived for each τ = 0, . . . , N + 1
from the following expression:

Ñ

∑
n=1

M̃

∑
m=1

(
N+1

∑
η=0

L̃(τη)
nm U(η)

nm + Q(τ)
snm

)
= 0 (59)

where the vector Q(τ)
snm =

[
Q(τ)

1snm Q(τ)
2snm Q(τ)

3snm

]T
collects the amplitudes of the general-

ized external actions of the τ-th expansion order. Furthermore, the quantity L̃(τη)
nm is the
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fundamental matrix related to the wave numbers n, m, defined for each τ, η = 0, . . . , N + 1.
In a more expanded form, the previous relation becomes:

Ñ

∑
n=1

M̃

∑
m=1



N+1

∑
η=0



L̃(τη)α1α1
11nm L̃(τη)α1α2

12nm L̃(τη)α1α3
13nm L̃(τη)α1α4

14nm L̃(τη)α1α5
15nm L̃(τη)α1α6

16nm L̃(τη)α1α7
17nm

L̃(τη)α2α1
21nm L̃(τη)α2α2

22nm L̃(τη)α2α3
23nm L̃(τη)α2α4

24nm L̃(τη)α2α5
25nm L̃(τη)α2α6

26nm L̃(τη)α2α7
27nm

L̃(τη)α3α1
31nm L̃(τη)α3α2

32nm L̃(τη)α3α3
33nm L̃(τη)α3α4

34nm L̃(τη)α3α5
35nm L̃(τη)α3α6

36nm L̃(τη)α3α7
37nm

L̃(τη)α4α1
41nm L̃(τη)α4α2

42nm L̃(τη)α4α3
43nm L̃(τη)α4α4

44nm L̃(τη)α4α5
45nm L̃(τη)α4α6

46nm L̃(τη)α4α7
47nm

L̃(τη)α5α1
51nm L̃(τη)α5α2

52nm L̃(τη)α5α3
53nm L̃(τη)α5α4

54nm L̃(τη)α5α5
55nm L̃(τη)α5α6

56nm L̃(τη)α5α7
57nm

L̃(τη)α6α1
61nm L̃(τη)α6α2

62nm L̃(τη)α6α3
63nm L̃(τη)α6α4

64nm L̃(τη)α6α5
65nm L̃(τη)α6α6

66nm L̃(τη)α6α7
67nm

L̃(τη)α7α1
71nm L̃(τη)α7α2

72nm L̃(τη)α7α3
73nm L̃(τη)α7α4

74nm L̃(τη)α7α5
75nm L̃(τη)α7α6

76nm L̃(τη)α7α7
77nm





U(η)
1nm

U(η)
2nm

U(η)
3nm

Φ(η)
nm

Ψ(η)
nm

Ξ(η)
nm

K(η)
nm


+



Q(τ)
1snm

Q(τ)
2snm

Q(τ)
3snm

Q(τ)
Dsnm

Q(τ)
Bsnm

Q(τ)
Tsnm

Q(τ)
Csnm




=



0

0

0

0

0

0

0


(60)

The complete expression of the coefficients L̃
(τη)αiαj
ijnm of the fundamental matrix L̃(τη)

nm ,
with i, j = 1, 2, 3, is reported below for each τ, η = 0, . . . , N + 1:

L̃(τη)α1α1
11nm = −A(τη)[00]α1α1

11(20)

(
nπ
L1

)2
− A(τη)[00]α1α1

66(02)

(
mπ
L2

)2
−

A
(τη)[00]α1α1
44(20)

R2
1

+
A
(τη)[01]α1α1
44(10) + A

(τη)[10]α1α1
44(10)

R1
− A(τη)[11]α1α1

44(00)

L̃(τη)α1α2
12nm = −

(
A(τη)[00]α1α2

12(11) + A(τη)[00]α1α2
66(11)

)(
nπ
L1

)(
mπ
L2

)
L̃(τη)α1α3

13nm =

(
A(τη)[01]α1α3

13(10) − A(τη)[10]α1α3
44(10) +

A
(τη)[00]α1α3
11(20) + A

(τη)[00]α1α3
44(20)

R1
+

A
(τη)[00]α1α3
12(11)

R2

)(
nπ
L1

)
L̃(τη)α2α1

21nm = −
(

A(τη)[00]α2α1
12(11) + A(τη)[00]α2α1

66(11)

)(
nπ
L1

)(
mπ
L2

)
L̃(τη)α2α2

22nm = −A(τη)[00]α2α2
66(20)

(
nπ
L1

)2
− A(τη)[00]α2α2

22(02)

(
mπ
L2

)2
−

A(τη)[00]α2α2
55(02)

R2
2

+
A(τη)[01]α2α2

55(01) + A(τη)[10]α2α2
55(01)

R2
− A(τη)[11]α2α2

55(00)

L̃(τη)α3α1
31nm =

(
A(τη)[10]α3α1

13(10) − A(τη)[01]α3α1
44(10) +

A
(τη)[00]α3α1
11(20) + A

(τη)[00]α3α1
44(20)

R1
+

A
(τη)[00]α3α1
12(11)

R2

)(
nπ
L1

)
L̃(τη)α3α2

32nm =

(
A(τη)[10]α3α2

23(01) − A(τη)[01]α3α2
55(01) +

A
(τη)[00]α3α2
12(11)

R1
+

A
(τη)[00]α3α2
22(02) + A

(τη)[00]α3α2
55(02)

R2

)(
mπ
L2

)
L̃(τη)α3α3

33nm = −A(τη)[00]α3α3
44(20)

(
nπ
L1

)2
− A(τη)[00]α3α3

55(02)

(
mπ
L2

)2
−

A
(τη)[00]α3α3
11(20)

R2
1

−
A
(τη)[00]α3α3
22(02)

R2
2

−
2A

(τη)[00]α3α3
12(11)

R1R2

−
A
(τη)[01]α3α3
13(10) + A

(τη)[10]α3α3
13(10)

R1
−

A
(τη)[01]α3α3
23(01) + A

(τη)[10]α3α3
23(01)

R2
− A(τη)[11]α3α3

33(00)

(61)

It should be noted that in the case of a cylindrical surface, the fundamental governing
equations are modified, remembering the geometric relations of Equation (51). More

specifically, when R1 = ∞, the generalized coefficients A
(τη)[ f g]αiαj
nm (pq) of Equation (29) are

calculated for each τ, η = 0, . . . , N + 1 from the following relation:

A
(τη)[ f g]αiαj
nm(pq) =

l

∑
k=1

ζk+1∫
ζk

B(k)
nm

∂ f F(kη)αj

∂ζ f
∂gF(kτ)αi

∂ζg
H2

Hq
2

dζ (62)

In this case, the fundamental coefficients L̃
(τη)αiαj
ijnm , which have been defined in

Equation (61), are simplified because one principal direction is characterized by a null value
of the principal curvature. The interested reader can find in Appendix A the extended

expression of L̃
(τη)αiαj
ijnm for the case of a cylindrical surface.
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Finally, in the case of a rectangular plate with R1 = R2 = ∞, the generalized coeffi-

cients A
(τη)[ f g]αiαj
nm(pq) are derived as follows:

A
(τη)[ f g]αiαj
nm(pq) =

l

∑
k=1

ζk+1∫
ζk

B(k)
nm

∂ f F(kη)αj

∂ζ f
∂gF(kτ)αi

∂ζg dζ (63)

The expression of the coefficients L̃
(τη)αiαj
ijnm of the fundamental matrix L̃(τη)

nm can be
found for the case of a rectangular plate in Appendix B.

7. Generalized Differential Quadrature Method

In the present section, the main features of the GDQ method are presented for the
derivation of the numerical solution of the three-dimensional equilibrium equations along
the thickness direction, as shown previously.

A computational grid made of a discrete number of points is defined in the thick-
ness direction, following a symmetric non-uniform distribution. In this context, the
Chebyshev–Gauss–Lobatto (CGL) distribution [16] is adopted. Referring to the interval
[−1, 1], the location of the generic element xi of the grid at issue is derived as follows:

xi = − cos
(

i − 1
IQ − 1

π

)
, i = 1, . . . , IQ, for xi ∈ [−1, 1] (64)

where IQ is the total number of discrete points. As stated previously, the GDQ method
allows one to evaluate the derivative of a generic n-th order of a smooth function from
a weighted sum of the values assumed by the function itself in its definition domain.
Referring to an arbitrary univariate function f = f (x) defined in the closed interval [a, b]
with a, b ∈ R, its n-th order derivative in a point xi ∈ [a, b] with i = 1, . . . , IQ is thus
calculated with the expression reported in the following [16]:

f (n)(xi) =
∂n f (x)

∂xn

∣∣∣∣
x=xi

∼=
IQ

∑
j=1

ς
(n)
ij f

(
xj
)

i= 1, 2, . . . , IQ (65)

In the previous relation, the quantity f
(
xj
)

with j = 1, . . . , IQ denotes the values

assumed by the function in the discrete grid, whereas ς
(n)
ij are the weighting coefficients of

the numerical method. As shown in other works, the present numerical approach provides
a high level of accuracy for a sufficient number of discrete points, namely IQ > n. The

GDQ weighting coefficients ς
(n)
ij are calculated with a recursive procedure [16] based on

the adoption of the Lagrange polynomials, defined on the computational discrete grid, for
the interpolation of the solution:

ς
(1)
ij = L(1)(xi)

(xi−xj)L(1)(xj)
, ς

(n)
ij = n

(
ς
(1)
ij ς

(n−1)
ii −

ς
(n−1)
ij

xi−xj

)
i ̸= j

ς
(n)
ii = −

IN
∑

j=1 j ̸=i
ς
(n)
ij i = j

(66)

In the previous relation, the quantities L(1)(xi) and L(1)(xj
)

denote the first order
derivatives of the Lagrange polynomials at the points xi and xj, respectively. On the other

hand, the definition ς
(0)
ij = δij with i, j = 1, . . . , IQ should be introduced, being δij the

Kronecker delta operator.
The GDQ method can also be applied for the numerical computation of integrals

within the GIQ numerical method. According to the GIQ, the integration, restricted to the
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closed interval
[
xi, xj

]
with xi, xj ∈ [a, b], of a smooth function f = f (x) with x ∈ [a, b] can

be evaluated as follows [16]:

xj∫
xi

f (x)dx =
IQ

∑
k=1

w̃ij
k f (xk) =

IQ

∑
k=1

(
wjk − wik

)
f (xk) (67)

As can be seen, the definition interval of f is discretized with a grid of IQ points.
The GIQ coefficients wik, wjk with i, j, k = 1, . . . , IQ are collected in the matrix W of size
IQ × IQ. The coefficients at issue are derived from the GDQ shifted coefficients of the first

order derivative, denoted by ς
(1)
ij with i, j = 1, . . . IQ, which are defined as follows, setting

ε = 1 × 10−10:

ς
(1)
ij =


ri−ε
rj−ε ς̃

(1)
ij i ̸= j

1
ri−ε + ς̃

(1)
ij i = j

(68)

The shifted coefficients of Equation (68) are collected in the matrix ς(1), whose size
is IQ × IQ. It can be shown that the matrix of the GIQ coefficients is the inverse of the
matrix ς(1):

W =
(

ς(1)
)−1

(69)

When the numerical integration is restricted to an arbitrary interval [a, b], the domain

[−1, 1] becomes a parent interval. For this reason, the coefficients w̃
1IQ
k of Equation (67) are

transformed into those w
1IQ
k by means of the following GIQ mapping technique:

w
1IQ
k =

b − a
2

w̃
1IQ
k (70)

In this way, the integral of f = f (x) restricted to the interval [a, b] are evaluated
as follows [16]:

b∫
a

f (x)dx =
IQ

∑
k=1

w
1IQ
k f (xk) (71)

8. Stress and Strain Recovery Procedure

In the previous section, the two-dimensional Navier closed-form solution of the fun-
damental relations reported in Equation (44) was derived. Therefore, the actual response of
the three-dimensional doubly-curved solid is now derived. The reconstruction of stress and
strain profiles requires the adoption of three-dimensional equilibrium equations because
only the adoption of the ESL kinematic and constitutive relations may lead to erroneous
results. Referring to a doubly-curved shell solid with constant principal radii of curva-
ture R1, R2 along the physical domain and A1, A2 = 1, the three-dimensional equilibrium
equations assume the following aspect [16]:

∂τ
(k)
13

∂ζ +
(

2
R1 + ζ + 1

R2 + ζ

)
τ
(k)
13 = a(k)

∂τ
(k)
23

∂ζ +
(

1
R1 + ζ + 2

R2 + ζ

)
τ
(k)
23 = b(k)

∂σ
(k)
3

∂ζ +
(

1
R1 + ζ + 1

R2 + ζ

)
σ
(k)
3 = c(k)

(72)
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where the parameters a(k), b(k) and c(k) are written in an extended form as follows:

a(k) = − 1
(1 + ζ/R1)

∂σ
(k)
1

∂s1
− 1

(1 + ζ/R2)

∂τ
(k)
12

∂s2

b(k) = − 1
(1 + ζ/R1)

∂τ
(k)
12

∂s1
− 1

(1 + ζ/R2)
∂σ

(k)
2

∂s2

c(k) = σ
(k)
1

R1 + ζ +
σ
(k)
2

R2 + ζ − 1
(1 + ζ/R1)

∂τ
(k)
13

∂s1
− 1

(1 + ζ/R2)

∂τ
(k)
23

∂s2

(73)

At this point, a two-dimensional grid is extracted from the physical domain[
s0

1, s1
1
]
×
[
s0

2, s1
2
]

made of IN × IM nodes, starting from the non-uniform one-dimensional
CGL distribution of Equation (64).

As far as the thickness direction is concerned, a discrete grid of IT points is defined
in each interval [ζk, ζk+1] of length hk = ζk+1 − ζk related to an arbitrary k-th layer of the
stacking sequence, setting k = 1, . . . , l. The generic element of this grid is denoted by ζ

(k)
m̃

for m̃ = 1, . . . , IT , with ζ
(k)
m̃ ∈ [ζk, ζk+1]. The quantity ζ

(k)
m̃ is defined from an arbitrary

distribution within the dimensionless interval ξm̃ ∈ [−1, 1] as follows:

ζ
(k)
m̃ =

hk
2

ξm̃ +
ζk+1 + ζk

2
(74)

Finally, the elements ζ
(k)
m̃ are arranged in the vector ζ(k) =

[
ζ
(k)
1 · · · ζ

(k)
m̃ · · · ζ

(k)
IT

]T

of size IT × 1, defined in each k-th lamina. At this point, a new vector of size l IT × 1 is
introduced, which contains all the discrete points ζm belonging to the interval [−h/2, h/2]
that are located in the thickness direction. To this end, the index m = 1, . . . , l IT is introduced,
defined as m = (k − 1)IT + m̃. As a consequence, the vector ζ(k) is arranged in the global
vector

[
ζ1 · · · ζm · · · ζl IT

]T
=
[
ζ(1)T · · · ζ(k)T · · · ζ(l)T

]
of size l IT × 1.

The through-the-thickness displacement field profile can be evaluated for each point(
s1i, s2j

)
of the reference surface, remembering the kinematic assumption of Equation (8).

The relation reported in the following is thus considered for each m = 1, . . . , l IT :

U(k)
(ijm)

=
N+1

∑
τ=0

F(k)
τ(ijm)

u(τ)
(
s1i, s2j

)
(75)

In the same way, from Equation (14) the profiles are derived of the three-dimensional

strain components of the vector ε
(k)
(ijm)

=
[
ε
(k)
1(ijm)

ε
(k)
2(ijm)

γ
(k)
12(ijm)

γ
(k)
13(ijm)

γ
(k)
23(ijm)

ε
(k)
3(ijm)

]T

for each point
(
s1i, s2j

)
of the reference surface of the shell:

ε
(k)
(ijm)

=
N+1

∑
τ= 0

3

∑
i=1

Z (kτ)αi
(ijm)

ε
(τ)αi
(ij) (76)

The quantity ε
(τ)αi
(ij) = ε(τ)αi

(
s1i, s2j

)
with i = 1, 2, 3 denotes the generalized strain

vector, defined for each τ-th kinematic expansion order, evaluated in each point of the
reference surface. Starting from the three-dimensional constitutive relation of Equation

(17) with E(k)
ij = C(k)

ij for i, j = 1, . . . , 6, the distribution of the membrane stresses σ
(k)
1 , σ

(k)
2

and τ
(k)
12 is derived introducing in each through-the-thickness discrete point of the compu-
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tational grid the three-dimensional strain components of Equation (76), remembering the
hypotheses made for the derivation of the Navier closed-form solution:


σ
(k)
1(ijm)

σ
(k)
2(ijm)

τ
(k)
12(ijm)

 =


C(k)

11(m) C(k)
12(m) 0 0 0 C(k)

13(m)

C(k)
12(m) C(k)

22(m) 0 0 0 C(k)
23(m)

0 0 C(k)
66(m) 0 0 0





ε
(k)
1(ijm)

ε
(k)
2(ijm)

γ
(k)
12(ijm)

γ
(k)
13(ijm)

γ
(k)
23(ijm)

ε
(k)
3(ijm)


(77)

Once the discrete distribution of membrane stresses is derived along the shell thickness
according to Equation (77), it is useful to compute their first order derivative with respect
to s1, s2 parametric lines. These derivations are performed numerically by means of the
GDQ method of Equation (65). One gets:

σ
(k)
1,1 =

∂σ
(k)
1

∂s1

∣∣∣∣
(ijm)

∼=
IN
∑

r=1
ς

s1(1)
ir σ

(k)
1(rjm)

, σ
(k)
2,2 =

∂σ
(k)
2

∂s2

∣∣∣∣
(ijm)

∼=
IM
∑

r=1
ς

s2(1)
jr σ

(k)
2(irm)

,

τ
(k)
12,1 =

∂τ
(k)
12

∂s1

∣∣∣∣
(ijm)

∼=
IN
∑

r=1
ς

s1(1)
ir τ

(k)
12(rjm)

, τ
(k)
12,2 =

∂τ
(k)
12

∂s2

∣∣∣∣
(ijm)

∼=
IM
∑

r=1
ς

s2(1)
jr τ

(k)
12(irm)

(78)

where the notations ς
(1)
ir = ς

s1(1)
ir and ς

(1)
jr = ς

s2(1)
jr mean that the GDQ rule is applied

along s1 and s2 parametric line, respectively. Note that the partial derivatives of the
stresses reported in Equation (78) are not solved according to the semi-analytical procedure,
because in this case they should be evaluated for each n, m of the trigonometric expansion
of Equation (53), and the post-processing recovery procedure should be applied many
times. In contrast, the adoption of the GDQ numerical method allows one to apply directly
the procedure to the expanded solution. The out-of-plane stress components τ

(k)
13 and

τ
(k)
23 are evaluated from the first two three-dimensional equilibrium Equation (72) of a

doubly-curved shell, which are written in each k-th layer of the shell in a discrete form
as follows:

IT
∑

r=1
ς

ζ(1)
m̃r τ

(k)
13(ij((k−1)IT+r)) +

(
2

R1+ζm
+ 1

R2+ζm

)
τ
(k)
13(ijm)

= a(k)
(ijm)

IT
∑

r=1
ς

ζ(1)
m̃r τ

(k)
23(ij((k−1)IT+r)) +

(
1

R1+ζm
+ 2

R2+ζm

)
τ
(k)
23(ijm)

= b(k)
(ijm)

(79)

The parameters a(k) and b(k), dependent on the membrane stresses σ
(k)
1 , σ

(k)
2 and τ

(k)
12 ,

are written in a discrete form as follows:

a(k)
(ijm)

= − 1
1+ζm/R1

∂σ
(k)
1

∂s1

∣∣∣∣
(ijm)

− 1
1+ζm/R2

∂τ
(k)
12

∂s2

∣∣∣∣
(ijm)

b(k)
(ijm)

= − 1
1+ζm/R1

∂τ
(k)
12

∂s1

∣∣∣∣
(ijm)

− 1
1+ζm/R2

∂σ
(k)
2

∂s2

∣∣∣∣
(ijm)

(80)

The solution of Equation (79) is derived numerically by means of the GDQ method.
On the other hand, the boundary conditions are enforced at the bottom surface of the
shell, remembering the reciprocity principle of stress components. In other words, the
out-of-plane shear stresses must be at the bottom of the shell, equal to the in-plane loads
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q(−)
1 and q(−)

2 . In the same way, at the top surface of the shell, the shear stress profile must

guarantee equilibrium with the external loads q(+)
1 and q(+)

2 :

τ
(1)
13 (ζ = −h/2) = q(−)

1 or τ
(l)
13 (ζ = h/2) = q(+)

1

τ
(1)
23 (ζ = −h/2) = q(−)

2 or τ
(l)
23 (ζ = h/2) = q(+)

2

(81)

The boundary conditions introduced in the previous equation are written below in
discrete form:

τ
(1)
13(ij1) = q(−)

1(ij), τ
(1)
23(ij1) = q(−)

2(ij) (82)

τ
(l)
13(ij(l IT))

= q(+)
1(ij), τ

(l)
23(ij(l IT))

= q(+)
2(ij) (83)

At this point, a numerical solution is found for k = 1, taking into account the external
constraints of Equation (82). Once the equilibrium Equation (79) is solved in the first layer,
the boundary conditions for the generic k-th layer with k = 2, . . . , l are assessed starting
from the results obtained for k − 1. Note that the discrete points associated to the indexes
m = (k − 1)IT and m = (k − 1)IT + 1 are located at the same height in the interface region
along the thickness direction, therefore, the relations reported below can be enforced at the
interface between two adjacent layers:

τ
(k)
13(ij((k−1)IT+1)) = τ

(k−1)
13(ij((k−1)IT))

τ
(k)
23(ij((k−1)IT+1)) = τ

(k−1)
23(ij((k−1)IT))

(84)

Finally, the boundary conditions of Equation (83) are enforced at the top surface of the
solid, remembering that the solution of the differential system of Equation (79) is defined as
less than a linear transformation. For this reason, the through-the-thickness profiles of the
stresses τ

(k)
13 and τ

(k)
23 , derived numerically, are corrected by adding a linear term dependent

on the thickness coordinate ζm [16], as shown in Figure 3:
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At this point, the derivative of ( )
13
kτ  and ( )

23
kτ  shear stresses with respect to 1 2,s s  can 

be evaluated with the GDQ method as follows: 

( )
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( )
( )
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( )
( )
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1

2

113
13,1 13

11

123
23,2 23

12

1,...,

N

M

k I
k s k

ir rjm
rijm

Tk I
k s k

jr irm
rijm

s
m l I

s

ττ ς τ

ττ ς τ

=

=

∂
= ≅

∂
=

∂
= ≅

∂
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The third equilibrium equation of Equation (72), reported below in discrete form, is 
adopted for the derivation of the actual profile of the normal stress ( )

3
kσ : 

( )
( )( )( )

( )
( )

( )
( )
( )1

33 1
1 1 2

1 1T

T

I
k k k

mr ijm ijmij k I r
r m m

c
R R

ζς σ σ
ζ ζ− +

=

 
+ + =  + + 

   (87)

where the parameter ( )
( )k
ijmc  accounts for the following expression: 

( )
( ) ( )

( )
( )

( ) ( )

( )

( )

( )

1 2 13 23

1 2 1 1 2 2

1 1
1 1

k k k k
ijm ijmk

ijm
m m m mijm ijm

c
R R R s R s

σ σ τ τ
ζ ζ ζ ζ

∂ ∂
= + − −

+ + + ∂ + ∂
 (88)

Two possible sets of boundary conditions are considered for the derivation of the 
numerical solution of Equation (87), setting ( )

3q
+  and ( )

3q
−  the value of the external actions 

oriented along the normal direction applied at the top and bottom surfaces of the shell, 
respectively: 

( ) ( ) ( )

( ) ( ) ( )

1
3 3

3 3

2

2l

h q

h q

σ ζ

σ ζ

−

+

= − =

= =
 (89)

In discrete form, the last two relations become: 

Figure 3. Linear correction σij = τ13, τ23, σ3 of the profile of the out-of-plane stress components by

means of the external load q(+)
s = q(+)

1 , q(+)
2 , q(+)

3 acting at the top surface of the shell. The external

pressure at the bottom surface, denoted by q(−)
s = q(−)

1 , q(−)
2 , q(−)

3 , has been previously modeled as the
boundary condition of the three-dimensional elasticity equation for the derivation of σ̃ij = τ13, τ23, σ3.

τ
(k)
13(ijm)

= τ
(k)
13(ijm)

+
q(+)

1(ij)−τ
(l)
13(ij(l IT ))

h

(
ζm + h

2

)
τ
(k)
23(ijm)

= τ
(k)
23(ijm)

+
q(+)

2(ij)−τ
(l)
23(ij(l IT ))

h

(
ζm + h

2

) m = 1, . . . , l IT (85)
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At this point, the derivative of τ
(k)
13 and τ

(k)
23 shear stresses with respect to s1, s2 can be

evaluated with the GDQ method as follows:

τ
(k)
13,1 =

∂τ
(k)
13

∂s1

∣∣∣∣
(ijm)

∼=
IN
∑

r=1
ς

s1(1)
ir τ

(k)
13(rjm)

τ
(k)
23,2 =

∂τ
(k)
23

∂s2

∣∣∣∣
(ijm)

∼=
IM
∑

r=1
ς

s2(1)
jr τ

(k)
23(irm)

m = 1, . . . , l IT (86)

The third equilibrium equation of Equation (72), reported below in discrete form, is
adopted for the derivation of the actual profile of the normal stress σ

(k)
3 :

IT

∑
r=1

ς
ζ(1)
m̃r σ

(k)
3(ij((k−1)IT+r)) +

(
1

R1 + ζm
+

1
R2 + ζm

)
σ
(k)
3(ijm)

= c(k)
(ijm)

(87)

where the parameter c(k)
(ijm)

accounts for the following expression:

c(k)
(ijm)

=
σ
(k)
1(ijm)

R1 + ζm
+

σ
(k)
2(ijm)

R2 + ζm
− 1

1 + ζm/R1

∂τ
(k)
13

∂s1

∣∣∣∣∣
(ijm)

− 1
1 + ζm/R2

∂τ
(k)
23

∂s2

∣∣∣∣∣
(ijm)

(88)

Two possible sets of boundary conditions are considered for the derivation of the
numerical solution of Equation (87), setting q(+)

3 and q(−)
3 the value of the external ac-

tions oriented along the normal direction applied at the top and bottom surfaces of the
shell, respectively:

σ
(1)
3 (ζ = −h/2) = q(−)

3

σ
(l)
3 (ζ = h/2) = q(+)

3

(89)

In discrete form, the last two relations become:

σ
(1)
3(ij1) = q(−)

3(ij)

σ
(l)
3(ij(l IT))

= q(+)
3(ij)

(90)

Following the same approach as Equation (84), once the boundary condition in Equa-
tion (89) is employed for the derivation of the numerical solution of Equation (87) of the first
layer (k = 1), the following boundary condition is considered for the numerical assessment
of the equilibrium Equation (87) in the remaining laminae, namely for k = 2, . . . , l:

σ
(k)
3(ij((k−1)IT+1)) = σ

(k−1)
3(ij((k−1)IT))

(91)

The second boundary condition of Equation (90) is applied by means of a linear
correction [16] of the profile of the normal stress σ

(k)
3 derived from Equation (87):

σ
(k)
3(ijm)

= σ
(k)
3(ijm)

+
q(+)

3(ij) − σ
(l)
3(ij(l IT))

h

(
ζm +

h
2

)
(92)

The correction of the through-the-thickness profile of the normal stress has been repre-
sented in Figure 3. Once the three-dimensional stresses are derived from the present recov-
ery procedure, the constitutive relationship of Equation (17) is used for the derivation of the
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updated profile of the out-of-plane strain components γ
(k)
13 , γ

(k)
23 and ε

(k)
3 . To this end, the

following relation is considered at each point
(
s1i, s2j, ζm

)
of the three-dimensional solid:

C(k)
44(m)γ

(k)
13(ijm)

= τ
(k)
13(ijm)

C(k)
55(m)γ

(k)
23(ijm)

= τ
(k)
23(ijm)

C(k)
33(m)ε

(k)
3(ijm)

= σ
(k)
3(ijm)

− C(k)
13(m)ε

(k)
1(ijm)

− C(k)
23(m)ε

(k)
2(ijm)

(93)

Starting from the previous equation, the expression of the quantities γ
(k)
13(ijm)

, γ
(k)
23(ijm)

and ε
(k)
3(ijm)

is easily derived.
Finally, the out-of-plane strain components are introduced in the three-dimensional

constitutive relation of Equation (77). In this way, the membrane stresses σ
(k)
1(ijm)

, σ
(k)
2(ijm)

and τ
(k)
12(ijm)

are corrected because, in the previous step, they were calculated without
considering the three-dimensional equilibrium equations.

9. Application and Results

In the present section, some examples of investigation are shown, where the present
semi-analytical theory is adopted for the derivation of the static response of structures of
different curvatures and lamination schemes for different load cases. The accuracy of the
solution is validated with success with respect to highly computationally demanding three-
dimensional finite element models, shown in Figure 4, as implemented in the ABAQUS
code. In all examples, it is shown that the present semi-analytical solution, together with
the recovery of stresses and strains, can accurately predict the three-dimensional response
of curved and laminated structures with a reduced computational cost. Furthermore, the
convergence of the method is studied when load shapes of practical interest are considered,
like uniform, concentrated, line, and hydrostatic loads. Finally, some examples are pre-
sented where curved and layered structures are subjected to generally-shaped pressures.
In all the examples, lamination schemes are made starting from layers of graphite-epoxy(

ρ(k) = 1450 kg/m3
)

, whose engineering constants, obtained from Ref. [101], are reported
in the following:

E(k)
1 = 137.90 GPa G(k)

23 = 6.21 GPa ν
(k)
23 = 0.49

E(k)
2 = E(k)

3 = 8.96 GPa G(k)
12 = G(k)

13 = 7.10 GPa ν
(k)
12 = ν

(k)
13 = 0.30

(94)

In the previous relation, the quantities ν
(k)
12 , ν

(k)
13 , ν

(k)
23 denote the Poisson’s coefficients of

the orthotropic materials, whereas E(k)
1 , E(k)

2 , E(k)
3 and G(k)

12 , G(k)
13 , G(k)

23 are the elastic moduli
and the shear moduli, respectively. They are related to the three-dimensional stiffness
constants C(k)

ij = E(k)
ij with i, j = 1, . . . , 6 of Equation (18) according to the procedure

extensively detailed in Ref. [16]. The stiffness constants C(k)
ij of soft orthotropic layers,

denoted by graphite-epoxy soft5 and graphite-epoxy soft10, are five and ten times softer,
respectively, than those of the graphite-epoxy of Equation (94). As a consequence, the
engineering constants of the graphite-epoxy soft5, whose density is thus ρ(k) = 290 kg/m3,
the following aspect:
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E(k)
1 = 27.58 GPa G(k)

23 = 1.242 GPa ν
(k)
23 = 0.49

E(k)
2 = E(k)

3 = 1.792 GPa G(k)
12 = G(k)

13 = 1.42 GPa ν
(k)
12 = ν

(k)
13 = 0.30

(95)

In the same way, the mechanical properties of the graphite-epoxy soft10(
ρ(k) = 145 kg/m3

)
can be written as:

E(k)
1 = 13.790 GPa G(k)

23 = 0.621 GPa ν
(k)
23 = 0.49

E(k)
2 = E(k)

3 = 0.896 GPa G(k)
12 = G(k)

13 = 0.710 GPa ν
(k)
12 = ν

(k)
13 = 0.30

(96)

In each simulation, the lamination scheme consists of three layers of thicknesses
h1 = h3 = 0.03 m and h2 = 0.04 m with material orientation angles equal to ϑ(1) = ϑ(3) = 0
and ϑ(2) = π/2. Finally, the recovery procedure has been applied setting IT = 31 discrete
points in the thickness direction for each k-th layer. Note that the computational cost of the
present semi-analytical formulation is here intended as the number of terms, denoted by
Ñ and M̃, occurring in the harmonic expansion of the solution according to Equation (53).
No details are given on the computational time, whose aspect depends on the machine
properties and on the numerical implementation of the linear system (59), which is not the
main focus of this work.

The first example consists of a simply-supported rectangular plate of dimensions
L1 = 2 m and L2 = 1 m made of three layers of graphite-epoxy with properties as in
Equation (94) of thicknesses h1 = h3 = 0.03 m and h2 = 0.04 m subjected to two different
patch loads, one at the top surface and the other at the bottom surface with magnitudes
q(+)

3 = −7 × 105 N/m2 and q(−)
3 = −3 × 105 N/m2, respectively. The position and shape

parameters of the load distribution in hand have been selected so that the external pressure
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is applied in a quarter of the physical domain. On the other hand, the through-the-
thickness distribution of the three-dimensional kinematic and mechanical quantities have
been evaluated in a region where the external load is not applied, namely (0.25 L1, 0.25 L2).
In Figure 5 the reader can find some information regarding the convergence rate of the
present semi-analytical solution, which is computed by the following percentage error e%:

e% =

∣∣∣∣wÑ − wFEM

wFEM

∣∣∣∣× 100 % (97)

where wÑ denotes the vertical deflection of the central point of the three-dimensional
solid derived from Equation (75), while wFEM = 0.00150236 m is the corresponding value
derived from the finite element simulation.

As visible in Table 1, a very rapid convergence rate is found for a limited number of
terms within the harmonic expansion (53). In this way, the results of the simulation are
shown to be very stable for the selected wave numbers. Note that the selected value of
Ñ = M̃ not only depends on the convergence of the vertical deflection to the reference
value, but also on the fulfillment of the loading conditions at the top and bottom surfaces
of the plate under consideration.

Table 1. Static analysis of a rectangular plate subjected to a patch load. The percentage error in
Equation (97) defines the convergence rate of the semi-analytical solution with respect to the reference
simulation derived from a three-dimensional finite element simulation. The quantity wÑ is expressed
in 10−4 m.

Ñ = M̃ wÑ e%

5 15.0476 0.16%
10 15.0420 0.12%
12 15.0077 0.11%
20 15.0084 0.10%
50 15.0085 0.10%

100 15.0085 0.10%
120 15.0085 0.10%
150 15.0085 0.10%
200 15.0085 0.10%

The distributions of the displacement field components, the three-dimensional strain,
and the stresses have been reported in Figures 5–7, respectively. For each quantity, a 3D
FEM model of parabolic C3D20 elements, consisting of 582327 DOFs, has been adopted for
the derivation of a reference solution. Furthermore, a two-dimensional numerical solution
is derived with the GDQ method, accounting for the FSDT and TSDT theories as well
as the EDZ4. The physical domain is discretized with a two-dimensional grid made of
IN = IM = 31 discrete points, following the CGL distribution. The present semi-analytical
theory has been used with the EDZ4 displacement field assumption, setting Ñ = M̃ = 150.
As can be seen from Figure 5, very accurate results are provided in terms of the displacement
field components U1, U2, U3. On the other hand, in Figure 6, it is shown that the recovery
procedure is determining the correct prediction of the out-of-plane strain components
γ13, γ23, ε3, especially in the central layer. Furthermore, very accurate results are obtained
for in-plane quantities ε1, ε2, γ12. As far as the three-dimensional stress components are
concerned, in Figure 7, it is shown that the reconstruction of out-of-plane stresses from the
semi-analytical Navier solution by means of the three-dimensional constitutive relationship
of Equation (17) leads to erroneous results, especially for the σ3 normal stress. On the
other hand, when the equilibrium-based recovery procedure is applied, the results coming
from the two-dimensional semi-analytical solution, denoted by (E), perfectly match those
coming from the 3D FEM simulation.
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Figure 5. Reconstruction of the profiles of the components of the three-dimensional displacement
field vector U(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to

patch loads of magnitudes q(+)
3 = −7 × 105 N/m2 and q(−)

3 = −3 × 105 N/m2 with c10 = 0.25 L1

and c20 = 0.25 L2 applied at (s10, s20) = (0.75 L1, 0.75 L2). Thickness plots have been provided for
the point located at (0.25 L1, 0.25 L2).

The next example takes into account the same rectangular panel subjected to hydro-
static loads. More specifically, the first load of magnitude q(+)

3 = −7 × 105 N/m2 and
directed along α1 principal direction is applied at the top surface, whereas the second load
of magnitude q(−)

3 = −3 × 105 N/m2, applied at the bottom surface, is directed along α2
principal direction. Three different load cases have been considered, denoted by H1, H2,
and H3. In the first one, only the top surface is loaded, whereas in the second one, the
external load is applied only to the bottom surface. Finally, in the H3 load case, the two
hydrostatic loads have been considered together. Thickness plots calculated at the point
located at (0.25 L1, 0.25 L2) have been collected in Figures 8–10.
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both in-plane and out-of-plane strain and stress profiles in Figures 9 and 10, it should be 
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Figure 6. Reconstruction of the profiles of the components of the three-dimensional strain vector
ε(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to patch loads of

magnitudes q(+)
3 = −7 × 105 N/m2 and q(−)

3 = −3 × 105 N/m2 with c10 = 0.25 L1 and c20 = 0.25 L2

applied at (s10, s20) = (0.75 L1, 0.75 L2). Thickness plots have been provided for the point located at
(0.25 L1, 0.25 L2).

Figure 7. Cont.
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Figure 7. Reconstruction of the profiles of the components of the three-dimensional stress vector
σ(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to patch loads of

magnitudes q(+)
3 = −7 × 105 N/m2 and q(−)

3 = −3 × 105 N/m2 with c10 = 0.25 L1 and c20 = 0.25 L2

applied at (s10, s20) = (0.75 L1, 0.75 L2). Thickness plots have been provided for the point located at
(0.25 L1, 0.25 L2).

Materials 2024, 17, x FOR PEER REVIEW 33 of 55 
 

 

 
Figure 8. Reconstruction of the profiles of the components of the three-dimensional displacement 
field vector ( )1 2, ,α α ζU  along the thickness direction of a laminated rectangular plate subjected to 

hydrostatic loads along 1α   and 2α   principal directions of magnitudes ( ) 5 2
3 7 10 N mq + = − ⋅   and 

( ) 5 2
3 3 10 N mq − = − ⋅  , respectively. Thickness plots have been provided for the point located at 

( )1 20.25 ,0.25L L . 

Figure 8. Reconstruction of the profiles of the components of the three-dimensional displacement
field vector U(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to

hydrostatic loads along α1 and α2 principal directions of magnitudes q(+)
3 = −7 × 105 N/m2 and

q(−)
3 = −3 × 105 N/m2, respectively. Thickness plots have been provided for the point located at
(0.25 L1, 0.25 L2).
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Figure 9. Reconstruction of the profiles of the components of the three-dimensional strain vec-
tor ε(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to hy-

drostatic loads along α1 and α2 principal directions of magnitudes q(+)
3 = −7 × 105 N/m2 and

q(−)
3 = −3 × 105 N/m2, respectively. Thickness plots have been provided for the point located at
(0.25 L1, 0.25 L2).

Figure 10. Cont.
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Figure 10. Reconstruction of the profiles of the components of the three-dimensional stress vec-
tor σ(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to hy-

drostatic loads along α1 and α2 principal directions of magnitudes q(+)
3 = −7 × 105 N/m2 and

q(−)
3 = −3 × 105 N/m2, respectively. Thickness plots have been provided for the point located at
(0.25 L1, 0.25 L2).

For each load configuration, the semi-analytical solution has been calculated with
Ñ = M̃ = 150. The results are compared to those of a 3D FEM simulation and to those
coming from a GDQ numerical model with classical and higher-order theories, showing a
very good agreement between different approaches. When lower order theories like FSDT
and TSDT are employed, a slight discrepancy in results can be seen in the thickness plot of
U3, reported in Figure 8, whereas the EDZ4 theory perfectly matches the three-dimensional
predictions of all quantities in each load case. With particular reference to both in-plane
and out-of-plane strain and stress profiles in Figures 9 and 10, it should be noted that for
each case, the loading conditions are perfectly respected. Furthermore, the solution coming
from the H3 load case can be seen as the sum of H1 and H2, due to the additivity property
of the linear solutions calculated previously.

At this point, a laminated cylindrical panel of radius R2 = 1.2 m is considered with
L1 = 2 m and

(
α0

2, α1
2
)
= (−π/3, π/3). Two externally concentrated loads of magnitude

q(+)
3 = −2000 N and q(−)

3 = −2000 N are applied at the top and bottom surfaces, respec-
tively. The position parameters are s10 = 0.5 L1 and s20 = 0.5 L2, selected so that the
structure is loaded in the center of the physical domain. The lamination scheme consists of
two external layers of graphite-epoxy, as defined in Equation (94), whereas the central core
is made of graphite-epoxy soft10, as defined in Equation (96).

Thickness plots are provided at the point located at (0.25 L1, 0.25 L2), and they are
collected in Figures 11–13. A 3D FEM model with 741975 DOFs made of parabolic
C3D20 brick elements has been developed, and a three-dimensional reference solution has
been provided.

In addition, a numerical solution based on the GDQ numerical technique has been
derived, taking into account both the FSDT and the TSDT displacement field assump-
tions. The zigzag effects are clearly visible in the deflection of the panel because an abrupt
variation of the material stiffness occurs between two adjacent laminae. For this reason,
a parametric investigation has been conducted with the semi-analytical approach with
Ñ = M̃ = 500, and the static response of the cylindrical panel has been evaluated em-
ploying various higher-order theories. As can be seen from Figure 11, the exact solutions
accounting for the EDZ3 and the EDZ4 higher-order theories perfectly match the predic-
tions of the three-dimensional FEM reference model. Similar considerations can be made
for the plots of the three-dimensional strain components in Figure 12. The adoption of a
higher-order displacement field is key for the prediction of both in-plane and out-of-plane
kinematic quantities. In the same way, the three-dimensional stress components of Figure 13
are well described by the EDZ4 model, but with a significantly reduced computational cost
if compared to the 3D-FEM simulation.
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Figure 11. Reconstruction of the profiles of the components of the three-dimensional displacement
field vector U(α1, α2, ζ) along the thickness direction of a laminated cylindrical panel subjected to

concentrated loads of magnitudes q(+)
3 = −2000 N and q(−)

3 = −2000 N with s10 = 0.5 L1 and
s20 = 0.5 L2. Thickness plots have been provided for the point located at (0.25 L1, 0.25 L2).

Figure 12. Cont.
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Figure 12. Reconstruction of the profiles of the components of the three-dimensional strain vector
ε(α1, α2, ζ) along the thickness direction of a laminated cylindrical panel subjected to concentrated

loads of magnitudes q(+)
3 = −2000 N and q(−)

3 = −2000 N with s10 = 0.5 L1 and s20 = 0.5 L2.
Thickness plots have been provided for the point located at (0.25 L1, 0.25 L2).
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Figure 13. Reconstruction of the profiles of the components of the three-dimensional stress vector
σ(α1, α2, ζ) along the thickness direction of a laminated cylindrical panel subjected to concentrated

loads of magnitudes q(+)
3 = −2000 N and q(−)

3 = −2000 N with s10 = 0.5 L1 and s20 = 0.5 L2.
Thickness plots have been provided for the point located at (0.25 L1, 0.25 L2).
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The EDZ4 model has been taken as a reference also in the next example, where the
same simply-supported cylindrical panel, made of three layers of graphite-epoxy, as defined
in Equation (94), has been loaded with a line load of magnitude q(+)

3 = −4.58 × 103 N/m
distributed along α1 principal direction, located at s20 = 0.75 L2. The thickness plots
are evaluated at (0.25 L1, 0.25 L2). The GDQ numerical solution has been calculated with
IN = IM = 31, accounting for FSDT, TSDT, and EDZ4 theories, whereas the semi-analytical
Navier solution is derived with the EDZ4 kinematic assumption setting Ñ = M̃ = 500.
Thickness plots of displacement field, strain, and stress components are reported in
Figures 14–16, respectively. As shown in Figure 14, classical approaches like the FSDT and
the TSDT provide a uniform value of U3, and the stretching effect predicted by the 3D-FEM
model cannot be evaluated. On the other hand, when the EDZ4 theory is adopted, the
parabolic distribution of the displacement field components is predicted with a sufficient
level of accuracy. The distribution of the three-dimensional strain components, reported in
Figure 15, provides refined results with respect to 3D FEM if a higher-order displacement
field is considered. It is important to underline that the recovery procedure provides very
accurate results because of the external load cases, which are the boundary conditions of
the problem; therefore, an accurate distribution of the stress components is derived. Finally,
from the results reported in Figure 16, it can be said that the three-dimensional in-plane
stress profiles derived from the 3D FEM model are in line with those provided by both the
GDQ numerical solution and the present approach.
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field vector U(α1, α2, ζ) along the thickness direction of a laminated cylindrical panel subjected to a
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line load distributed along α1 principal direction of magnitude q(+)
3 = −4.58 × 103 N/m. The Navier

solution has been calculated setting n = m = 500. Thickness plots have been provided for the point
located at (0.25 L1, 0.25 L2).
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Figure 15. Reconstruction of the profiles of the components of the three-dimensional strain vector
ε(α1, α2, ζ) along the thickness direction of a laminated cylindrical panel subjected to a line load

distributed along α1 principal direction of magnitude q(+)
3 = −4.58 × 103 N/m. The Navier solution

has been calculated setting n = m = 500. Thickness plots have been provided for the point located at
(0.25 L1, 0.25 L2).

Next example points out the high convergence rate of the present semi-analytical
method in the case of general loads. Let us consider a cylindrical panel of graphite epoxy
with an internal region made of graphite-epoxy soft10 subjected to different external
pressures applied at the extrados of the shell. More specifically, two hydrostatic loads of
magnitudes q(+)

3 = −7 × 105 N/m2 and q(−)
3 = −4 × 105 N/m2 are considered, which are

denoted by H1 and H2, respectively. In addition, a uniform pressure (U) of magnitude
q(+)

3 = −2 × 105 N/m2 acting along the thickness direction is applied. Five different
load cases are considered, accounting for different combinations of the external pressures
introduced previously. They are summarized as following:

Case 01 (C1) → H1
Case 02 (C2) → H2
Case 03 (C3) → H1 + H2
Case 04 (C4) → U
Case 05 (C5) → H1 + H2 + U

(98)
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solution is evaluated with the EDZ4 displacement field assumption, set 150N M= =   in 
each load case. The results are in line with the reference solution in terms of displacement 
field components, as can be seen in Figure 17. It should be noted that the selected 
lamination scheme presents some zigzag effects, especially for case C5. The adoption of 
Murakami’s zigzag function in the present model allows one to consider the piecewise 
inclination of the profile of the displacement field components. Similar considerations are 
made for the three-dimensional strain components of Figure 18, where the 3D FEM 
reference solution is perfectly predicted in a reduced amount of time by the higher-order 
semi-analytical model, and a good level of accuracy is also reached in the central region 
of the structure. In order to reduce the computational effort of the simulation, the results 
of more complicated load cases like C3 are obtained from the algebraic sum of C1 and C2 
simulations. In the same way, load case C5 is derived from the sum of C3 and C4. As a 
consequence, the results of the simulations referred to in C3 and C5 can be efficiently 
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recovered previously in the corresponding two-dimensional semi-analytical solutions, as 
shown in Figure 19 in the case of the three-dimensional stress components. The recovery 
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Figure 16. Reconstruction of the profiles of the components of the three-dimensional stress vector
σ(α1, α2, ζ) along the thickness direction of a laminated cylindrical panel subjected to a line load

distributed along α1 principal direction of magnitude q(+)
3 = −4.58 × 103 N/m. The Navier solution

has been calculated setting n = m = 500. Thickness plots have been provided for the point located at
(0.25 L1, 0.25 L2).

For each load case, the thickness plots are evaluated (0.25 L1, 0.25 L2) and collected in
Figures 17–19, and a 3D finite element reference solution has been derived with commercial
software. In addition, a GDQ-based numerical solution has been evaluated with the EDZ4
theory, which matches the 3D FEM predictions. The semi-analytical solution is evaluated
with the EDZ4 displacement field assumption, set Ñ = M̃ = 150 in each load case. The
results are in line with the reference solution in terms of displacement field components, as
can be seen in Figure 17. It should be noted that the selected lamination scheme presents
some zigzag effects, especially for case C5. The adoption of Murakami’s zigzag function
in the present model allows one to consider the piecewise inclination of the profile of the
displacement field components. Similar considerations are made for the three-dimensional
strain components of Figure 18, where the 3D FEM reference solution is perfectly predicted
in a reduced amount of time by the higher-order semi-analytical model, and a good level
of accuracy is also reached in the central region of the structure. In order to reduce the
computational effort of the simulation, the results of more complicated load cases like C3
are obtained from the algebraic sum of C1 and C2 simulations. In the same way, load case
C5 is derived from the sum of C3 and C4. As a consequence, the results of the simulations
referred to in C3 and C5 can be efficiently obtained as an algebraic sum of the profiles
of all kinematic and mechanical quantities recovered previously in the corresponding
two-dimensional semi-analytical solutions, as shown in Figure 19 in the case of the three-
dimensional stress components. The recovery procedure is not applied in C3 and C5
because the equilibrium equations in the thickness direction have already been solved
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independently in C1, C2, and C4. The 3D FEM numerical predictions are perfectly matched
by the semi-analytical model, with a significantly reduced computational cost and time.
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Figure 17. Reconstruction of the profiles of the components of the three-dimensional displacement
field vector U(α1, α2, ζ) along the thickness direction of a laminated cylindrical panel subjected to a
combination of uniform and hydrostatic loads along α1 and α2 principal directions of magnitudes

q(+)
3 = −2 × 105 N/m2, q(+)

3 = −7 × 105 N/m2 and q(+)
3 = −4 × 105 N/m2, respectively. Thickness

plots have been provided for the point located at (0.25 L1, 0.25 L2).

The next example presents a shallow spherical panel of radius R = 3 m, whose
physical domain is defined so that

(
α0

1, α1
1
)
= (5π/12, 7π/12) and

(
α0

2, α1
2
)
= (−π/9, π/9).

Three different lamination schemes are considered made of two external layers of graphite-
epoxy (94), whereas the central core consists of graphite-epoxy (94), graphite-epoxy soft5
(95) and graphite-epoxy soft10 (96) for cases C1, C2, and C3, respectively. In the first
load case, the panel under consideration is subjected to sinusoidal loads of magnitude
q(+)

3 = −7 × 105 N/m2 and q(−)
3 = −3 × 105 N/m2 with Ñ = M̃ = 1. Two reference

solutions are provided, developed with 3D finite element solution and a two-dimensional
GDQ-based formulation, accounting for the EDZ4 displacement field theory.
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Figure 18. Reconstruction of the profiles of the components of the three-dimensional strain vec-
tor ε(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to a com-
bination of uniform and hydrostatic loads along α1 and α2 principal directions of magnitudes

q(+)
3 = −2 × 105 N/m2, q(+)

3 = −7 × 105 N/m2 and q(+)
3 = −4 × 105 N/m2, respectively. Thickness

plots have been provided for the point located at (0.25 L1, 0.25 L2).

Figure 19. Cont.
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Figure 19. Reconstruction of the profiles of the components of the three-dimensional stress vec-
tor σ(α1, α2, ζ) along the thickness direction of a laminated rectangular plate subjected to a com-
bination of uniform and hydrostatic loads along α1 and α2 principal directions of magnitudes

q(+)
3 = −2 × 105 N/m2, q(+)

3 = −7 × 105 N/m2 and q(+)
3 = −4 × 105 N/m2, respectively. Thickness

plots have been provided for the point located at (0.25 L1, 0.25 L2).

The 3D FEM model is made of parabolic C3D20 brick elements with a total number
of 293,847 DOFs, whereas the 2D-GDQ model is built starting from a two-dimensional
CGL grid with IN = IM = 31. The solution obtained from the semi-analytical simulation is
based on the EDZ3 and EDZ4 theories. The thickness plots, reported in Figures 20–22, are
provided for the point located at (0.25 L1, 0.25 L2) within the physical domain, where the
quantities L1 and L2 have been defined in Equation (50).

As shown in Figure 20, the reduction of the stiffness of the central core of the panel
leads to a typical zigzag profile of the in-plane displacement field components U1 and U2.
Furthermore, when the central layer stiffness is reduced, the vertical deflection U3 increases.
Similar considerations can be made for the strain components of Figure 21, where ε1, ε2
and ε3 assume in the central lamina a non-linear profile in the case of C2 and C3, whereas
the value of γ12, γ13 and γ23 is increased. Furthermore, for all strain components, a good
agreement can be seen between the predictions of various numerical approaches and the
semi-analytical results.

Referring to the results of Figure 22, the values of both in-plane and out-of-plane stress
components derived from both the 3D FEM and the GDQ are predicted with success by the
present semi-analytical formulation. Furthermore, the boundary conditions are respected
at the top and bottom surfaces.

Once the semi-analytical model of the spherical panel has been validated for the case
of sinusoidal loads (Ñ = M̃ = 1), the linear static response of the same structure is derived
for the case of uniform transverse loads q(+)

3 = −7× 105 N/m2 and q(−)
3 = −3× 105 N/m2

applied at the top and bottom surfaces, respectively. In this case, the results obtained
with the present semi-analytical theory have been derived setting Ñ = M̃ = 150, taking
into account the EDZ4 higher-order theory. The thickness plots are provided for the point
(0.25 L1, 0.25 L2) and collected in Figures 23–25.

The reference solution has been calculated with a 3D-FEM model and some GDQ
numerical simulations, based on the FSDT and the TSDT kinematic field assumptions.
The profiles of the displacement field components in Figure 23 show that the predictions
of the reference models can be obtained only when a higher-order displacement field is
considered in the semi-analytical model. In fact, in the case of softcore lamination schemes,
classical approaches like the FSDT and the TSDT are not consistent, whereas the results
provided with the EDZ4 theory match the 3D-FEM predictions. In Figure 24, the through-
the-thickness profiles of the three-dimensional strain components are provided. As can be
seen, for both hardcore and softcore configurations of the stacking sequence, the present
higher-order semi-analytical solution predicts with success the strain profiles provided
by the three-dimensional model, even in the central softcore lamina. Furthermore, the
presence of the zigzag function allows one to see what happens in the interface region
between two adjacent laminae.
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Figure 20. Reconstruction of the profiles of the components of the three-dimensional displacement
field vector U(α1, α2, ζ) along the thickness direction of a laminated spherical panel subjected to

sinusoidal loads of magnitudes q(+)
3 = −7 × 105 N/m2 and q(−)

3 = −3 × 105 N/m2 with n = m = 1.
Thickness plots have been provided for the point located at (0.25 L1, 0.25 L2).

Figure 21. Cont.
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Figure 21. Reconstruction of the profiles of the components of the three-dimensional strain vector
ε(α1, α2, ζ) along the thickness direction of a laminated spherical panel subjected to sinusoidal loads

of magnitudes q(+)
3 = −7 × 105 N/m2 and q(−)

3 = −3 × 105 N/m2 with Ñ = M̃ = 1. Thickness plots
have been provided for the point located at (0.25 L1, 0.25 L2).
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Figure 22. Reconstruction of the profiles of the components of the three-dimensional stress vector
σ(α1, α2, ζ) along the thickness direction of a laminated spherical panel subjected to sinusoidal loads

of magnitudes q(+)
3 = −7 × 105 N/m2 and q(−)

3 = −3 × 105 N/m2 with Ñ = M̃ = 1. Thickness plots
have been provided for the point located at (0.25 L1, 0.25 L2).
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Figure 23. Reconstruction of the profiles of the components of the three-dimensional displacement
field vector U(α1, α2, ζ) along the thickness direction of a laminated spherical panel subjected to

uniform loads of magnitudes q(+)
3 = −7 × 105 N/m2 and q(−)

3 = −3 × 105 N/m2. Thickness plots
have been provided for the point located at (0.25 L1, 0.25 L2).

Figure 24. Cont.
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Figure 24. Reconstruction of the profiles of the components of the three-dimensional strain vector
ε(α1, α2, ζ) along the thickness direction of a laminated spherical panel subjected to uniform loads of

magnitudes q(+)
3 = −7× 105 N/m2 and q(−)

3 = −3× 105 N/m2. Thickness plots have been provided
for the point located at (0.25 L1, 0.25 L2).
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Figure 25. Reconstruction of the profiles of the components of the three-dimensional stress vector
σ(α1, α2, ζ) along the thickness direction of a laminated spherical panel subjected to uniform loads of

magnitudes q(+)
3 = −7× 105 N/m2 and q(−)

3 = −3× 105 N/m2. Thickness plots have been provided
for the point located at (0.25 L1, 0.25 L2).
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As far as the three-dimensional stress components are concerned, Figure 25 shows that
for each lamination scheme that has been investigated, the results of the three-dimensional
model are well predicted when higher-order thickness functions are considered in the
two-dimensional semi-analytical solution.

10. Conclusions

In the present manuscript, an efficient two-dimensional semi-analytical model has been
presented for the evaluation of the static response of curved laminated panels subjected
to arbitrary loads. The fundamental governing equations have been written according to
the ESL approach with a generalized description of the kinematic field variable along the
thickness direction. The solution to the semi-analytical problem has been provided with
the Navier method, coupled with a post-processing recovery procedure based on the GDQ
numerical technique. The model has been employed in some examples of investigation,
where the three-dimensional linear static response of panels with different curvatures,
lamination schemes, and load shapes has been derived and successfully compared to the
numerical predictions coming from refined 3D FEM simulations. It has been shown that
when the semi-analytical approach is used for the derivation of the solution, the GDQ-based
recovery procedure allows the model to perfectly fulfil the load conditions in each point of
the panel. In addition, the adoption of higher-order theories, together with stress and strain
recovery, allows for a good level of accuracy in evaluating the three-dimensional behavior
of structures with more cross-ply lamination schemes. Finally, a high level of accuracy
is also seen in the case of softcore layers when a higher-order two-dimensional theory
is considered, thus reducing the computational effort of each simulation. The numerical
examples show that the EDZ4 theory is a valid tool for many lamination schemes, and the
semi-analytical solution perfectly matches the 3D finite element predictions, especially in
the case of rectangular plates and cylindrical panels. It has been shown that when uniformly-
distributed patch and hydrostatic loads are applied to the panel, the convergence of results
is seen for Ñ = M̃ = 150, while further terms are required in the case of concentrated
and line loads, namely Ñ = M̃ = 500. It is shown that this issue does not depend on the
geometry or lamination scheme, but only on the applied load shape. The present semi-
analytical solution can be a valid alternative to well-established finite element simulations.
In addition, among two-dimensional theories, it allows for a rapid and accurate solution of
the problem for structures of constant curvatures with cross-ply whose lamination schemes
are made of orthotropic materials. For this reason, it can be applied to fiber-reinforced
composite materials as well as lattice and honeycomb panels and structures reinforced with
dispersed short fibers without significant computational effort if compared to trustworthy
numerical models.
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Appendix A

In this Appendix, we provide the complete definition of the fundamental coefficients

L̃
(τη)αiαj
ijnm with i, j = 1, 2, 3 of the matrix L̃(τη)

nm occurring in Equation (60) for the case of a
cylindrical panel characterized by R1 = ∞ and R2 = R. As can be seen, they depend on
the indexes, τ, η = 0, . . . , N + 1 which are the kinematic expansion order of Equation (8),
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and on the wave numbers n, m introduced in Equation (53) for the derivation of the semi-
analytical Navier solution.

L̃(τη)α1α1
11nm = −A(τη)[00]α1α1

11(20)

(
nπ

L1

)2
− A(τη)[00]α1α1

66(02)

(
mπ
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)2
− A(τη)[11]α1α1

44(00) (A1)

L̃(τη)α1α2
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12(11) + A(τη)[00]α1α2
66(11)

)(nπ
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)(
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L2

)
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Appendix B

In the following, we report the complete expression of the fundamental coefficients

L̃
(τη)αiαj
ijnm , for the case of a rectangular plate of dimensions L1, L2. They can be seen as a

particular case of Equation (61), setting R1 = R2 = ∞.
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