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Abstract: Electrochemical CO2 reduction (ECR) has emerged as a promising solution to address
both the greenhouse effect caused by CO2 emissions and the energy shortage resulting from the
depletion of nonrenewable fossil fuels. The production of multicarbon (C2+) products via ECR,
especially high-energy-density alcohols, is highly desirable for industrial applications. Copper
(Cu) is the only metal that produces alcohols with appreciable efficiency and kinetic viability in
aqueous solutions. However, poor product selectivity is the main technical problem for applying
the ECR technology in alcohol production. Extensive research has resulted in the rational design of
electrocatalyst architectures using various strategies. This design significantly affects the adsorption
energetics of intermediates and the reaction pathways for alcohol production. In this review, we focus
on the design of effective catalysts for ECR to alcohols, discussing fundamental principles, innovative
strategies, and mechanism understanding. Furthermore, the challenges and prospects in utilizing
Cu-based materials for alcohol production via ECR are discussed.

Keywords: electrochemical CO2 reduction; copper-based catalysts; alcohols; mechanism understanding

1. Introduction

The carbon-neutral production of fuels and chemical feedstocks is one of the grand
challenges for our society to solve [1]. The conversion of CO2 into value-added fuels is
particularly beneficial for establishing a carbon-neutral system, resulting in widespread
interest. Various methods for converting CO2 into carbon-containing fuels exist, including
thermochemical, photochemical, biochemical, and electrochemical catalytic conversion
routes [2–4]. Among these routes, electrochemical CO2 reduction (ECR) has gained signifi-
cant attention in recent years due to its advantages in terms of operating under ambient
temperature and pressure conditions, as well as its simplicity in operation. Furthermore,
the utilization of electricity from renewable energy sources, such as solar, wind, and tidal
power, provides an effective approach for energy storage and conversion to address the
challenges posed by geographical and intermittent renewable energy availability. However,
CO2 poses a significant challenge in its conversion to other compounds due to its excep-
tional stability and the high energy required to break the C-O bond (about 750 kJ mol−1) [5].
The inherent stability and chemical inertness of linear CO2 contribute to the uphill energy
process and high activation barrier, leading to large overpotentials and limiting the effi-
ciency of CO2 conversion. Additionally, the hydrogen evolution reaction (HER) competes
with ECR and further hampers selectivity towards carbonaceous products [6].
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It was reported that various target products can be obtained from CO2 by means
of ECR, for instance, CO, HCOOH, CH4, CH3OH, C2H4, and so on. Among the many
products that can be produced by means of ECR, alcohols (CH3OH, C2H5OH, C3H7OH,
etc.), with a high market price and a large market size, are attractive targets [7]. Alcohols
hold a prominent position in modern society as vital organic commodity chemicals, finding
extensive applications as fuel components, chemical synthesis precursors, and essential
compounds in the medical and food industries. In conventional industries, the production
of alcohols needs to use agricultural feedstocks and consume a large amount of thermal
energy. In contrast, selective ECR to alcohols with renewable electricity is a green and
sustainable route, which is highly desirable.

Due to its unique characteristics and properties, copper (Cu) stands out as the sole
single-metal catalyst capable of generating high-energy-density hydrocarbons and alcohols
with reasonable efficiencies [8]. Numerous Cu-based catalysts have been reported to
facilitate the production of specific alcohols through ECR. However, the ECR process for
alcohol production still faces several challenges, including high overpotential, low Faradaic
efficiency (FE), and low yield rates. Moreover, the inert nature of the CO2 molecule and the
involvement of multiple electron and proton transfers render the overall reaction kinetically
sluggish, necessitating large overpotentials for both the anodic oxygen evolution reaction
(OER) and the cathodic CO2 reduction [8]. Hence, designing electrochemical catalysts for
efficient ECR to alcohols with high selectivity and low overpotential is crucial.

While recent progress in ECR for alcohol production, particularly that of ethanol, has
been extensively reviewed, significant achievements have also been made in developing
catalytic materials for ECR towards multicarbon alcohols [9,10]. Thus, a comprehensive
review of the state of the art in advanced catalyst design for alcohol production from ECR
is warranted. This review article aims to guide further research by discussing the funda-
mental principles of catalyst design and the mechanisms involved in alcohol production.
Firstly, we delve into the mechanism leading to alcohols as the fundamental principle for
designing catalysis materials. Subsequently, we extensively review innovative strategies
based on newly developed electrocatalysts, followed by a discussion on advanced spec-
troelectrochemical analysis. Finally, we address the remaining challenges and provide
perspectives for ECR to alcohols. We believe that this critical minireview will provide
essential background information for further advancements in the applications of Cu-based
materials in ECR for alcohol production.

2. Fundamentals for CO2 Reduction to Alcohols

Understanding the specific reaction pathways of ECR to alcohols is of utmost im-
portance in guiding the design and synthesis of highly efficient catalysts. However, the
process of alcohol generation via ECR consists of multiple charge-transfer steps, requiring
6 to 18 electrons and protons in total [7] (Table 1). Moreover, the overlapping energy
levels between ECR and the hydrogen evolution reaction (HER) make mechanistic studies
of ECR more difficult, leading to some unanswered mechanistic questions for the field.
Therefore, various techniques like spectroscopy and electrochemical analysis, along with
theoretical calculations, have been used to investigate the reaction pathways leading to
alcohol formation in ECR [11,12]. These studies help us to understand the role of catalyst
materials, surface structures, and reaction conditions in influencing alcohol production.

Table 1. Electrode Reactions with Equilibrium Potentials (V vs. RHE) [13].

Product Reaction Potential

Methanol CO2(g) + 6H+ + 6e− → CH3OH (l) + H2O (l) 0.03

Ethanol 2CO2(g) + 12H+ + 12e− → C2H5OH (l) + 3H2O (l) 0.09

Propanol 3CO2(g) + 18H+ + 18e− → CH3CH2CH2OH (l) + 5H2O (l) 0.1
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Figure 1 depicts a simplified representation of a widely accepted pathway for alcohol
formation in ECR. The actual mechanisms may be more complex, involving additional
reactions and intermediate species [14,15]. Further research is needed to fully understand
these pathways and optimize catalyst design for better alcohol production. Currently, the
ECR process can be dissected into three pivotal stages: the formation of a CO intermediate,
C-C coupling, and the hydrodeoxygenation of C2 intermediates [16,17]. Initially, the CO2
molecule is adsorbed onto the catalyst surface and undergoes activation, resulting in the
formation of adsorbed carbon dioxide (*CO2). Subsequently, a reduction reaction takes
place, giving rise to the generation of adsorbed CO (*CO). It has been postulated that
*COOH serves as the initial intermediate for CO formation, while *OCHO is deemed as the
probable intermediate for formic acid production [18,19]. In-depth investigations employ-
ing in situ surface-enhanced infrared absorption and Raman spectroscopic techniques have
shed light on the essential role played by the *CO species in facilitating the production
of >2e− products during ECR [20,21]. Achieving an optimal binding strength of the *CO
species is of paramount importance in promoting alcohol formation and facilitating the
C-C coupling process, particularly in the context of ethanol and n-propanol production.
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Figure 1. The reaction pathways of electrocatalytic CO2 reduction to various alcohols.

The production of the C1 alcohol, methanol (MeOH), involves the protonation of *CO,
leading to the formation of the absorbed formyl (*COH) intermediate, which represents the
rate-determining step (RDS). Subsequently, *COH undergoes a cascade of proton–electron
coupled transfer (PECT) steps, ultimately yielding the *OCH3 species. The selectivity
between MeOH and methane hinges on the subsequent hydrogenation of *OCH3. For the
formation of C2+ alcohols, the C-C coupling process assumes a pivotal role. The generation
of ethanol entails a rate-determining step (RDS) identified as *CO-CO dimerization, fol-
lowed by protonation and dehydration steps, ultimately leading to the formation of the
intermediate *CH2-CHO. The subsequent reduction pathway of *CH2-CHO can bifurcate,
resulting in the production of either ethylene or C2+ alcohols. Consequently, *CH2-CHO as-
sumes the role of the selectivity-determining intermediate (SDI) governing the production
of C2+ alcohols. The production of C3 alcohols (PrOH) through ECR remains an ongoing
challenge, with limited success reported in obtaining C3 alcohols. Proposed mechanisms
involve the intermolecular C-C coupling of adsorbed C2 and C1 intermediates, followed by
intricate proton–electron transfers, ultimately leading to the formation of propionaldehyde.
Accordingly, propionaldehyde can be further hydrogenated to produce PrOH [22–24]. In
addition to the above pathway from *CO-CO dimerization, it was also found that ethanol
can be selectively enhanced via the *CHx-*CO coupling pathway on a Cu surface in a
CO-enriched environment [25,26].

3. Strategies to Improve Alcohol Production
3.1. Crystal Facet Regulation

As a typical model system, single-crystal materials have been paid great attention for
their structure–performance relationship in ECR and many other catalysis systems [7,27].
Due to the distinct arrangement of surface atoms and the resulting interaction with reaction
molecules, different crystal facets of the catalysts tend to present varied performance
toward ECR [28]. The first ECR on single-crystal Cu was performed by Frese, who found



Materials 2024, 17, 600 4 of 19

increasing CH4 generation on Cu(100), Cu(110), and Cu(111) surfaces [29]. In 2002, Hori
et al. systematically studied the important impact of Cu facets toward specific ECR products,
including CH4, C2H4, CH3COOH, CH3CHO, and C2H5OH [30]. So far, a number of
studies on copper single crystals have deepened our understanding of the structure–activity
relationship of specific crystal facets for ECR. For example, Cu(100) was found to be easier
for C-C coupling by combining electrochemical tests and DFT calculations [31]. In situ
Raman was performed recently, confirming that higher surface coverage of adsorbed *CO
on the Cu(110) surface promotes the formation of the *OCCO and *CH2CHO intermediates
to generate C2 products; comparatively, the Cu(111) surface possessed low *CO coverage to
produce CH4 [32]. In recent research, a product-specific active site for ECR was concluded
by means of detailed analysis on nine single-crystal copper surfaces. The functions of
lattice facet, coordination number, and step-terrace angle were taken into consideration for
specific ECR performance, and Cu(110), which possesses a coordination number of seven
and a larger step-terrace angle, was found to be able to promote ethanol production [33].
Additionally, some high-index copper facets have been found to prefer C2+ production in
ECR [34,35]. For example, a wrinkled Cu catalyst with high-density (200) and (310) facets
was fabricated by means of a chemical vapor deposition (CVD) graphene growth process
(Figure 2). High ethanol selectivity of 40% was achieved at −0.9 V vs. RHE during ECR,
and the (310) facet was calculated to possess a low C-C coupling barrier and preferred
ethanol pathway [36]. By covering Cu overlayers on THH Pd NCs with high-index facets,
∼20% FE of ECR to ethanol at −0.46 V vs. RHE was obtained [37].
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3.2. Oxide-Derived Cu

Generally, the surface of copper can be oxidized easily without protection [38]. The
extraordinary performance of oxide-derived copper (OD Cu) in catalyzing CO2 into deeply
reduced products has already been found. In 1990, Frese et al. noticed that the production
of MeOH can be promoted on Cu2O, which they attributed to the role of Cu(I) or monolayer
oxygen [39], leading the research on OD Cu toward deep ECR/CORR [40–42].

The function of the oxidative copper or oxygen in OD Cu for catalyzing deep ECR was
further studied [43–45]. Strategies have also been proposed to maintain the positive state of
copper during ECR, such as by adding self-sacrificing supports or electron receivers [46,47].
Doping boron with Cu is an efficient approach to tune and increase the stability of Cuδ+

under ECR. By incorporating B atoms, boron-doped copper exhibits stable electron local-
ization, leading to the production of highly selective ethylene and ethanol products [48–50].
Using a pulsed electrolysis technique that intermittently applies a suitable positive potential
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during negative potentiostatic electrolysis, significantly enhanced ethanol production on
copper was discovered. It was believed that the coexistence of the continuously in situ
regenerated Cu(I) with Cu(0) species helped improve the CO2-to-ethanol performance [51]
(Figure 3a,b). Chen et al. also suggested that Cu and Cu(I) can offer an asymmetrical OCCO
adsorbing site, ensuing the stabilization of the carbonyl group by the OH groups at the
boundary of Cu-Cu(I) motifs, promoting the formation of asymmetric alcohols [52]. The
positive polarization of the electrode also lowers the coverage of the surface hydrogen, thus
suppressing HER and improving ethanol formation due to the higher OH concentration.
Some calculations also concluded the function of the special interface of Cu(I) and Cu(0) to
improve the kinetics and thermodynamics of both CO2 activation and CO dimerization [53].
First, Cu+ sites can bind an H2O molecule neighboring to the Cu0 region, which can form
strong hydrogen bonds with the absorbed CO2 on the Cu0, stabilizing both the transition
state and the final state. Second, when there are nearby Cu+ and Cu0 that the respective C
atoms of two CO can bond with, the C atom of CO@Cu+ is positively charged, while the C
atom of CO@Cu0 is negatively charged due to back donation. The attractive electrostatics
between the two C atoms facilitate C-C coupling.
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On the other side, some researchers believed that it is hard to maintain the positive state
of Cu in OD Cu under the negative potential of ECR, so the genuine active site for deep ECR
cannot be the positively charged Cu. As some studies showed, the oxygen in copper oxide
was completely removed during ECR, and the real active sites for C2+ production were the
subsequently generated low-coordinated copper sites and abundant grain boundaries that
improve C-C coupling [54–56]. This suggests that we should follow the state of Cu during
ECR in detail using in situ/operando techniques to draw a solid conclusion.
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3.3. Alloying

The introduction of heteroatoms into copper, either to adjust the electronic structure, to
promote specific intermediate adsorption, or to protect active sites and generate synergies,
can sometimes obtain superior ECR performance to that of pure copper metal [57–59].
Alloys can be thought of a special kind of doping material that possesses relatively uniform
crystal structure. Outstanding performances have also been gained on copper-based
alloys. For example, a series of PdxCuy bimetallic aerogels with varied compositions were
fabricated. The selectivity of MeOH generation during ECR was found to correlate with the
atom ratio of Pd and Cu. An extremely high FE of 80.0% for MeOH with a current density of
31.8 mA cm−2 was obtained with Pd83Cu17. This outstanding performance was credited to
the high Pd0/PdII and CuI+Cu0/CuII ratios and sufficient Pd/Cu grain boundaries, but the
underlying mechanism needs to be further explored [60]. Au and Ag are more frequently
chosen as alloy metals with Cu. Au-Cu alloy nanoparticle-embedded Cu submicrocone
arrays were designed for ECR, and 29 ± 4% selectivity for ethanol was gained [57]. It
was stressed that the Au can regulate the binding energies of key intermediates (including
CH2CHO*, CH3CHO*, and CH3CH2O*), so the activity and selectivity of EtOH/C2H4
can be adjusted through controlling the content of Au. Recently, a CuAg alloy catalyst
was obtained by means of co-electrodeposition in a supersaturation environment. Under
supersaturated conditions in highly carbonated electrolytes, the alloy presented a high
selectivity of ECR to 2-propanol, with an FE of 56.7% and a specific current density of
59.3 mA cm−2. Operando FTIR suggested the critical role of *CO and *OCH2CH3 for C1-C2
coupling, as the potential decreased from −0.2 to −0.73 V vs. RHE, and both their bands
were progressively intensified. Further calculations showed that the surface binding of
intermediates in the middle position of the alkyl chain was weakened, while the C-O
bonds were strengthened due to the dispersed Ag atoms in Cu, facilitating the formation of
2-propanol over 1-propanol [61].

3.4. Tandem Catalysis

In a tandem catalysis system, there may be two or more kinds of components working
in turn in different steps toward deep ECR for C2+ products. Due to the better performance
of CORR in generating C2+ products as compared to ECR on copper, the introduction of
an assisting metal to produce CO for copper is an promising strategy for deep ECR [62].
For example, Zn was introduced to produce CO, which could then migrate to copper to
form *CHx. The *COCH2 formed after further CO insertion served as an intermediate to
obtain alcohols [63] (Figure 4a). In another work, gold nanoparticles were deposited on
a polycrystalline copper foil surface, and greatly enhanced C2+ alcohol production was
obtained due to the high CO concentration generated by gold and the further reduction on
copper in a locally alkaline environment [64].

Besides Zn and Au, Ag has also been chosen as the assisting component in tandem
systems. A specially designed Cu@Ag core–shell NP structure was reported for tandem
catalysis. The production of CO and C-C coupling was realized on the Ag shell and Cu
core, respectively, offering inspiration for catalyst structure design for tandem systems [65].
In another work, the importance of efficient CO intermediate management for tandem
catalysis was stressed. A segmented gas-diffusion electrode (s-GDE) was designed to
integrate an inlet CO-selective catalyst layer (CL) segment and a subsequent C2+-selective
segment. By adjusting the relative lengths and loadings of the two parts (e.g., Ag and
Cu), the residence time of CO in the Cu CL segment can be maximized. Compared to a
non-segmented Cu/Ag GDE, a 300% increase in CO utilization was achieved, and a 250%
increase in jC2+ relative to pure Cu was gained [66].

More detailed reaction observations and calculations, together with device engineering,
have been carried out to understand the structure–activity relationship and obtain better
performance for ECR tandem catalysis. Taking an epitaxial Au/Cu heterostructure as
a model system, Zhu et al. found that the restructured Au-Cu alloy supported Au@Cu
core–shell nanoclusters during ECR under atomic-resolution TEM, which was driven
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by Au interdiffusion and Cu redeposition (Figure 4b). The in situ formed Au-Cu alloy
was thought to provide active sites for the stable generation of CO, which was further
reduced to C2+ alcohols on the Cu shell, as proved by finite-element simulation and DFT
calculations. The catalyst had ∼150 mV more positive onset potential toward C2+ alcohols
and presented a 400-fold improvement in the generation of alcohols over hydrocarbons
compared to monometallic Cu [67]. In another work on copper–gold heterojunctions, a 60%
FE of ethanol at a current exceeding 500 mA cm−2 was achieved, and the critical function
of the intermediate was stressed. In situ ATR-IR measurements and simulations suggested
that reduction of CO2 at the copper/gold heterojunction is dominated by the production
of the OCCOH* intermediate, the asymmetrical hydrogenation of which leads to superior
selectivity toward ethanol [68].
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Figure 4. (a) Tandem mechanism for the electroreduction of CO2 to ethanol on CuxZn catalysts:
stages 1 → 2, four protons and four electrons reduce two CO2 molecules to CO on Cu and Zn,
respectively; stages 2 → 3, four protons and four electrons reduce CO molecule to *CH2 on Cu,
while CO produced by Zn desorbs and migrates near the *CH2; stages 3 → 4, CO inserts into
the bond between Cu and *CH2 to form *COCH2; stages 4 → 5, two protons and two electrons
reduce *COCH2 to CH3CHO (acetaldehyde); stages 5 → 6, two protons and two electrons reduce
CH3CHO to CH3CH2OH (ethanol). Reproduced with permission from Ref. [63], Copyright (2016)
ACS. (b) A schematic diagram of the “tandem” electrocatalysis pathway on a reconstructed Au-Cu
electrode (left), and an overview of the concentration and flux distribution of *CO and ethanol on a
reconstructed Au-Cu heterostructure (right). Reproduced with permission from Ref. [67], Copyright
(2022) Elsevier Inc.

3.5. Single-Atom Catalysts

Generalized single-atom catalysts (SACs) include molecular catalysts, carbon- or metal-
oxide-supported single-metal-site catalysts, and some dispersed metal alloys [69]. ECR
has been broadly studied on these materials, and some of them have shown outstand-
ing performance. For example, with carbon nanotubes as a conductive support, cobalt
phthalocyanine (CoPc) presented great potential for methanol production [70,71]. As for
Cu single atoms, Yang et al. fabricated Cu-decorated through-hole carbon nanofibers
(CuSAs/TCNFs), which presented 44% methanol production during ECR [72]. DFT calcula-
tions showed that the Cu single atoms could bind more strongly with the *CO intermediate,
which could be further reduced rather than being easily released as CO. The abundant
exposed Cu single atoms also endowed the catalyst with a −93 mA cm–2 partial current
density for C1 products and 50 h stability. Recently, a >60% methanol FE was achieved us-
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ing monodispersed cobalt phthalocyanine (CoPc) on single-walled CNTs (CoPc/SWCNTs)
for ECR. Raman spectroscopy combined with XPS and XANES illustrated that the strong
molecule–support interaction induced the local geometry and electronic structure change
of the CoPc anchored on SWCNTs. Further calculations suggested that the curved CoPc
can bind more strongly with *CO, making the deeper reduction to methanol of the latter
easier compared to that of *CO on CoPc with low deformation [71].

Generally, the production of C2+ products by means of ECR on copper needs two
nearby copper sites to realize C-C coupling, which appears to be hard for many SACs.
However, it has been discovered that SACs can also make sense. For example, using a
Cu-N4 structured catalyst based on a N-doped carbon matrix obtained via a pyrolytic route,
55% FE of ethanol was achieved by means of ECR under −1.2 V vs. RHE in 0.1 M CsHCO3
solution [73]. Operando XAS observations showed that the in situ Cu-Cu bond formed
under the optimal catalytic potential, which implied that the Cu single atoms can migrate
to generate Cu clusters to serve as the real active sites for ethanol production. This work
inspires the notion that SACs can serve as precursors for real active site generation. In
another work, ECR was conducted on a carbon-supported single-Cu-atom catalyst syn-
thesized through a Cu-Li method [74]. High selectivity of 91% toward ethanol generation
was obtained, and via operando XAS characterization, the initial dispersed Cu atoms were
found to reversibly form Cun clusters in the applied electrocatalytic environment, acting as
the genuine catalytic sites. A number of studies on Cu-based MOFs and molecular catalysts
(e.g., CuPc and CuPor) combining experimental and theoretical calculations also found that
the isolated Cu centers tended to aggregate, creating Cu nanoparticles to actually catalyze
ECR to generated deep reduced products [75–79]. On the other hand, some researchers
believe that the single Cu atoms can remain stable during the ECR process. In a recent
work, Xia et al. synthesized Cu SACs with a Cu content of up to 13.35 wt% by means
of a silica-mediated hydrogen-bonded organic framework (HOF)-templated strategy [80].
Electrochemical testing of ECR in an H cell found that under −1.1 V vs. RHE in 0.5 M
CsHCO3, the FE of ethanol reached 81.9% with a partial current density of 35.6 mA cm−2.
Further DFT calculations evidenced that the adjacent Cu-N3 structures serve as active sites
to promote C-C coupling. However, due to the lack of operando observations of the Cu
states, the real behavior of the Cu atoms during catalysis remained unclear. Taking the
above phenomenon into consideration, the real structure–activity relationship of Cu-based
single-site catalysts needs to be carefully considered.

3.6. Interface Engineering

Attaching groups or molecules to the copper surface or modifying the copper surface
with additives is sometimes an effective way to regulate the catalytic performance to build
a specific microenvironment. For ECR, some of the benefits that surface ligands can bring
to catalysts were discussed in [81,82]. Ligands on copper can effectively adjust the surface
concentration of intermediates and their interaction with the catalysts. For example, when
Cu nanoneedles were coated with hydrophobic PTFE, the supply of protons to the catalysts
and, thus, HER was suppressed, with ethanol production elevated from 7.7% to 25.8% due
to the concentrated CO2 [83]. In another work, by modifying a sputtered copper surface
with alkanethiols of different alkyl chain lengths to continuously regulate the interfacial
wettability, the mass transport of CO2 and H2O during ECR was regulated. The resulting
changes in *CO and *H coverage were quantified by means of in situ ATR-SEIRAS spectra
and the decay distances from CLSM, revealing that the increase in hydrophobicity led to
increasing *CO coverage and decreasing *H coverage. The variation in the kinetic-controlled
*CO and *H ratio affected ethylene and ethanol pathways such that at the optimal level, a
highest selectivity for ethanol of 53.7% was gained [84].

In another work, an h-BN/Cu interface was constructed, the perimeter of which
was concluded to provide specific chelating sites to stabilize the intermediates, activating
the conversion of *CO to *CHO; >60% CH4 formation was achieved during ECR [85].
As a surface modification to improve catalytic stability, graphene oxide was coated onto
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5-fold twinned copper nanowires for ECR. Intensified morphological stability and CH4
production selectivity were obtained due to the protection provided by the GO [86]. Follow-
up work should be carried out to investigate more delicate regulation of the catalyst surface
ligands in order to realize optimal interaction with the reaction species, controllable catalytic
performance, and improved stability.

3.7. Non-Metal Sites

Catalysts without a metal component can lower manufacturing costs and improve
catalytic stability, given that metal loss and deactivation appear frequently in many metal
catalysis systems. Due to their high electrical conductivity and structural stability, carbon
materials are usually chosen as a support to dope nonmetal heteroatoms (e.g., N and B) for
ECR [87,88]. In some special designed systems, efficient alcohol production was achieved
using doped carbon. For example, Wu et al. designed N-doped graphene quantum dots
(NGQDs) to catalyze CO2, reaching a high FE of ECR of up to 90% and a selectivity for
ethylene/ethanol of 45%. Ex situ X-ray photoelectron spectroscopy (XPS) revealed that
the pyridinic N located at the edge site of graphene accelerated the CO2 adsorption [89].
Subsequently, mesoporous N-doped carbons were fabricated to catalyze CO2 into EtOH
with an FE of up to 77% at −0.56 V vs. RHE, in which pyridinic N was concluded to favor
*CO formation for further C-C coupling to form ethanol [90]. Calculations also confirmed
the reduced free energy of ECR to ethanol on N-doped graphene [91]. Besides N, B was
also selected to modify carbon for effective ECR. The FE of ECR to MeOH reached 24.3% on
boron-doped diamond (BDD) in an NH3 solution [92]. Further, the co-doping of B/N on
diamond even improved the selectivity of ECR to ethanol up to 93.2% at −1 V vs. RHE. DFT
calculations proved the synergistic effect of B and N, wherein the former intensified the
CO2 capture through bonding with one O atom of absorbed CO2, and the latter facilitated
*H transfer for hydrogenation [93]. Enormous potential remains in this field for future
exploration.

4. Advanced Spectroelectrochemical Analysis for Mechanism Understanding

Combined with theoretical calculations, many advanced characterization techniques
have been playing an important role in ECR observation and mechanism understanding,
especially in situ/operando analysis [11,94]. Chen et al. called for the development of
various complementary in situ/operando techniques for dynamic interface detection,
aiming to present a comprehensive picture of interfacial electrocatalysis [12]. Among
these techniques, identifying reaction intermediates using spectroscopic techniques during
electrocatalysis can help to deduce the reaction pathway and provide an understanding of
the reaction mechanism. For example, through isotope-labelled co-reduction experiments
where 13CH3I and 12CO were respectively co-fed as the methyl and carbonyl sources, the
asymmetric C-C coupling pathway on a Cu surface was confirmed [95]. In situ infrared
and Raman spectroscopy are powerful tools for reaction intermediate recognition. In recent
research, the evolution of the adsorption strength of the intermediates, including *O2CO,
*OCOOH, *COOH, and *CO, was observed on a Cu(100) surface using in situ Raman
spectroscopy, combined with the formation of nanoclusters, which may influence the ECR
reactivity [96]. In the following, research toward reaction pathway recognition is briefly
summarized, classified by different alcohol products.

4.1. Methanol

Methanol is a valuable but relatively less desired product compared to ethanol in
electrocatalytic ECR, and the research potential for efficient methanol production is huge.
By immobilizing CoPc onto carbon nanotubes, 44% selectivity for methanol in six-electron
ECR was obtained with a partial current density of 10.6 mA cm−2 at −0.94 V vs. RHE [70].
The pathway of methanol production on CoPc is thought to be a domino process in
which CO2 first undergoes a two-electron reduction to CO, which is then reduced to
MeOH through a four-electron–four-proton process. The superior catalytic activity of
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the catalyst is attributed to the individual dispersion state of CoPc molecules on highly
conductive CNTs, helping in efficient electron transfer to the active site for multielectron
reduction of CO2. Using monodispersed cobalt phthalocyanine (CoPc) on single-walled
CNTs (CoPc/SWCNTs) for electrochemical CO conversion, a >60% methanol FE was
achieved recently (Figure 5a,b) [71]. When CoPc is anchored on thin carbon nanotubes,
the strong molecule–support interaction can induce a change in the local geometry and
electronic structures of the catalyst. Raman spectroscopy showed the Co-N out-of-plane
deformation and ring boating peak at 250–290 cm−1, while XPS showed the higher binding
energies of Co 2p in CoPc/SWCNTs. The XANES results of Co presented the lower peak
intensity of 1s→4Pz, suggesting decreased symmetry of the CoPc molecule on SWCNTs.
Further calculations suggested that the curved CoPc can bind more strongly with *CO,
making the deeper reduction to methanol of the latter easier compared to that of *CO
on CoPc with low deformation. In situ ATR-SEIRAS found a C-H stretching mode at
~3010 cm−1 for CoPc/SWCNTs, which may be from *OCH2 or *HOCH2. In comparison, no
obvious signal was detected between 2600 and 3200 cm−1 for CoPc on 50 nm CNTs, which
may be attributed to the poor *CO absorption hampering further reduction beyond *CO.
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Springer Nature.

Ag, S dual-doped Cu2O/Cu was fabricated and presented 67.4% methanol production
with a current density as high as 122.7 mA cm−2 in an H cell [97]. S was thought to
adjust the electronic structure and morphology of the catalyst to improve the methanol
pathway, while Ag suppressed the HER. Their synergistic interaction was confirmed by
comparing experiments and calculations, but direct characterization evidence is lacking. In
another work, a Cu2NCN crystal with single-atom Cu sites and enhanced delocalization
around Cu was successfully designed [98]. By applying the catalyst in ECR, 70% CO2-to-
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CH3OH selectivity and a current density of −92.3 mA cm−2 were gained in an MEA-based
electrolyzer. When applying the potential from −1.0 to −1.5 V vs. RHE, two Raman
bands at 1080 and 1120 cm−1 were observed, respectively corresponding to *CHO and
*OCH3, two key intermediates in the CH3OH pathway, suggesting that a CO2-to-CH3OH
reaction occurred. Calculations showed that the softer Cu sites in Cu2NCN led to a weaker
Cu-*OCH3 interaction than the O-CH3 interaction, leading to accelerated breaking of the
Cu-O bond and enhanced selectivity for CH3OH.

4.2. Ethanol

Due to its high industrial value, ethanol has been receiving increasing attention in elec-
trocatalytic ECR. The production of ethylene and ethanol often appears to be competitive,
so it is important to effectively distinguish the reaction pathway to optimize their genera-
tion. Recently, CuO clusters supported on nitrogen-doped carbon nanosheets (Cu/N0.14C)
were synthesized for ECR [99]. Under the potential of −1.1 V vs. RHE in 0.1 M KHCO3,
a C2+ FE of 73% was achieved, including 51% ethanol production with a current density
of −14.4 mA cm−2. It was revealed by means of operando XAS that CuO can transform
to a Cun-CuN3 moiety under catalytic ethanol production potential. Further operando
FTIR showed a vibration at 1450 cm−1 when the potential was lower than −0.7 V vs. RHE,
attributed to the antisymmetric methyl group vibration of CH3*, a critical intermediate for
C2 formation. When the applied potential was below −1.1 V vs. RHE, surface-bound C=O
species at ~1780 cm−1 and electrogenerated CO bound to the copper surface at 1920 cm−1

were found, suggesting that the adsorption of CO2 was the rate-determining step after CH3*
formation. Combined calculation showed that the charge-asymmetric Cu2-CuN3 sites were
intensified by CH3* adsorption, which strengthened the asymmetry of ethanol production.

The coexistence of different *CO adsorption configurations has been shown to be
important for ethanol production, while doping strategies often make sense for regulating
specific intermediates’ adsorption. For example, a K-doped Cu2Se nanosheet array on
Cu foam was fabricated for ECR, achieving ethanol selectivity of over 70% at −0.8 V vs.
RHE with 130 h stability [100]. In situ DRIFTS spectra were employed to explore the
catalytic mechanism. Compared to pure Cu2Se, 11.2% K-doped Cu2Se exhibited different
behavior. Specifically, the peak for the *COL intermediate gradually moved from 2084 cm−1

at 8 min to 2110 cm−1 at 14 min and then remained mostly stable. On the other hand, the
peak for *COB shifted from 1698 cm−1 at 2 min to a higher wavenumber of 1708 cm−1

at 4 min, after which it remained constant. Contrarily, a redshift of *OH from 2 min to
6 min was also found. These results suggested the strengthened adsorption of *COL and
*COB and the attenuated adsorption of *OH on the catalyst surface, which can promote
ECR and suppress HER, respectively. After 2 h of electrolysis, only two intermediates of
*COL and *OH were detected on Cu2Se, while all the intermediates were maintained on
K11.2%-Cu2Se, elucidating the important role of K doping in keeping the carbonaceous
intermediates on the catalyst surface, contributing to C-C coupling for ethanol production.
The coexistence of *CO adsorption in atop and bridge configurations was also found via
in situ ATR-IRAS in a silver-modified copper oxide system (dCu2O/Ag2.3%) to trigger
asymmetric C-C coupling, achieving 40.8% selectivity for EtOH production. The Ag was
thought to adjust the coordination number and oxidation state of surface Cu sites, steering
the critical configuration of *CO adsorption [101] (Figure 6).

Besides doping, an optimized *CO adsorption strength and configuration can also be
realized by means of surface modification to achieve selective C2+ production. Recently,
Cu dendrites with a stable Cuδ+ state and hydrophobicity were synthesized via the surface
coordination of carboxylate. The catalyst exhibited a C2 FE of 90.6% at a partial current
density of 453.3 mA cm−2 in a flow cell and continuous production of C2H5OH solution
with 90% relative purity at 600 mA over 50 h in a solid-electrolyte reactor. In situ Raman
showed the bounded signal of *CO in both the atop and bridge sites on the catalyst,
compared to the only COatop signal on Cu. The mixed CO adsorption configurations made
the *CO dimerization process easier, promoting the conversion of CO2 to C2 products [102].
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4.3. Propanol

Compared to that of ethanol and methanol, the efficient production of propanol via
ECR seems to be more challenging due to the difficulty of the stabilization of C1 and
C2 intermediates and C1-C2 coupling. But efforts have been made to explore effective
strategies and gain a deeper understanding of the process of ECR to propanol.

A lithium electrochemical tuning approach was carried out to form high-density
double sulfur vacancies in hexagonal CuS(100) planes, which was thought to enable the
stabilization of CO* and OCCO* dimer and further coupling of CO-OCCO to form the key
*C3 intermediate of n-propanol [103]. The FE of n-propanol production reached 15.4% in
an H-cell. Recently, under supersaturated conditions in highly carbonated electrolytes,
a CuAg alloy catalyst was proved to possess a high selectivity of 56.7% for 2-propanol
production via ECR, with a specific current density of 59.3 mA cm−2 [61]. In situ Raman
was carried out to explore the *CO adsorption configuration under catalytic potential,
with the finding that the ratio of *CObridge to *COatop linearly increased with [CO2] as the
electrolyte enterd the supersaturated regime. A possible optimization of the proportion of
*CObridge to *COatop to activate C-C coupling at a high *CO density on the catalyst surface
was suggested by a volcano-shaped relationship centered around the optimal potential
of −0.73 V vs. RHE between the *CObridge-to-*COatop ratio, the FE of 2-propanol, and the
applied potential. Moreover, the critical role of *OCH2CH3 was confirmed by isotopic
labelling experiments. By adding hexadeuteroethanol (ethanol-d6) to the electrolyte, the
2-propanol-d8 formation rate was remarkably increased after electrocatalysis detected
by NMR, suggesting *OCH2CH3 as the critical intermediate for C1-C2 coupling. Further,
operando FTIR was performed and showed that as the potential decreased from −0.2 to
−0.73 V vs. RHE, both the *CO and *OCH2CH3 bands were progressively intensified,
suggesting higher formation rates of the intermediates. This was combined with a decrease
in FECO and FEethanol and an increase in FE2-propanol. These results confirmed that under
CO2-supersaturation conditions, the formation of 2-propanol instead of CO or ethanol
was triggered by the high densities of *CO and *OCH2CH3 intermediates. Calculations
suggested that the surface binding of intermediates in the middle position of the alkyl chain
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and the C-O bonds were weakened and strengthened, respectively, due to the dispersed
Ag atoms in Cu, favoring the formation of 2-propanol over 1-propanol.

5. Summary and Perspectives

In conclusion, this review focused on the conversion of CO2 to alcohols using Cu-
based catalysts, and several strategies have been proposed to achieve efficient production of
alcohols. The highest selectivity values obtained for catalysts for ECR to alcohols in recent
years are summarized in Table 2. We provided a systematic discussion of the mechanisms
involved in CO2-to-alcohol conversion and highlighted the in situ/operando advanced
spectroelectrochemical analysis techniques for alcohol selectivity. We delved into the
structural features of Cu-based catalysts, ranging from the surface to the interface, to gain
a deeper understanding of the factors influencing alcohol formation. By examining and
analyzing these factors, we aimed to uncover valuable insights that can contribute to the
development of more efficient Cu-based catalysts for selective alcohol production from
CO2. This knowledge will play a crucial role in advancing the field of CO2 reduction and
promoting sustainable and carbon-neutral fuel production. However, there are several
areas that require further attention and development to enable the practical application of
these catalysts for efficient ECR:

1. It is important to conduct more research on constructing model systems to study the
structure–activity relationship of catalysts in ECR alcohol production more rigorously
and clearly. Additionally, the development of more advanced in situ/operando tech-
niques with higher spatiotemporal resolution is necessary to obtain more localized
information about the catalytic system (e.g., AFM-IR and tip-enhanced Raman spec-
troscopy [104–107]). Traditional spectroelectrochemical techniques often lack spatial
resolution, which limits our detailed understanding of different catalyst components.

2. It is crucial to pay more attention to propanol and alcohols with longer carbon chains
due to their high value and relatively limited understanding. The stability of the
catalysts should also be taken into consideration for their practical application, in
addition to their catalytic activity.

3. Efforts should be made to design reactors with higher efficiency for ECR. For example,
incorporating membrane electrode assembly (MEA) can enhance the performance of
catalysts and improve overall efficiency [108,109].

4. The integration of artificial intelligence (AI) and density functional theory (DFT) simu-
lations can be utilized to predict and identify the best catalysts for alcohol production
through CO2 reduction [110,111]. This approach will aid in the development of more
efficient electrocatalytic ECR processes.

5. The literature has primarily focused on electrocatalyst design, but it has become
evident that the same electrocatalysts can yield different products and selectivity
depending on whether they are in contact with the bulk electrolyte. For example,
“gas-phase” operations (also known as electrolyte-less conditions or zero gap) favor
the formation of ethanol compared to “liquid-phase” operations with copper-based
(CuxO) gas diffusion electrodes [112–114]. The exact reason for this difference in
terms of the working state during electrocatalytic operations is still unclear. In future
research, mechanistic studies on C2+ formation, especially alcohols, should account
for the effects of the electrolyte, CO2 diffusion to the electrocatalyst, the concentration
of adspecies on the electrode surface, and how these aspects are influenced by the
application of an electrical potential.

By addressing these aspects, the field of electrocatalytic CO2 reduction can be ad-
vanced and pave the way for practical applications in sustainable alcohol production and
carbon neutralization.
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Table 2. Summary of the Cu-based catalysts for ECR to alcohols.

Product Catalysts Electrolyte Cell Active Sites Performance Ref.

Methanol

Ag, S-Cu2O/Cu
1-butyl-3-
methylimidazolium
tetrafluoroborate/H2O

H cell Dual-doped porous
Cu2O/Cu

−1.18 V vs. RHE,
FE 67.4%,
−122.7 mA cm−2

[97]

Pd83Cu17
25 mol% [Bmim]BF4 +
75 mol% water H cell

Pd/Cu grain boundaries
with high Pd0

/PdII and CuI + Cu0

/CuII ratios

−2.1 V vs. Ag/Ag+,
FE 80%,
31.8 mA cm−2

[60]

CuSAs/TCNFs 0.1 M KHCO3 H cell
Cu single atoms
with high binding energy
for *CO intermediate

−0.9 V vs. RHE, FE
44%, −92 mA cm−2 [72]

Ethanol

TWN-Cux-600-
SACs 0.5 M CsHCO3 H cell Adjacent Cu−N3 sites −1.1 V vs. RHE, FE

81.9%, 35.6 mA cm–2 [80]

Alkanethiol-
modified
sputtered copper

1 M KOH Flow cell
Cu with tailored
interfacial
wettability

−1.2 V vs. RHE, FE
53.7% [84]

Cu-Li 0.1 M KHCO3 RDE cell In situ formed
Cun clusters

−0.7 V vs. RHE,
FE 91% [74]

Cu/N0.14C 0.1 M KHCO3 H cell Charge-asymmetry
Cu2-CuN3 clusters

−1.1 V vs. RHE, FE
51%, −14.4 mA cm−2 [99]

K-doped
Cu2Se 0.1 M KHCO3 H cell Stabilized CuI species

−0.8 V vs. RHE,
FE 70.3%,
−35.8 mA cm−2

[100]

Propanol
CuAg alloy 1 M CsHCO3

High-pressure
reactor

Cu with dispersed
Ag atoms

−0.7 V vs. RHE, FE
59.3%, 56.7 mA cm−2 [61]

CuSx 0.1 M KHCO3 H cell CuSx with double
sulfur vacancies

−1.05 V vs. RHE, FE
15.4%, 3.1 mA cm−2 [103]
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