The Preparation and Properties of Ti(Nb)-Si-C Coating on the Pre-Oxidized Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Research Methods
2.2.1. Oxidation Tests
2.2.2. ASR Measurement
2.2.3. Characterization Methods
3. Results and Discussion
3.1. Characterization of the Coating
3.2. Oxidation Behavior
3.3. Electrical Property
4. Conclusions
- (1)
- The amorphous Ti(Nb)-Si-C coating is dense, flat, and tightly bonded on the pre-oxidized SUS430 substrate. The Ti and Si elements are uniformly distributed in the coating.
- (2)
- The amorphous Ti(Nb)-Si-C-coated alloy exhibits good oxidation resistance (kp = 9.36 × 10−15 g2·cm−4·s−1), with the oxidation following the parabolic law. The oxide scale is double-layer structured with the inner layer being rich in Cr2O3 and the outer layer being rich in rutile TiO2 and amorphous SiO2. MnCr2O4 appears at the interface of the inner and outer layers. The amorphous Ti(Nb)-Si-C coating effectively blocks Cr outward diffusion.
- (3)
- The amorphous Ti(Nb)-Si-C coating presents good electrical properties with a low ASR of 13.57 mΩ·cm2 at 800 °C after oxidation at 800 °C in air for 500 h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, C.; Wang, Y.H.; Molin, S.; Zhang, Y.L.; Chen, M.; Han, M.F. High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air. J. Alloys Compd. 2019, 787, 1327–1335. [Google Scholar] [CrossRef]
- Januś, M.; Kyzioł, K.; Kluska, S.; Jastrzębski, W.; Adamczyk, A.; Grzesik, Z.; Zimowski, S.; Potoczek, M.; Brylewski, T. Plasmochemical Modification of Crofer 22APU for Intermediate-Temperature Solid Oxide Fuel Cell Interconnects Using RF PA CVD Method. Materials 2022, 15, 4081. [Google Scholar] [CrossRef] [PubMed]
- Mazur, L.; Molin, S.; Dąbek, J.; Durczak, K.; Pyzalski, M.; Brylewski, T. Physicochemical properties of Mn1.45Co1.45Cu0.1O4 spinel coating deposited on the Crofer 22 H ferritic steel and exposed to high-temperature oxidation under thermal cycling conditions. J. Therm. Anal. Calorim. 2022, 147, 5649–5666. [Google Scholar] [CrossRef]
- Wu, J.; Liu, X. Recent Development of SOFC Metallic Interconnect. J. Mater. Sci. Technol. 2010, 26, 293–305. [Google Scholar] [CrossRef]
- Fergus, J.W. Metallic interconnects for solid oxide fuel cells. Mater. Sci. Eng. A 2005, 397, 271–283. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K.; Abd, W.; Abu, H. The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system. Renew. Sust. Energ. Rev. 2021, 144, 110984. [Google Scholar] [CrossRef]
- Jin, Y.Q.; Sheng, J.Q.; Hao, G.Z.; Guo, M.Y.; Hao, W.S.; Yang, Z.B.; Xiong, X.Y.; Peng, S.P. Highly dense (Mn,Co)3O4 spinel protective coating derived from Mn-Co metal precursors for SOFC interconnect applications. Int. J. Hydrogen Energy 2022, 47, 13960–13968. [Google Scholar] [CrossRef]
- Jin, Y.Q.; Hao, G.Z.; Guo, M.Y.; Hao, W.S.; Sheng, J.Q.; Yang, Z.B.; Xiong, X.Y.; Peng, S.P. Ce-doped (Mn,Co)3O4 coatings for solid oxide fuel cell interconnect applications. Ceram. Int. 2022, 48, 34931–34939. [Google Scholar] [CrossRef]
- Tomas, M.; Visibile, A.; Svensson, J.E.; Froitzheim, J. Novel coatings for protecting solid oxide fuel cell interconnects against the dual-atmosphere effect. Int. J. Hydrogen Energy 2023, 48, 18405–18419. [Google Scholar] [CrossRef]
- Hassan, M.A.; Mamat, O.B.; Mehdi, M. Review: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cells. Int. J. Hydrogen Energy 2020, 45, 25191–25209. [Google Scholar] [CrossRef]
- Reddy, M.J.; Chausson, T.E.; Svensson, J.E.; Froitzheim, J. 11–23% Cr steels for solid oxide fuel cell interconnect applications at 800 °C- How the coating determines oxidation kinetics. Int. J. Hydrogen Energy 2023, 48, 12893–12904. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Geng, S.J.; Zhang, Y.; Chen, G.; Zhu, S.L.; Wang, F.H. High-entropy FeCoNiMnCu alloy coating on ferritic stainless steel for solid oxide fuel cell interconnects. J. Alloys Compd. 2022, 908, 164608. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liu, Q.; Jiang, S.P. Promotional role of BaCO3 on the chromium–tolerance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. Appl. Catal. B. 2023, 321, 122080. [Google Scholar] [CrossRef]
- Zhou, J.T.; Chen, W.J.; Wang, J.; Hu, X.W.; Li, M.N.; Li, J.L.; Jiang, X.X. Microstructure and diffusion behavior of Co-Ni-W conversion coating for metallic interconnect of solid oxide fuel cell. Mater. Charact. 2022, 194, 112378. [Google Scholar] [CrossRef]
- Sachitanand, R.; Sattari, M.; Svensson, J.E.; Froitzheim, J. Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. Int. J. Hydrogen Energy 2013, 38, 15328–15334. [Google Scholar] [CrossRef]
- Kim, S.; Huh, J.; Jun, J.; Jun, J.; Favergeon, J. Thin elemental coatings of yttrium, cobalt, and yttrium/cobalt on ferritic stainless steel for SOFC interconnect applications. Curr. Appl. Phys. 2010, 10, S86–S90. [Google Scholar] [CrossRef]
- Tondo, E.; Boniardi, M.; Cannoletta, D.; Federica, M.; Riccardis, D.; Bozzini, B. Electrodeposition of yttria/cobalt oxide and yttria/gold coatings onto ferritic stainless steel for SOFC interconnects. J. Power Sources 2010, 195, 4772–4778. [Google Scholar] [CrossRef]
- Choi, J.J.; Lee, J.H.; Park, D.S.; Hahn, B.D.; Yoon, W.H.; Lin, H.T. Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process. J. Am. Ceram. Soc. 2007, 90, 1926–1929. [Google Scholar] [CrossRef]
- Johnson, C.; Gemmen, R.; Orlovskaya, N. Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect. Compos. B Eng. 2004, 35, 167–172. [Google Scholar] [CrossRef]
- Hua, B.; Pu, J.; Gong, W.; Zhang, J.F.; Lu, F.S.; Li, J. Cyclic oxidation of Mn-Co spinel coated SUS 430 alloy in the cathodic atmosphere of solid oxide fuel cells. J. Power Sources 2008, 185, 419–422. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Zhang, S.; Zhang, B.; Su, M.; Wang, D.; Xia, C. Supersonic spray derived Cu–Co oxide coating on SUS441 to protect the metallic interconnect and to increase stability of SOFC cathode. Int. J. Hydrogen Energy 2024, 50, 1273–1281. [Google Scholar] [CrossRef]
- Sabzalian, S.; Soltanieh, M.; Rastegari, S. Formation mechanism and oxidation behavior of Cu-Mn spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects. Int. J. Hydrogen Energy 2023, 48, 16406–16419. [Google Scholar] [CrossRef]
- Geng, S.; Zhao, Q.; Li, Y.; Mu, J.; Chen, G.; Wang, F.; Zhu, S. Sputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects application. Int. J. Hydrogen Energy 2017, 42, 10298–10307. [Google Scholar] [CrossRef]
- Shaigan, N.; Qu, W.; Ivey, D.G.; Chen, W.X. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J. Power Sources 2010, 195, 1529–1542. [Google Scholar] [CrossRef]
- Tan, K.H.; Rahman, H.A.; Taib, H. Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review. Int. J. Hydrogen Energy 2019, 44, 30591–30605. [Google Scholar] [CrossRef]
- Acharya, N.; Chaitra, U.; Vijeth, H. Highly dense Mn3O4 and CuMn2O4 spinels as efficient protective coatings on solid oxide fuel cell interconnect and their chromium diffusion studies. J. Alloys Compd. 2022, 918, 165377. [Google Scholar] [CrossRef]
- Zanchi, E.; Ignaczak, J.; Cempura, G.; Molin, S.; Boccaccini, A.R.; Smeacetto, F. Multilayer coatings based on cerium oxide and manganese cobaltite spinel for Crofer22APU SOC interconnects. Mater. Lett. 2024, 354, 135418. [Google Scholar] [CrossRef]
- Barsoum, M.W.; El-Raghy, T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996, 79, 1953–1956. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Sun, Z.M. Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics. Mater. Res. Innov. 1999, 2, 360–363. [Google Scholar] [CrossRef]
- Kendall, K.; Kendall, M. High-temperature Solid Oxide Fuel Cells for the 21st Century. In Fundamentals, Design and Applications; Elsevier Ltd.: London, UK, 2016. [Google Scholar]
- Zheng, L.L.; Li, J.J.; Li, M.S.; Zhou, Y.C. Investigation on the properties of Nb and Al doped Ti3SiC2 as a new interconnect material for IT-SOFC. Int. J. Hydrogen Energy 2012, 37, 1084–1088. [Google Scholar] [CrossRef]
- Zheng, L.L.; Li, X.C.; Hua, Q.S.; Dai, Z.Q.; Zhang, T.Z.; Qian, Y.H.; Xu, J.J.; Li, M.S. Long-term oxidation and electrical behavior of Nb-doped Ti3SiC2 as solid oxide fuel cell interconnects. J. Am. Ceram. Soc. 2017, 100, 3155–3164. [Google Scholar] [CrossRef]
- Zheng, L.L.; Hua, Q.S.; Li, X.C.; Li, M.S.; Qian, Y.H.; Xu, J.J.; Dai, Z.Q.; Chen, T.; Zhang, J.M.; Zhang, H.X. Investigation on the properties of Ta doped Ti3SiC2 as solid oxide fuel cell interconnects. RSC Adv. 2017, 7, 42350–42356. [Google Scholar] [CrossRef]
- Zheng, L.L.; Hua, Q.S.; Li, X.C.; Li, M.S.; Qian, Y.H.; Xu, J.J.; Dai, Z.Q.; Zhang, H.X.; Zhang, T.Z.; Wu, J.W. Exploring a novel ceramic (Ti,W)3SiC2 for interconnect of intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energy 2018, 43, 7483–7491. [Google Scholar] [CrossRef]
- Zheng, L.L.; Li, X.C.; Guan, W.B.; Li, M.S.; Wei, S.L.; Qian, Y.H.; Xu, J.J.; Dai, Z.Q.; Zhang, T.Z.; Zhang, H.X. Oxidation behavior and electrical conductivity of MAXs phase (Ti,Nb)3SiC2 as a novel intermediate-temperature solid oxide fuel cell interconnect material in anode environment. Int. J. Hydrogen Energy 2021, 46, 9503–9513. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.J.; Li, J.J.; Li, Y.M.; Ma, K.; Wang, W.T.; Zhang, X.T.; Zhang, Y.; Li, M.S. Microstructure evolution and cyclic oxidation performance of Cr2AlC transition layer as active diffusion barrier for Ni-based superalloy and NiCrAlY coating. Corros. Sci. 2023, 222, 111416. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Z.; Pal, U.B.; Gopalan, S.; Basu, S. Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect. J. Power Sources 2018, 376, 100–110. [Google Scholar] [CrossRef]
- Ardigo-Besnard, M.R.; Popa, I.; Chevalier, S. Impact of pre-oxidation on the reactivity and conductivity in H2-H2O atmosphere of a ferritic stainless steel for high temperature water vapour electrolysis. Int. J. Hydrogen Energy 2022, 47, 23508–23513. [Google Scholar] [CrossRef]
- Amendola, R.A.; Gannon, P.; Ellingwood, B.; Hoyt, K.; Piccardo, P.; Genocchio, P. Oxidation behavior of coated and pre-oxidized ferritic steel in single and dual atmosphere exposures at 800 °C. Surf. Coat. Technol. 2012, 206, 2173–2180. [Google Scholar] [CrossRef]
- Talic, B.; Molin, S.; Hendriksen, P.V.; Lein, H.L. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU. Corros. Sci. 2018, 138, 189–199. [Google Scholar] [CrossRef]
- Khorramirad, M.M.; Rahimipour, M.R.; Hadavi, S.M.M. Pre-oxidation of bond coat in N738LC/NiCrAlY/LaMgAl11O19 thermal barrier coating system. Ceram. Int. 2018, 44, 22080–22091. [Google Scholar] [CrossRef]
- Lu, J.L.; Abbas, N.; Tang, J.; Hu, R.; Zhu, G.M. Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments. Electrochem. Comm. 2019, 105, 106490. [Google Scholar] [CrossRef]
- Young, D.J. Textbook of High Temperature Oxidation and Corrosion of Metals; T. Burstein: Cambridge, UK, 2008; pp. 16–26. [Google Scholar]
- Brylewski, T.; Nanko, M.; Maruyama, T.; Przybylski, K. Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ion. 2001, 143, 131–150. [Google Scholar] [CrossRef]
- Braic, M.; Vladescu, A.; Parau, A.C.; Pruncu, C.I.; Braic, V. Tribological properties of alloyed TiSi-stainless steel carbide coatings deposited by reactive cathodic arc method. Wear 2020, 460, 203456. [Google Scholar] [CrossRef]
- Li, F.X.; Zhang, P.C.; Zhao, Y.; Yang, D.M.; Sun, J.C. The preparation and properties of Mn-Co-O spinel coating for SOFC metallic interconnect. Int. J. Hydrogen Energy 2023, 48, 16048–16056. [Google Scholar] [CrossRef]
- Huai, T.K.; Lowrance, Y.; Rahman, N.F.A.; Yusop, U.A.; Rahman, H.A.; Jaidi, Z.; Tukimon, M.F.; Azami, M.S.M. Mathematical modeling and experiment verification for the Solid oxide Fuel Cell Mn1.5Co1.5O4 interconnect coating. Mater. Lett. 2024, 358, 135825. [Google Scholar] [CrossRef]
Steel | Coating Type | Testing Condition | Oxidation Rate Constant (g2·cm−4·s−1) | Reference |
---|---|---|---|---|
Sus430 | Uncoated | 800 °C in air | 9.36 × 10−15 | This work |
Sus430 | Ti(Nb)-Si-C | 800 °C in air | 2.31 × 10−14 | This work |
Sus430 | Uncoated | 800 °C in air | 8.5 × 10−14 | [44] |
Sus430 | Uncoated | 800 °C in air | 4.78 × 10−14 | [1] |
Sus430 | Mn-Co | 800 °C in air | 1.22 × 10−14 | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chi, Y.; Wei, S.; Sun, X.; Zhao, J.; Hou, Q.; Fu, K.; Dai, Z.; Zheng, L. The Preparation and Properties of Ti(Nb)-Si-C Coating on the Pre-Oxidized Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect. Materials 2024, 17, 632. https://doi.org/10.3390/ma17030632
Li X, Chi Y, Wei S, Sun X, Zhao J, Hou Q, Fu K, Dai Z, Zheng L. The Preparation and Properties of Ti(Nb)-Si-C Coating on the Pre-Oxidized Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect. Materials. 2024; 17(3):632. https://doi.org/10.3390/ma17030632
Chicago/Turabian StyleLi, Xichao, Yongchen Chi, Shouli Wei, Xianwei Sun, Jingxiang Zhao, Qiangqiang Hou, Kang Fu, Zuoqiang Dai, and Lili Zheng. 2024. "The Preparation and Properties of Ti(Nb)-Si-C Coating on the Pre-Oxidized Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect" Materials 17, no. 3: 632. https://doi.org/10.3390/ma17030632
APA StyleLi, X., Chi, Y., Wei, S., Sun, X., Zhao, J., Hou, Q., Fu, K., Dai, Z., & Zheng, L. (2024). The Preparation and Properties of Ti(Nb)-Si-C Coating on the Pre-Oxidized Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect. Materials, 17(3), 632. https://doi.org/10.3390/ma17030632