Simultaneous Inversion of Particle Size Distribution, Thermal Accommodation Coefficient, and Temperature of In-Flame Soot Aggregates Using Laser-Induced Incandescence
Abstract
:1. Introduction
2. TiRe-LII Model
2.1. Heat Transfer Sub-Models
2.1.1. Energy and Mass Balance Equations
2.1.2. Internal Energy of Soot Aggregates
2.1.3. Heat Conduction Sub-Model
2.1.4. Sublimation Sub-Model
2.1.5. Thermionic Emission Sub-Model
2.2. Spectroscopic Sub-Model
3. Inverse Problem
3.1. Equivalent Thermal Accommodation Coefficient
3.2. Multi-Parameter Inversion Strategy
4. Results and Discussion
4.1. Impact of Flame Temperature Rise on Heat Transfer Sub-Models
4.2. Simplified LII Model for Multi-Parameter Inversion
4.3. Impact of Flame Temperature Bias on LII-Based Particle Sizing
4.4. Multi-Parameter Inversions at Two Typical Flame Temperatures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Simulation of Normalized TiRe-LII Signal Considering Both the Size Polydispersity of Soot Primary Particles and Aggregates
Appendix A.2. Simplification of Normalized TiRe-LII Signal Simulation Using the Equivalent Thermal Accommodation Coefficient
Appendix B
Scenario | F = 0.09 J/cm2 | F = 0.12 J/cm2 | F = 0.15 J/cm2 |
---|---|---|---|
Tg = 1700 K (Corresponding to Figure A1) | |||
μd/nm | 18.55 ± 0.95 | 18.95 ± 3.11 | 18.87 ± 3.53 |
σd | 1.26 ± 0.04 | 1.23 ± 0.15 | 1.24 ± 0.16 |
αeff | 0.23 ± 0.01 | 0.24 ± 0.06 | 0.25 ± 0.06 |
Tg/K | 1603 ± 47 | 1626 ± 170 | 1635 ± 206 |
Tg = 1100 K (Corresponding to Figure A2) | |||
μd/nm | 24.69 ± 4.11 | 19.70 ± 2.61 | 20.28 ± 2.71 |
σd | 1.31 ± 0.16 | 1.21 ± 0.07 | 1.18 ± 0.11 |
αeff | 0.31 ± 0.06 | 0.25 ± 0.09 | 0.27 ± 0.09 |
Tg/K | 1035 ± 75 | 982 ± 206 | 1062 ± 267 |
References
- Martin, J.W.; Salamanca, M.; Kraft, M. Soot Inception: Carbonaceous Nanoparticle Formation in Flames. Prog. Energy Combust. Sci. 2022, 88, 100956. [Google Scholar] [CrossRef]
- Martin, J.W.; Pascazio, L.; Menon, A.; Akroyd, J.; Kaiser, K.; Schulz, F.; Commodo, M.; D’Anna, A.; Gross, L.; Kraft, M. π-Diradical Aromatic Soot Precursors in Flames. J. Am. Chem. Soc. 2021, 143, 12212–12219. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Consalvi, J.-L.; Nmira, F. The Importance of Accurately Modelling Soot and Radiation Coupling in Laminar and Laboratory-Scale Turbulent Diffusion Flames. Combust. Flame 2022, 112573. [Google Scholar] [CrossRef]
- Liu, C.; Singh, A.V.; Saggese, C.; Tang, Q.; Chen, D.; Wan, K.; Vinciguerra, M.; Commodo, M.; De Falco, G.; Minutolo, P.; et al. Flame-Formed Carbon Nanoparticles Exhibit Quantum Dot Behaviors. Proc. Natl. Acad. Sci. USA 2019, 116, 12692–12697. [Google Scholar] [CrossRef] [PubMed]
- Meierhofer, F.; Fritsching, U. Synthesis of Metal Oxide Nanoparticles in Flame Sprays: Review on Process Technology, Modeling, and Diagnostics. Energy Fuels 2021, 35, 5495–5537. [Google Scholar] [CrossRef]
- Kohse-Höinghaus, K. Combustion, Chemistry, and Carbon Neutrality. Chem. Rev. 2023, 123, 5139–5219. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.J. Modeling Soot Formation in Flames and Reactors: Recent Progress and Current Challenges. Proc. Combust. Inst. 2022, 39, 805–823. [Google Scholar] [CrossRef]
- Kholghy, M.; Saffaripour, M.; Yip, C.; Thomson, M.J. The Evolution of Soot Morphology in a Laminar Coflow Diffusion Flame of a Surrogate for Jet A-1. Combust. Flame 2013, 160, 2119–2130. [Google Scholar] [CrossRef]
- Michelsen, H.A. Probing Soot Formation, Chemical and Physical Evolution, and Oxidation: A Review of in Situ Diagnostic Techniques and Needs. Proc. Combust. Inst. 2017, 36, 717–735. [Google Scholar] [CrossRef]
- Michelsen, H.A.; Schulz, C.; Smallwood, G.J.; Will, S. Laser-Induced Incandescence: Particulate Diagnostics for Combustion, Atmospheric, and Industrial Applications. Prog. Energy Combust. Sci. 2015, 51, 2–48. [Google Scholar] [CrossRef]
- Sipkens, T.A.; Menser, J.; Dreier, T.; Schulz, C.; Smallwood, G.J.; Daun, K.J. Laser-Induced Incandescence for Non-Soot Nanoparticles: Recent Trends and Current Challenges. Appl. Phys. B 2022, 128, 72. [Google Scholar] [CrossRef] [PubMed]
- Sipkens, T.A.; Boies, A.; Corbin, J.C.; Chakrabarty, R.K.; Olfert, J.; Rogak, S.N. Overview of Methods to Characterize the Mass, Size, and Morphology of Soot. J. Aerosol Sci. 2023, 173, 106211. [Google Scholar] [CrossRef]
- Bauer, F.J.; Yu, T.; Cai, W.; Huber, F.J.T.; Will, S. Three-Dimensional Particle Size Determination in a Laminar Diffusion Flame by Tomographic Laser-Induced Incandescence. Appl. Phys. B 2021, 127, 4. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, C.; Gao, Y.; Tung Chong, C.; Hochgreb, S. 2D 2-Colour Time-Resolved Laser Induced Incandescence Sizing of Ultra-Fine Soot Particles in a Methane Diffusion Flame. Proc. Combust. Inst. 2022, 39, 1175–1184. [Google Scholar] [CrossRef]
- Ma, X.; Ma, Y.; Zheng, L.; Li, Y.; Wang, Z.; Shuai, S.; Wang, J. Measurement of Soot Distribution in Two Cross-Sections in a Gasoline Direct Injection Engine Using Laser-Induced Incandescence with the Laser Extinction Method. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 211–223. [Google Scholar] [CrossRef]
- Mansmann, R.; Sipkens, T.A.; Menser, J.; Daun, K.J.; Dreier, T.; Schulz, C. Detector Calibration and Measurement Issues in Multi-Color Time-Resolved Laser-Induced Incandescence. Appl. Phys. B 2019, 125, 126. [Google Scholar] [CrossRef]
- Musikhin, S.; Fortugno, P.; Corbin, J.C.; Smallwood, G.J.; Dreier, T.; Daun, K.J.; Schulz, C. Characterization of Few-Layer Graphene Aerosols by Laser-Induced Incandescence. Carbon 2020, 167, 870–880. [Google Scholar] [CrossRef]
- Melton, L.A. Soot Diagnostics Based on Laser Heating. Appl. Opt. 1984, 23, 2201–2208. [Google Scholar] [CrossRef]
- Chen, Y.; Cenker, E.; Richardson, D.R.; Kearney, S.P.; Halls, B.R.; Skeen, S.A.; Shaddix, C.R.; Guildenbecher, D.R. Single-Camera, Single-Shot, Time-Resolved Laser-Induced Incandescence Decay Imaging. Opt. Lett. 2018, 43, 5363. [Google Scholar] [CrossRef] [PubMed]
- Mishra, Y.N.; Wang, P.; Bauer, F.J.; Zhang, Y.; Hanstorp, D.; Will, S.; Wang, L.V. Single-Pulse Real-Time Billion-Frames-per-Second Planar Imaging of Ultrafast Nanoparticle-Laser Dynamics and Temperature in Flames. Light Sci. Appl. 2023, 12, 47. [Google Scholar] [CrossRef]
- Liu, F.; Stagg, B.J.; Snelling, D.R.; Smallwood, G.J. Effects of Primary Soot Particle Size Distribution on the Temperature of Soot Particles Heated by a Nanosecond Pulsed Laser in an Atmospheric Laminar Diffusion Flame. Int. J. Heat Mass Transf. 2006, 49, 777–788. [Google Scholar] [CrossRef]
- Liu, F.; Yang, M.; Hill, F.A.; Snelling, D.R.; Smallwood, G.J. Influence of Polydisperse Distributions of Both Primary Particle and Aggregate Size on Soot Temperature in Low-Fluence LII. Appl. Phys. B 2006, 83, 383–395. [Google Scholar] [CrossRef]
- Bauer, F.J.; Daun, K.J.; Huber, F.J.T.; Will, S. Can Soot Primary Particle Size Distributions Be Determined Using Laser-Induced Incandescence? Appl. Phys. B 2019, 125, 109. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Qi, H.; Gao, B.-H.; Ren, Y.-T.; Zhou, L. A Proof-of-Concept Study on Characterization of Primary Particle Size Distribution and Thermal Accommodation Coefficient of Soot Aggregate by Using Conduction-Dominated Laser-Induced Incandescence. Opt. Lasers Eng. 2021, 141, 106572. [Google Scholar] [CrossRef]
- Mewes, B.; Seitzman, J.M. Soot Volume Fraction and Particle Size Measurements with Laser-Induced Incandescence. Appl. Opt. 1997, 36, 709. [Google Scholar] [CrossRef] [PubMed]
- Vander Wal, R.L. Laser-Induced Incandescence: Detection Issues. Appl. Opt. 1996, 35, 6548. [Google Scholar] [CrossRef] [PubMed]
- Lehre, T.; Jungfleisch, B.; Suntz, R.; Bockhorn, H. Size Distributions of Nanoscaled Particles and Gas Temperatures from Time-Resolved Laser-Induced-Incandescence Measurements. Appl. Opt. 2003, 42, 2021. [Google Scholar] [CrossRef] [PubMed]
- Lehre, T.; Bockhorn, H.; Jungfleisch, B.; Suntz, R. Development of a Measuring Technique for Simultaneous in Situ Detection of Nanoscaled Particle Size Distributions and Gas Temperatures. Chemosphere 2003, 51, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, S.; Qi, H. A Robust Trivariate Approach for Characterizing the Primary Particle Size Distribution of Soot Aggregates Using Time-Resolved Laser-Induced Incandescence. Powder Technol. 2022, 400, 117236. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Qi, H.; Shi, J.-W.; Gao, B.-H.; Ren, Y.-T. Simultaneous Determination of Primary Particle Size Distribution and Thermal Accommodation Coefficient of Soot Aggregates Using Low-Fluence LII. Opt. Express 2020, 28, 37249. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, H.A. Understanding and Predicting the Temporal Response of Laser-Induced Incandescence from Carbonaceous Particles. J. Chem. Phys. 2003, 118, 7012–7045. [Google Scholar] [CrossRef]
- Sipkens, T.A.; Menser, J.; Mansmann, R.; Schulz, C.; Daun, K.J. Investigating Temporal Variation in the Apparent Volume Fraction Measured by Time-Resolved Laser-Induced Incandescence. Appl. Phys. B 2019, 125, 140. [Google Scholar] [CrossRef]
- Sorensen, C.M. Light Scattering by Fractal Aggregates: A Review. Aerosol Sci. Technol. 2001, 35, 648–687. [Google Scholar] [CrossRef]
- Michelsen, H.A.; Liu, F.; Kock, B.F.; Bladh, H.; Boiarciuc, A.; Charwath, M.; Dreier, T.; Hadef, R.; Hofmann, M.; Reimann, J.; et al. Modeling Laser-Induced Incandescence of Soot: A Summary and Comparison of LII Models. Appl. Phys. B 2007, 87, 503–521. [Google Scholar] [CrossRef]
- Liu, F.; Smallwood, G.J.; Snelling, D.R. Effects of Primary Particle Diameter and Aggregate Size Distribution on the Temperature of Soot Particles Heated by Pulsed Lasers. J. Quant. Spectrosc. Radiat. Transf. 2005, 93, 301–312. [Google Scholar] [CrossRef]
- Filippov, A.V.; Zurita, M.; Rosner, D.E. Fractal-like Aggregates: Relation between Morphology and Physical Properties. J. Colloid Interface Sci. 2000, 229, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Menser, J.; Daun, K.; Schulz, C. Interrogating Gas-Borne Nanoparticles Using Laser-Based Diagnostics and Bayesian Data Fusion. J. Phys. Chem. C 2021, 125, 8382–8390. [Google Scholar] [CrossRef]
- Robinson-Enebeli, S.; Talebi-Moghaddam, S.; Daun, K.J. Time-Resolved Laser-Induced Incandescence Measurements on Aerosolized Nickel Nanoparticles. J. Phys. Chem. A 2021, 125, 6273–6285. [Google Scholar] [CrossRef] [PubMed]
- Trivanovic, U.; Sipkens, T.A.; Kazemimanesh, M.; Baldelli, A.; Jefferson, A.M.; Conrad, B.M.; Johnson, M.R.; Corbin, J.C.; Olfert, J.S.; Rogak, S.N. Morphology and Size of Soot from Gas Flares as a Function of Fuel and Water Addition. Fuel 2020, 279, 118478. [Google Scholar] [CrossRef]
- Sipkens, T.A.; Hadwin, P.J.; Grauer, S.J.; Daun, K.J. General Error Model for Analysis of Laser-Induced Incandescence Signals. Appl. Opt. 2017, 56, 8436. [Google Scholar] [CrossRef] [PubMed]
- Kaipio, J.; Somersalo, E. Statistical Inverse Problems: Discretization, Model Reduction and Inverse Crimes. J. Comput. Appl. Math. 2007, 198, 493–504. [Google Scholar] [CrossRef]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory; Applied Mathematical Sciences; Springer International Publishing: Cham, Switzerland, 2019; Volume 93, ISBN 978-3-030-30350-1. [Google Scholar]
- Zhang, J.-Y.; Qi, H.; Wang, Y.-F.; Gao, B.-H.; Ruan, L.-M. Retrieval of Fractal Dimension and Size Distribution of Non-Compact Soot Aggregates from Relative Intensities of Multi-Wavelength Angular-Resolved Light Scattering. Opt. Express 2019, 27, 1613. [Google Scholar] [CrossRef] [PubMed]
- Ögren, Y.; Sepman, A.; Qu, Z.; Schmidt, F.M.; Wiinikka, H. Comparison of Measurement Techniques for Temperature and Soot Concentration in Premixed, Small-Scale Burner Flames. Energy Fuels 2017, 31, 11328–11336. [Google Scholar] [CrossRef]
- Ma, L.; Ning, H.; Wu, J.; Cheong, K.-P.; Ren, W. Characterization of Temperature and Soot Volume Fraction in Laminar Premixed Flames: Laser Absorption/Extinction Measurement and Two-Dimensional Computational Fluid Dynamics Modeling. Energy Fuels 2018, 32, 12962–12970. [Google Scholar] [CrossRef]
- Ma, L.; Du, W.; Wen, D.; Wang, Y. Infrared Spectral Soot Emission for Robust and High-Fidelity Flame Thermometry. Opt. Lett. 2023, 48, 980. [Google Scholar] [CrossRef]
- Daun, K.J.; Stagg, B.J.; Liu, F.; Smallwood, G.J.; Snelling, D.R. Determining Aerosol Particle Size Distributions Using Time-Resolved Laser-Induced Incandescence. Appl. Phys. B 2007, 87, 363–372. [Google Scholar] [CrossRef]
Notation | Type | Energy and Mass Balance Equations |
---|---|---|
Model #0 | Baseline (Full model) | |
Model #1 | Low-fluence model (Simplified model) | |
Model #2 | Selected for the multi-parameter inversion in this study (Simplified model) |
Prior Value of Tg | 1700 K | 1725 K/ 1675 K | 1750 K/ 1650 K | 1775 K/ 1625 K | 1800 K/ 1600 K | 1825 K/ 1575 K | 1900 K/ 1500 K |
---|---|---|---|---|---|---|---|
Bias of Tg | 0 K | ±25 K | ±50 K | ±75 K | ±100 K | ±125 K | ±200 K |
Percentage of Tg-Bias | 0% | ±1.5% | +2.9% | ±4.4% | ±5.9% | +7.4% | +11.8% |
Scenario | F = 0.09 J/cm2 | F = 0.12 J/cm2 | F = 0.15 J/cm2 |
---|---|---|---|
Tg = 1700 K (Corresponding to Figure 10) | |||
μd/nm | 18.88 ± 0.74 | 18.40 ± 1.55 | 17.87 ± 2.55 |
σd | 1.25 ± 0.03 | 1.23 ± 0.15 | 1.28 ± 0.12 |
αeff | 0.24 ± 0.01 | 0.23 ± 0.02 | 0.23 ± 0.03 |
Tg/K | 1625 ± 42 | 1613 ± 84 | 1605 ± 128 |
Tg = 1100 K (Corresponding to Figure 11) | |||
μd/nm | 24.31 ± 4.03 | 19.09 ± 0.63 | 19.17 ± 1.51 |
σd | 1.28 ± 0.16 | 1.23 ± 0.03 | 1.23 ± 0.07 |
αeff | 0.32 ± 0.05 | 0.22 ± 0.02 | 0.24 ± 0.04 |
Tg/K | 1040 ± 58 | 937 ± 98 | 975 ± 185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, J.; Huang, X. Simultaneous Inversion of Particle Size Distribution, Thermal Accommodation Coefficient, and Temperature of In-Flame Soot Aggregates Using Laser-Induced Incandescence. Materials 2024, 17, 634. https://doi.org/10.3390/ma17030634
Zhang J, Zhang J, Huang X. Simultaneous Inversion of Particle Size Distribution, Thermal Accommodation Coefficient, and Temperature of In-Flame Soot Aggregates Using Laser-Induced Incandescence. Materials. 2024; 17(3):634. https://doi.org/10.3390/ma17030634
Chicago/Turabian StyleZhang, Junyou, Juqi Zhang, and Xing Huang. 2024. "Simultaneous Inversion of Particle Size Distribution, Thermal Accommodation Coefficient, and Temperature of In-Flame Soot Aggregates Using Laser-Induced Incandescence" Materials 17, no. 3: 634. https://doi.org/10.3390/ma17030634
APA StyleZhang, J., Zhang, J., & Huang, X. (2024). Simultaneous Inversion of Particle Size Distribution, Thermal Accommodation Coefficient, and Temperature of In-Flame Soot Aggregates Using Laser-Induced Incandescence. Materials, 17(3), 634. https://doi.org/10.3390/ma17030634